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Human intelligence has been theorized since the ancient Greeks. Plato and Aristotle
incorporated theories of human intelligence into their metaphysical and cosmological
theories which informed the social and medical sciences for centuries. With the advent
of the 20th century, human intelligence became increasingly standardized based on
Intelligence Quotients (IQ). Moreover, multiple theories of human intelligence were posited
on morphological features of the human brain, focusing on cranial volume and size of
the pre-frontal cortex which was suggestive of superior human cognitive abilities. This
article argues that fixation with anatomical features of the brain was tended to ignore the
importance of neuro-hormonal regulation which is a more appropriate indicator of human
cognitive abilities. The article challenges the correlation between brain size and human
cognitive abilities while offering an alternate theory of human cognitive abilities which
emphasizes the roles of neurotransmitters, neurotrophins, and enteric gut microbiome
(EGM) regulation.

Keywords: intelligence quotient (IQ), brain size evolution, dopamine, serotoinin, neurotrophin, enteric
gut microbiome

BIGGER IS NOT NECESSARILY BETTER: HISTORICAL ROOTS

The historic understanding that intelligent individuals are ‘‘big-brained’’ has permeated
throughout modern science and prompted subsequent research to support this view. The
noted neuroanatomist Paul Broca (1924–1880) suggested that bigger brain size correlated with
higher intelligence and that Europeans had larger brains than Africans (Broca, 1861). Such ideas
influenced scientific and political establishments during the period (Morton, 1849; Darwin, 1871).

Moreover, Galton (1888) demonstrated that university students with larger cranial
measurements had an overall better academic performance. Subsequent investigations in the
20th century, in which more sophisticated methods were used to measure brain size and
evaluate intelligence seemed to support the findings of Galton (Tan et al., 1999). However,
a meta-analysis conducted in 1996 found that correlations between the various measures of
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brain size and intelligence scores ranged between 0.08 and
0.35, with an unweighted mean of 0.21 (Rushton and Ankney,
1996). Importantly, this unweighted correlation coefficient of
0.21 indicates that less than 5% of all variance in intelligence
can be attributed to brain size. These findings have led
many researchers to question whether there is a significant
relationship between cranial volume and intelligence (Gould,
1996). Moreover, Intelligence Quotients (IQ) comprises
knowledge and skills acquired through informal and formal
education. Education varies depending on the socioeconomic
circumstances of individuals and communities. Stature varies
with socioeconomic conditions, and there is a correlation
between stature and brain size. Thus, brain size/IQ covariance
may be an artifact of living conditions and education (Olivier
et al., 1970; Henneberg et al., 1985). Average brain sizes of
females are approximately 150 ml (one standard deviation)
smaller than those of males, yet there is no concomitant
female/male difference in mental aptitude test scores
(Henneberg et al., 1985).

These views are substantiated by numerous studies conducted
that fail to show a statistically significant relationship between
head size and scores on intelligence testing (Henneberg et al.,
1985; Saniotis et al., 2014). The phenomenon of ‘‘publication
bias’’ has likely prevented more publications of the negative
finding of no relationship between brain size and intelligence,
as authors who find no correlation tend to think that they
have nothing to report. Reservations surrounding the link
between brain size and intelligence are further supported
by a number of contentions regarding the possibility of
spurious correlations. These include body height, which is
known to correlate with both cranial capacity and intelligence
(Henneberg, 1998).

HYPOTHESIS

Although a general positive correlation between brain
sizes/encephalizations and behavioral complexity exists when
comparisons are made across members of various animal
orders, such regularities do not seem to work in both species
and individuals (Lefebvre, 2013). These inconsistencies further
illustrate the limitations of an anatomical explanation in
describing sophisticated phenomena, such as human cognitive
abilities. The hypothesis on the positive link between intelligence
and brain size in hominins has been already falsified by
numerous findings. Therefore, a new hypothesis is needed.
There needs to be increased attention paid to neurohormonal
regulation in influencing human cognitive abilities. We offer an
alternate theory of human cognitive abilities which emphasizes
the roles of neurotransmitters/neurotrophins and enteric gut
microbiome (EGM) regulation.

BRAIN EVOLUTION AND CONCEPTUAL
CHALLENGES

Human brain evolution has for decades been informed by
an essentialist approach in describing biological variation. A
study of the literature reveals the maintenance of essentialist

ideas in understanding brain evolution, with a principal idea of
brain volume being the underlying signifier of intelligence being
incorrect (Saniotis and Henneberg, 2013a).

Much of the fascination into human brain size has tended
to focus on the human frontal lobe. A probable reason for
this persistence with frontal lobe volume has been in order
to verify the superiority of human cognitive abilities over
non-human animals. Since the frontal lobe (more specifically the
prefrontal neocortex) regulates executive functions and higher-
order cognition it is reasonable that scientists focussed on
this area. Although there has been considerable frontal lobe
expansion in hominins from the early Paleolithic period, this
issue has not been resolved and remains unclear (Barton and
Venditti, 2013).

Consequently, two schools of thought have arisen relating to
whether human prefrontal cortex (PFC) is predictably larger for
a primate brain (Blinkov and Glezer, 1968; Passingham, 1973;
McBride et al., 1999; Sherwood et al., 2005; Navarrete et al., 2011),
or is not predictably larger for a primate brain (Brodmann, 1913;
Semendeferi et al., 2002; Smaers et al., 2011; Barton and Venditti,
2013; Hoffmann, 2013). Some theorists cite lack of consistency
in measuring differences in relation to white and gray matter
volume in the PFC (Smaers et al., 2011), total frontal cortex size
(Semendeferi et al., 2002), or inappropriate measuring methods
for this lack of consensus (Elston and Garey, 2009; Barton and
Venditti, 2013). For example, dimensions of various cerebral
structures have altered at dissimilar levels during the evolution
of body size and brain (Barton and Harvey, 2000; Barton and
Venditti, 2013). Furthermore, hominin cranial material tends
to be fragmentary and open to speculations. A methodological
problem lies in the making of endocasts of hominin braincases.
Henneberg (1998) claims that while braincase volume can
be larger in hominin specimens than the tangible brain, it
is the endocast that is used as an indicator of the actual
brain size.

Another issue relates to a lack of vigorous research into
the cytoarchitecture of the brain. An understanding into the
cytoarchitecture of the PFC such as the number of neurons
and cortical networks in the granular layer of the PFC (gPFC;
Barton and Venditti, 2013), has implications on how intelligence
is measured (Elston and Garey, 2009).

Unfortunately, the laborious nature of comparing the
PFC across species, as well as, lack of scientific funding
detract from a further scientific investigation in this
important area of brain evolution (Elston and Garey, 2009;
Passingham and Smaers, 2014).

Furthermore, in keeping with the hypothesis of brain size
contributing to improved intelligence, males, with their firmly
established average larger cranial capacity, should demonstrate
greater intellectual aptitude. However, the sexual dimorphism
of mental ability, although proposed, remains inconclusive.
Perhaps the biggest detraction from considering brain volume
predictive of intelligence is the weakness of the correlation. Even
when accepting the findings of the most ardent supporters of
brain size informing intelligence, only a modest influence can
be claimed. This leads us to the conclusion that variation in
mental aptitude must be primarily a result of the variation in
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brain physiology, especially biochemical variation in substances
facilitating neuronal communication (Henneberg et al., 1985).
This is further demonstrated in a recent study that found
that individuals possessing higher mental performance have
less neuronal arborization and density of dendrites. The study
suggests that higher intelligence is predicated on less but better
organized and efficient neurons.

THE DECREASE IN HUMAN BRAIN
VOLUME

With the broader scientific acceptance that larger brains convey
greater mental capacity, numerous studies have concentrated on
showing a postulated link between an evolutionary enlargement
of the brain and increased behavioral complexity.

Undoubtedly, there could be a coincidence between the
increase in the size of the brain and the improvement in markers
of social intelligence over the last 3 million years (De Miguel and
Henneberg, 2001), though it is not obvious which is the cause
and which the effect. However, recent work has shown that an
increase in hominin brain size parallels increasing in hominin
body size (Henneberg, 1998; Henneberg and Saniotis, 2009;
Saniotis and Henneberg, 2011). This infers that these changes
in brain volume may be a result of increasing body size rather
than a reflection of increasing intelligence. The increase in body
size itself may be a result of increasingly better management
of resources by hominins (Olney et al., 2015) allowing growth
in body size. Better resource management may be a result of
improved mental abilities due to changes in neurohormonal
regulation and brain physiology.

Furthermore, the concept of a larger brain leading to
better cultural and technological performance did not hold
true for the Holocene (last 10,000 years), when the average
human brain size decreased by approximately 10% (100–150 ml,
that is one standard deviation; Henneberg, 1988; Brown,
1992; Ruff et al., 1997). This is the period during which
time civilizations developed, written language and formal
mathematics were introduced and sciences and technologies
progressed (Henneberg and Steyn, 1993).

HUMAN AND ANIMAL BRAIN: WHAT THE
RESEARCH SHOWS

Behavioral differences between apes and humans and advances
in the history of human evolution can be adduced to superior
chemical regulation of brain function rather than larger brain size
(see Figure 1).

There is evidence to support this postulation, with humans
demonstrating 3-fold higher thyroid hormone activity and more
developed dopaminergic system in the pre-frontal cortex in
comparison to other primates (Previc, 1999; Gagneux et al.,
2001). While Gagneux et al. (2001) postulate a possible link
between lower T3 and T4 in chimpanzees with hypothyroidism
and associations with cretinism, this does not explain how
chimpanzees in captivity have consistently been shown to possess
far better working memory of numbers than humans (Inoue

FIGURE 1 | Reduction of braincase volume in the last 10,000 years in
Europe (including Mediterranean) and in Subsaharan Africa. Data from
Henneberg (1988) and Henneberg and Steyn (1993).

and Matsuzawa, 2007). The hypothesis of superior chemical
brain regulation leading to better cognition has not yet been
falsified. Contrariwise, the wide use of substances that alter brain
functions in humans shows a number of positive and negative
influences upon cognitive abilities.

A considerable body of evidence that detracts from the
significance of brain volume in relation to intelligence can
be derived from the broader animal kingdom. Measuring
intelligence across different species is an elusive exercise and
fraught with multiple problems. One such problem is the
misnomer of the uniformity of the cerebral cortex in mammalian
species (Elston and Garey, 2009). This prevalent viewpoint
assumes that mammals share the same cortical organization
(Kolb and Tees, 2000; Jerison, 2001; Elston and Garey, 2009).
However, a counter-argument notes that acceptance of the
cortical uniformity hypothesis refutes heterogeneity in cortical
microstructures (pyramidal neurons in the granular level of the
PFC) at both inter and intra levels in mammals (Elston, 2003;
Elston et al., 2006). Fuster (2001) points out the fallacy of one
specific function attributed to the PFC while ignoring other
complementary functions.

It has been shown that pyramidal cells are not only integral
to basic cortical synaptic excitation and inter-areal and intra-
areal projections but also reveal remarkable heterogeneity
in the primate cerebral cortex (Elston et al., 2011). The
variation in pyramidal cells in the cortices in different species
demands a less essentialistic approach (Kasper et al., 1994;
Gao and Zheng, 2004; Spruston, 2008). At this stage, our
understanding of neuronal diversity in all of its complexity is
still underdeveloped.

Most of the phylogenetic analysis of pyramidal cells have
derived from the primary sensory cortices of laboratory mice
(Luebke, 2017). Consequently, our understanding of pyramidal
cell heterogeneity from a large range of mammalian species
is lacking. For example, the dynamic processes of mouse
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cortical neurons (consisting of multimodal FC and V1 that are
low in their dynamic range) are suitable for quick synaptic
communication (Luebke, 2017). However, the neocortex of mice
is less differentiated and less complex than the cortex of rhesus
monkeys. The greater complexity of the latter requires more
functionally marked cortical areas that are qualitatively different
in their levels of filtering, excitation and input integration than
mice cortical areas (Barbas, 2015; Luebke, 2017).

For the purposes of discussion, animal intelligence has been
broadly defined as the ability to produce flexible responses to
challenges posed by the environment and by other individuals.
It is generally accepted that larger animals possess larger brains
and many of these species are associated with higher intelligence
(Jerison, 1973). However, mammals possess a large range of
brain sizes and body sizes of approximately ‘‘eight orders
of magnitude’’ (Dicke and Roth, 2016). Generally speaking,
both mammal and avians have brains that are approximately
10 times larger than those of vertebrate fish, amphibians and
reptiles of equivalent body mass (Lefebvre, 2012). Yet, bird
cortices are smooth and very small while birds’ behaviors
match those of many mammals and humans (e.g., language
communication). Most of the complex neuronal processing
in birds’ brains occurs in subcortical structures, especially
in the dorsal ventricular ridge that may perform the same
functions as the mammalian neocortex (Font et al., 2019).
This clearly indicates that the same phenotypic characteristics
of ‘‘intelligent’’ behaviors can be facilitated by different parts
of the brain with different interconnections. The size or
localization of brain structures underlying behaviors is of
little consequence.

Although primate cortical cell densities are comparatively
higher than those found in cetaceans and elephants, this does
not explain why primate brains are superior in relation to
intelligence. Neuronal densities in the human cortex are much
lower than those in great apes (Haug, 1987) While there is a
strong general correlation between brain size and body size,
there is no such correlation among sub-samples of closely related
species where the range of unexplained variation of brain/body
size relationships is large (Dicke and Roth, 2016). This becomes
evident when comparing relative brain size between animal
species even after correcting for body size. Although parrots
(psittacids) possess larger brain volume than corvids, both show
high intelligence and have the ability to manipulate objects
as tools (Dicke and Roth, 2016). Similarly, dolphins possess
a bigger ‘‘corrected value’’ brain size than chimpanzees and
gorillas but are considered by some theorists as being less
intelligent than Pongidae (Manger, 2013; Güntürkün, 2014;
Dicke and Roth, 2016).

Both the smallest and the largest mammals (shrews, mice,
elephants, and whales) have large repertoires of flexible
behaviors. Despite these factors, a general association between
the encephalization quotient and complex behavior among
mammals has been postulated (Geary, 2005). However;
complications are encountered when stepping outside the
mammalian class. Birds generally possess encephalization
coefficients (Armstrong and Bergeron, 1985), and cortical
volumes that are inferior to those of most mammals

(Lefebvre, 2013; Roth, 2013). Despite this, they display
enormous behavioral complexities, including the use of tools,
construction of complex nests, and ‘‘intelligent’’ conversation
in human languages. A recent study concludes that three
species of Corvidae (New Caledonian crows, jackdaws,
ravens) have the motor regulation equivalent to great apes
despite having much smaller brains (Kabadayi et al., 2016;
Figure 2).

It has also been shown that ravens (Corvus corax)
recognize what conspecifics can be accessed or not—a
rudimentary ‘‘Theory of Mind’’ (Emery and Clayton, 2001;
Dally et al., 2006; Bugnyar et al., 2016). So why are some
avian species so smart? It seems that the avian brain has
undergone convergent evolution where it does not follow the
six-layered PFC as found in mammals (Emery and Clayton,
2005). Instead, the avian homolog of the PFC could be the
caudolateral nidopallium. This area shares similarities with
a mammalian prefrontal cortical function such as delayed
task response, working memory and reversal learning
(Emery and Clayton, 2005). The architecture of the avian
brain reveals how nature has been able to evolve intelligent
animals with small brain volume when compared to non-human
and human primates.

NEUROTRANSMITTERS AND
NEUROTROPHINS IN HUMAN BRAIN
EVOLUTION

Dopamine
There is increasing evidence to support the importance
of neurotransmitter regulation and its impact on brain
development and intelligence during hominin evolution
(Raghanti et al., 2010). Various authors have described the
role of DA in human brain evolution (Previc, 2002, 2009;
Raghanti et al., 2010). DAergic innervation is involved in
motor planning, and higher-order cognitive abilities including
reasoning, language comprehension, future projection and
general intelligence (Raghanti et al., 2010).

FIGURE 2 | Body weight to brain ratio in various animal species.
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Humans and other primates receive DA through many
cortical regions. The human brain not only has increased
DAergic efferent density in layers III, IV, and VI PFC areas, but
has more DAergic input to the PFC regions than other primates
(i.e., chimpanzees, macaques; Akil et al., 1999).

The idea of neurohormonal regulation of DA acting as
a factor that guided primate evolution has been investigated
(Previc, 2009). The increase in DA concentrations has paralleled
increases in the size of the human neocortex (Raghanti
et al., 2008). Previc formulated the DA hypothesis. This
hypothesis is posited on climatic changes, which occurred during
the Pliocene/Pleistocene transitions (∼2 Ma ago) leading to
changes in hominin morphology that were positively selected
for endurance hunting/foraging over a large ecological range
(Previc, 2009). Thermal stress resulting from endurance hunting
triggered thermoregulatorymechanisms involvingDA (Roelands
and Meeusen, 2010). This idea concurs with Hoffmann (2013)
who suggested that DAergic dependent cognitive faculties are an
exaptation of DA mediated thermo-regulatory function. Previc’s
theory is supported by recent findings which indicated that a
variation of the gene cluster in chromosome 11 (i.e., that converts
fatty acid desaturase cluster or FADS) occurred ∼85 ka, a time
when hominins may have increased their intake of omega 3 DHA
sea food, thereby influencing human brain evolution (Mathias
et al., 2012). Paleoanthropological findings confirm that ancestral
hominins in Pinnacle Point, South Africa (∼160 ka; Marean
et al., 2007), Eritrea (∼125 ka; Walter et al., 2000), and the South
African coastline (∼100 ka; Broadhurst et al., 2002) included
shellfish in their diet.

Previc argues that an increase in DHAmay have consequently
increased the levels of DA and thyroid hormone, thyroxine (T4),
which is necessary for expanding human cognition (i.e., working
memory, language fluency, and creativity). Interestingly, it is
known that humans possess significantly higher concentrations
of T4 than chimpanzees, as discussed earlier. This hormone is
responsible for converting tyrosine to L-dopa (DA precursor).
Numerous studies have confirmed that deficiencies in DA
are commonly associated with neuro-cognito-behavioral
impairments in humans (Previc, 2002; Brisch et al., 2014;
see Figure 3).

According to Previc’s thesis DA increase in the last
9,000 years was approximately the same as during the last
8 million years. It is interesting that exponential increase
in DA happened during the early Neolithic period (10 ka
ago)—when there was a transition from foraging/hunting
to agricultural societies/animal husbandry. It is also evident
that DA in Homo has been steadily rising since the early
Neolithic period to the present accompanying the reduction of
brain size.

Neurotrophins
Several studies have also linked neurotrophins with increasing
cognitive abilities during human evolution (Raichlen and
Polk, 2013). Raichlen and Polk (2013) argue that increasing
physical activity levels (PAL; i.e., persistent hunting) in
H. erectus onwards upregulated neurotrophin and growth
factors prodution, such as brain derived neurotrophic factor

FIGURE 3 | Indication of increase of dopamine (DA) levels in hominins over
5 Ma till present. Data from Previc (2009).

(BDNF), vascular endothelial growth factor (VEGF), and Insulin
like growth factor (IGF). This upregulation led to increasing
hippocampal neurogenesis, planning abilities, spatial memory
and neuroplasticity (Mattson, 2012; Noakes and Spedding, 2012;
Raichlen and Polk, 2013). This transition to higher PAL, may,
therefore, have accelerated human cognitive abilities. Indeed,
this transition to higher PAL would have come at a time of
other socio-biological developments in Homo such as extended
adolescent period, increasing reliance on technology for food
procurement and security and increasing social complexity
(Saniotis and Henneberg, 2013b).

Therefore, BDNF may have been positively selected
due to its neurotrophic and neurogenetic functions. Such
probable positive selection may explain the correlation
between exercise and BDNF production, and why exercise
is important in neurogenesis in the hippocampal dentate
gyrus, and enhanced cognitive performance (Saniotis and
Henneberg, 2013b). In one animal model, mice were given an
extensive running regime in order to ascertain the correlation
between cortical growth factor production with increasing
PAL. It was found that the exercised mice had increasing
neurogenesis in the hippocampus—a function of VEGF
(Gómez-Pinilla et al., 1998).

ENTERIC GUT MICROBIOME AND
NEURO-HORMONAL REGULATION

Enteric Gut Microbiome Complexity
It is becoming increasingly more likely that complex neuro-
hormonal regulation is crucial in the optimization of neuronal
performance. This control is provided within the central nervous
system and also from elements arising outside the brain,
including the gut. Micro-organisms have been co-existing in the
gastrointestinal tract of metazoans in a symbiotic relationship
(Cho and Blaser, 2012; Mayer et al., 2015). The human intestinal
tract alone consists of approximately 100 trillion (1014) microbes,
and the gut reservoir of all extant humans is between 1023 and
1024 microbial cells (Ley et al., 2006; Table 1). Humans are
not individual entities but entangled communities of cells and
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TABLE 1 | Bacterial species which produce key neuro-metabolites.

Bacteria Neuro-transmitter/
Neuro-modulator
produced

Enterococcus spp. Serotonin
Escherichia
Corynebacterium spp.
Streptococcus spp.
Bacillus spp. Dopamine
Lactobacillus spp. Acetylcholine
Lactobacillus spp. γ-aminobutyric acid (GABA)
Bifidobacterium spp.
Dobacterium
Echerichia spp.

Noradrenaline
Bacillus spp.
Saccharomyces spp.

Data from Roshchina (2010), Barrett et al. (2012), Matur and Eraslan (2012), Lyte (2013)
and Dinan et al. (2015).

microbes which maintain all body processes including human
cognition (Gilbert et al., 2012; Lorimer, 2016; Nading, 2016; Rees
et al., 2018).

The EGM in humans plays host to thousands of bacterial and
protozoan species, thus containing 100 times more genes than
their human hosts, and is a very active site for gene encoding
(Ezenwa et al., 2012). For this reason, the EGM has been referred
to as the meta-genome (second genome) that may be viewed as
an essential organ (Zhao, 2010). Since the human enteric nervous
system contains 500 million neurons (Furness, 2006), there is an
ample opportunity for interactions between the gut biome and
the nervous system.

CNS and EGM Communication
The ability for the EGM to communicate with the human
brain via the gut-brain-enteric-microbiota-axis (GBEMA) in
order to maintain symbiotic homeostasis is a crucial aspect of
neurohormonal regulation and plays a pivotal role in human
cognition (Rhee et al., 2009; Mayer, 2011; Carabotti et al., 2015;
El Aidy et al., 2015).

A number of studies indicate that the increasing use of
antibiotics since the 1970s and 1980s may have led to a
reduction of beneficial gut flora, thereby compromising digestive
function and altering the production of neurotransmitters
(DuPont and DuPont, 2011). Importantly, compromised EGM
has recently been shown to contribute to many psychiatric and
immunological disorders (i.e., asthma, arthritis, autism, Celiac
disease, eczema, general allergies; Bested et al., 2013; Mawe and
Hoffman, 2013). It should be noted that gut bacterial species
also play an important role in neonatal brain development by
modulating neurotrophins such as BDNF, thereby triggering
synaptogenesis (Douglas-Escobar et al., 2013). Research in
germ-free animals suggests that EGM colonization affects neural
circuitry and behavior (Bercik et al., 2011; Cryan and Dinan,
2012; Davidson et al., 2018).

Other findings indicate that neonatal exposure to animals that
have microbial pathogens may lead to reduced cognitive function
and anxiety phenotypes (Diaz Heijtz et al., 2011; Carabotti et al.,
2015; Kelly et al., 2015; Davidson et al., 2018). In another recent

study, germ-free mice which had changes to their gastrointestinal
bacterial colonies had lower expression of proteins PSD-95
and synaptophysin, which are involved in synaptogenesis (Diaz
Heijtz et al., 2011). It has also been shown that a transplanted
mouse strain of the fecal microbiome resulted in the recipient
mouse exhibiting behaviors that were synonymous to the host
mouse (Collins et al., 2013; Foster et al., 2016).

Alterations to the EGM may lead to intestinal dysbiosis
resulting in faulty communicative pathways in the GBEMA,
which in turn may contribute to disturbed central nervous
system function (Diaz Heijtz et al., 2011; Cryan and Dinan, 2012;
Mohajeri et al., 2018). It is interesting to note that partial removal
of the vagus nerve (central to Gut-Brain communication), or
vagotomy, annuls the probiotic effect of the EGM (Cryan and
Dinan, 2012). This finding suggests that neurometabolites
that are produced in the EGM are vagus-dependent
(Cryan and Dinan, 2012).

Similarly, administration of probiotics in the form of
Bifidobacteria infantis into naïve rats was associated with
an attenuation of pro-inflammatory response (IFN-γ, TNF-α
and IL-6 cytokines) and an increase in the neurotransmitter
serotonin, which is key to mood regulation and learning, and
therefore, crucial to cognitive organization (Desbonnet et al.,
2008). A possible reason for this could be because Bifidobacteria
infantis is one of the most prolific bacterial genera within the first
days to weeks of the neonate (Boesten et al., 2011; Jost et al., 2012;
Underwood et al., 2015).

Indigenous strains of microbiota have also been found to
modulate serotonin in the hippocampus, as well as, regulating
serotonin host biosynthesis (Clarke et al., 2013; Yano et al., 2015).

EGM Modulation by Vagus Nerve and
Cognition
Some researchers contend that the ‘‘microbiota-gut-vagus-brain
axis’’ may modulate human behavior (Montiel-Castro et al.,
2013; Alcock et al., 2014), while other studies note that
some ‘‘subliminal interoceptive’’ gut inputs from microbiota
may influence human affective states, memory formation, and
decision-making processes (Craig, 2002; Berntson et al., 2003).
Information from the gut to the vagus nerve is transmitted to
the brain where it is processed in the nucleus solitarius which
assists in homeostatic regulation, with other projections to the
amygdala and PFC (Mohajeri et al., 2018). The amygdala is
an area for microbial induced gene activity (Morgan et al.,
1993; Stilling et al., 2015). Microbiotic modulation of the vagus
nerve was demonstrated in mice in which the introduction of
a specific gut bacterial species led to the triggering of vagus
nerve dependent neuronal regions in the brain, leading to
anxiety type behavior (Goehler et al., 2005; Foster et al., 2016).
These findings point to neuro-hormonal regulation outside the
cerebrum as a factor in affecting human cognitive abilities. It has
been suggested that a reason for EGMs influence of the CNS is
due to gut bacterial ability to produce neurochemicals that are
structurally similar to the host’s nervous system (Lyte, 2013).
This bio-mimicry faculty of gut bacterial species implies that
there exists a constant bidirectional communication between the
EGM and host.
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GI Tract Inflammation and Cognition
Individuals with intestinal disorders are often affected by
cognitive and mood disorders. For example, MRI brain
imaging of children (10–14 years old) with Crohn’s disease
showed thinning of the posterior and middle frontal
gyri, poorer cognitive and verbal memory and impaired
performance (Berrill et al., 2013; Gareau, 2016; Mrakotsky
et al., 2016). There has also been found a correlation between
colonic inflammation and deficits in the CA1 region of
the hippocampus (Novotný et al., 2019). Research studies
have drawn correlations between the EGM and neurological
and psychiatric disorders such as schizophrenia, multiple
sclerosis, Parkinsons’ disease and Alzheimer’s disease
(Fröhlich et al., 2016; Parashar and Udayabanu, 2016;
Martin et al., 2018; Novotný et al., 2019). Inflammation
of the GI tract can compromise the gut barrier function
(leaky gut syndrome) and enable bacteria can pass into the
systemic circulation. Such translocation of bacteria has been
linked to pathophysiologies and altered cognition (Giannelli
et al., 2014; Slyepchenko et al., 2017; Hegde et al., 2018;
Sarkar et al., 2018).

Cognition and EGM: Prenatal and
Postnatal Brain Development
Studies conducted on the microbiome in the early life stage have
identified that gut bacteria takes approximately 2–3 years
before it resembles the adult microbiome (Yatsunenko
et al., 2012; Goyal et al., 2015; Carlson et al., 2018). Rapid
neurophysiological development of neonates is accompanied by
equally prompt changes of the microbiome. This concomitant
growth could be important in order for the microbiome to
regulate metabolic processes of the neonate brain (Al-Asmakh
et al., 2012; Koren et al., 2012). The nascent influence of the
microbiome has profound effects through human ontogeny.
Several studies argue that gut bacteria can infiltrate the
meconium, amniotic fluid and placenta (Jiménez et al., 2008;
Gosalbes et al., 2013; Hansen et al., 2015; D’Argenio, 2018).
The placenta may also produce serotonin (5-HT) to reach
the fetus. Serotonin is important for development of the fetal
forebrain (Al-Asmakh et al., 2012; Goyal et al., 2015). During
fetal development, the placenta regulates fetal stress response
by hormonal interacting with the hypothalamus-pituitary-
adrenal (HPA) axis (Al-Asmakh et al., 2012). Rat models
reveal that HPA activity in the fetus may lead to a decline in
cognitive performance and elevated behavioral and anxiety
response (Alonso et al., 1991; Vallée et al., 1997). Although the
current understanding of prenatal development is increasing,
researchers have yet to determine the microbiotic mechanisms
informing the fetal brain. In the future microbial communities
could be used to support fetal cognitive development
(Carlson et al., 2018).

Neuroendocrine System and Cognition
At least 12 types of neuroendocrine and enteroendocrine
cells (NECs) are located in the epithelial cells of the GI
tract and are involved in more than 20 molecular signals
(Furness et al., 2013; Martin et al., 2018). Changes in the

EGM can lead to subsequent changes to neurotransmitters
and neuropeptides (Novotný et al., 2019). Various authors
note that molecular neuropeptides and neurotransmitters
(acetylcholine, GABA, DA, melatonin histamine) are
activated by EECs (Barrett et al., 2012). The EGM modulates
serotonergic pathways between the CNS and ENS which
assist in learning and cognition (Mahoney et al., 2005;
Forsythe et al., 2016). The importance of neuroendocrine
regulated 5-HT has been the focus of several studies.
One study in which mice were colonized by human fecal
microbiota resulted in an increase in 5-HT tissue concentration
colonic tryptophan 5-hydroxylase 1 (TPH1; Reigstad
et al., 2015). Furthermore, the bacterial species Clostridia
promotes the biosynthesis of 5-HT by enterochromaffin
cells (ECs; Forsythe et al., 2016). It has been speculated
that EC derived 5-HT may influence EGM composition
with subsequent changes in brain regulation and behavior
(Forsythe et al., 2016).

CONCLUSION

The hypothesis presented here argues that brain size does
not exert an influence on an individual’s cognitive abilities.
Even the most ardent supporters of the correlation between
brain size and intelligence confirm that brain size contributes
to no more than approximately 10% of the total variance
in intelligence. Moreover, this level of correlation may be a
result of the correlation of both variables to some third factor
(e.g., body size) rather than a direct relationship. Any small-
headed, highly intelligent person (and there are millions of
them) falsifies the brain size-intelligence relation hypothesis. It
is well known that correlation does not prove causation. The
findings of many investigations have indicated the importance
of neurotransmitters in the regulation of cognitive function.
DA, 5HT, and neurotrophins have been identified as the
important neurotransmitters that regulate this neurological
performance. Evolutionary evidence supports the involvement
of DA, 5HT and neurotrophins in the development of the
human brain. Furthermore, the current use of neurotransmitter
agonists or antagonists in the treatment of various conditions
associated with neurotransmitter imbalances implicates neuro-
hormonal regulation as a key factor influencing neurological
performance of the brain, particularly intelligence. Drug
addictions show the obvious influence of chemical regulation
on brain function. In addition, neurotransmitters that are
synthesized by the enteric microbiome appear to affect changes
in cognitive aptitude, namely intelligence. Moreover, this article
has highlighted the influential role of the EGM in informing
human cognition.

Technological advancements will likely facilitate a more
intricate approach to detailing the components that dictate
intelligence. The evidence presented in this article suggests
that the paradigm of what influences intelligence needs to be
reassessed once more. It appears that the archaic practice of
considering that mental fortitude is dictated by brain volume
is beginning to recede. A more insightful approach, taking into
account the concentration and regulation of neurotransmitters,
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as well as, the synaptic architecture of the brain is necessary if
our understanding of intelligence is to advance. The potential
for other, as yet unknown factors, playing a role also needs to
be considered.
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