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and Stimulus Evaluation
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Abstract

Recent studies have compared tinnitus suppression, or residual inhibition, between amplitude- and frequency-modulated

(AM) sounds and noises or pure tones (PT). Results are indicative, yet inconclusive, of stronger tinnitus suppression of

modulated sounds especially near the tinnitus frequency. Systematic comparison of AM sounds at the tinnitus frequency has

not yet been studied in depth. The current study therefore aims at further advancing this line of research by contrasting

tinnitus suppression profiles of AM and PT sounds at the matched tinnitus frequency (i.e., 10 and 40 Hz AM vs. PT).

Participants with chronic, tonal tinnitus (n¼ 29) underwent comprehensive psychometric, audiometric, tinnitus matching, and

acoustic stimulation procedures. Stimuli were presented for 3 minutes in two loudness regimes (60 dB sensation level [SL],

minimum masking level [MML] þ 6 dB, control sound: SL �6 dB) and amplitude modulated with 0, 10, or 40 Hz. Tinnitus

loudness suppression was measured after the stimulation every 30 seconds. In addition, stimuli were rated regarding their

valence and arousal. Results demonstrate only trends for better tinnitus suppression for the 10 Hz modulation and presen-

tation level of 60 dB SL compared with PT, whereas nonsignificant results are reported for 40 Hz and MML þ 6 dB, respect-

ively. Furthermore, the 10 Hz AM at 60 dB SL and the 40 Hz AM at MML þ 6 dB (trend) stimuli were better tolerated as

elicited by valence ratings. We conclude that 10 Hz AM sounds at the tinnitus frequency may be useful to further elucidate

the phenomenon of residual inhibition.
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Introduction

Subjective tinnitus is defined as the perception of a phan-
tom sound in the absence of any external objective phys-
ical source (Eggermont & Roberts, 2004) and is defined
as chronic after continuous presence for 6 months
(Mazurek, Olze, Haupt, & Szczepek, 2010). Chronic sub-
jective tinnitus is highly prevalent with 10% to 15% of
the population reporting continuous tinnitus perception
and about 1% to 2% suffering immensely from the con-
dition (Langguth, Kreuzer, Kleinjung, & De Ridder,
2013). The phenomenon is continuously gaining rele-
vance as it coincides with a steadily aging demographic
(Hoffman & Reed, 2004) and concomitant age-related
hearing loss (presbycusis; Ferreira, Ramos Júnior, &

Mendes, 2009), noisy occupational or leisure time
environments (Sanchez et al., 2016; Shargorodsky,
Curhan, & Farwell, 2010), and stress (Mazurek, Haupt,
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& Olze, 2012). Moreover, tinnitus is not only related to
altered auditory functions like speech perception (Ivansic
et al., 2017; Jagoda et al., 2018), sound source localiza-
tion (Hyvärinen, Mendonça, Santala, Pulkki, &
Aarnisalo, 2016), auditory attention (Cuny, Norena, El
Massioui, & Chéry-Croze, 2004), and emotional atten-
tion processes (Trevis, McLachlan, & Wilson, 2016),
but also to affective disorders like depression or anxiety
(Langguth, 2012), insomnia (Croenlein et al., 2016),
and lowered quality of life (Nondahl et al., 2007;
Weidt et al., 2016).

In most cases, the perception of the phantom sound
seems to develop after loss of cochlear hair cells or other
peripheral alterations leading to maladaptive plasticity in
the auditory pathway and brain. It is still debated if
and how either objective (Eggermont & Roberts, 2004;
Mazurek et al., 2010; Schaette & Kempter, 2006) or
‘‘hidden’’ hearing loss (Adjamian, Sereda, Zobay, Hall,
& Palmer, 2012; Schaette & McAlpine, 2011; Weisz,
Hartmann, Dohrmann, Schlee, & Norena, 2006) contrib-
ute to tinnitus generation. Models of tinnitus generation
and maintenance are still being debated (Sedley, Friston,
Gander, Kumar, & Griffiths, 2016) and are limited by
an underlying inherent heterogeneity of the disorder
(Landgrebe et al., 2012). Yet, consensus arose that
both the peripheral auditory system as well as differential
brain networks are involved and correlate with differen-
tial aspects of tinnitus (Adjamian, Sereda, & Hall, 2009;
De Ridder, Elgoyhen, Romo, & Langguth, 2011;
De Ridder et al., 2014; Eggermont & Roberts, 2004;
Elgoyhen, Langguth, De Ridder, & Vanneste, 2015;
Jastreboff, 1990; Schlee, Mueller, et al., 2009).

Up to today, there is no generally applicable cure for
this phantom sound perception. Established interven-
tions aim at alleviating the tinnitus sound or accompany-
ing symptoms (Baguley, McFerran, & Hall, 2013).
Within a consensus clinical management framework
(Langguth et al., 2013), three avenues of symptom-
oriented interventions are suggested: First, ideally
accompanying other treatment options (Baguley et al.,
2013), cognitive behavioral therapy is suggested to estab-
lish coping strategies (Cima et al., 2012). A further
option involves differential approaches of neuromodula-
tion and stimulation (Hoare, Adjamian, & Sereda, 2016;
Soleimani, Jalali, & Hasandokht, 2016) with concur-
rently increased efficacy applying multisite montages
(Lehner, Schecklmann, Greenlee, Rupprecht, &
Langguth, 2016), individual protocols (Kreuzer et al.,
2017), and possibly combined approaches (Shekhawat,
Kobayashi, & Searchfield, 2015; Teismann et al., 2014).
Finally, auditory stimulation was traditionally studied
and evolved to exert efficacy in suppressing tinnitus in
sound therapies (Feldmann, 1971; Hazell & Wood, 2009;
Henry, Rheinsburg, & Zaugg, 2004; Terry, Jones, Davis,
& Slater, 1983; Vernon, 1977). Recent technical advances

and neuroscientific research could spawn some promis-
ing approaches of auditory retraining aimed at reversing
maladaptive neural plasticity related to tinnitus
(Adamchic et al., 2017; Okamoto, Stein, et al., 2015;
Stracke, Stoll, & Pantev, 2010; Tass, Adamchic,
Freund, von Stackelberg, & Hauptmann, 2012). Yet,
whereas masking alongside counseling in tinnitus man-
agement has proven efficacy and may be clinically imple-
mented (Baguley et al., 2013), there is still debate about
clinical use of aforementioned retraining approaches
(e.g., Wegger, Ovesen, & Larsen, 2017).

The present study joins the branch of auditory stimu-
lation in tinnitus with a focus on residual inhibition
(RI; Roberts, 2007) or, more specifically, tinnitus sup-
pression effects with patterned (here: amplitude-modu-
lated [AM]) sounds. Recent studies aimed to
demonstrate more pronounced tinnitus suppression
after stimulation with AM or frequency-modulated
(FM) sounds compared with unmodulated sounds and
noise with inconclusive results (Neff et al., 2017; Reavis
et al., 2012; Tyler, Stocking, Secor, & Slattery, 2014).
This putative effect is primarily observed with sounds
in or around the tinnitus frequency (Schaette, König,
Hornig, Gross, & Kempter, 2010; Roberts, Moffat,
Baumann, Ward, & Bosnyak, 2008; Roberts, Moffat, &
Bosnyak, 2006; Sockalingam, Dunphy, Nam, &
Gulliver, 2009) while its exact mechanisms of action
remain unclear. Concretely, it is not known if and how
modulated sounds may produce stronger and longer tin-
nitus suppression or RI than constant noise or pure tone
(PT) sounds. This is partly explicable by the fact that, in
classical masking and RI, only unmodulated sounds and
noise have been used (e.g., Roberts et al., 2006, 2008;
Terry et al., 1983).

Alternatively or concomitantly, neural entrainment
effects may account for normalization of tinnitus-specific
neural oscillations (Neff et al., 2017; Reavis et al., 2012)
and in comparable disorders (e.g., pain [Ecsy, Jones, &
Brown, 2017]). Neural entrainment describes the phe-
nomenon of synchronization of endogenous neural oscil-
lations to patterned or rhythmic external stimuli (here:
auditory [Draganova, Ross, Wollbrink, & Pantev, 2008;
Picton, John, Dimitrijevic, & Purcell, 2003]).
Furthermore, changes in neurophysiology (Kaltenbach
& Godfrey, 2008) or chemistry (Sedley et al., 2015)
throughout the auditory pathway and the brain may
also play a role but would have to be specifically tested
and modeled with the modulated stimulus class.

Generally, a resurrection of interest in RI is observ-
able in tinnitus research, as echoed and welcomed in a
recent study by Fournier et al. (2018) Yet, given the
multitude of possible mechanisms of action, the ongoing
research on causes and mechanisms, the underlying
problem of heterogeneity of tinnitus, limited methods,
and the gap between human and basic animal research,
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it is difficult to propose an all-encompassing model of the
mechanism of action of AM stimulation at this point.
Beyond that, data are scarce and largely absent in the
case of prolonged stimulation for possible tinnitus treat-
ment with the modulated stimulus class. Therefore, it is
deemed necessary to proceed in small steps and iterate on
the immediate subjective effects of the stimulus class.
Ideally, primary parameters of modulation rate, presen-
tation level, carrier sounds or frequency (range), dur-
ation, and tolerability should be evaluated in respective
study designs.

Psychological aspects, especially tolerability of tin-
nitus RI and therapeutic sounds, should be investigated,
as they seem to be affecting tinnitus loudness perception
(Durai, O’Keeffe, & Searchfield, 2017) or sound therapy
treatment outcomes (Searchfield, Durai, & Linford,
2017). Furthermore, differences in general sound or spe-
cific stimuli tolerability could be mediated by personality
(Searchfield et al., 2017) and are generally influenced by
neurobiological interactions between auditory systems of
perception and limbic systems related to valence (Kraus
& Canlon, 2012). To sum up, psychological and bio-
logical factors, besides well-definable physical stimulus
parameters, contribute to the perception of sounds or
suppression of tinnitus and should be taken into account
when studying induced tinnitus suppression. Concretely,
studies should assess tolerability of tested sound stimuli
to better understand the mechanisms of action in RI or
sound therapy in tinnitus.

Former studies observed the potential to temporarily
suppress tinnitus with 40Hz AM and FM sounds in fixed
frequency bands (Reavis et al., 2012), with 40Hz AM
pitch-matched sounds in contrast to broadband noise
(Tyler et al., 2014), or with 10Hz AM sounds at the
matched tinnitus frequency in our former study (Neff
et al., 2017). In more detail, our former study tested an
explorative set of three 10Hz AM with PT (at tinnitus
frequency and 108Hz) or FM sounds as carrier sounds,
two 10Hz (notch) filter modulations around tinnitus fre-
quency with pink noise and music as carrier sounds, and
two control stimuli (PT at tinnitus frequency, pink noise)
in respect to RI after 3 minutes of stimulation at 60 dB
SL. Post hoc contrasts between the stimuli indicated
stronger RI for the AM sound at the tinnitus frequency
compared with pink noise, AM at 108Hz, and the filter
modulated music, as well as stronger RI for the AM or
FM sound compared with pink noise and music. The
results from our former and the aforementioned previous
studies were especially inconclusive when contrasting
AM to PT sounds with identical carrier sounds. This
contrast is deemed paramount to better understand the
RI potential of AM and PT sounds as merely the modu-
lation (i.e., AM) is manipulated while the other stimuli
parameter (i.e., carrier sound and loudness) are con-
trolled. In these previous studies, either carrier sounds

were not matched to the tinnitus frequency (Reavis et al.,
2012), or the contrast was performed between PT and
noise carrier sounds (Tyler et al., 2014), or a wide array
of differential sounds was used with no significant differ-
ence between AM and PT sounds matched at the tinnitus
frequency (Neff et al., 2017). Moreover, the modulation
rate was different with 40Hz for Reavis et al. (2012) and
Tyler et al. (2014) whereas our former study applied
10Hz. Besides that, many aspects of the designs and
analysis strategies of the studies are not directly compar-
able further adding to the limited insights regarding
differences between modulated and unmodulated
PTs. Taken together, no former study was specifically
designed to test this critical contrast of interest. The
aim of this study is therefore to compare AM with
PT sounds at the matched tinnitus frequency to further
elucidate efficacy in tinnitus suppression of the AM
stimulus class.

Concretely, we hypothesize that AM sounds (with 10
and 40Hz modulation) at the tinnitus frequency may
elicit better short-term tinnitus suppression than their
unmodulated PT pendants. Secondarily, we want to
test if and how different sound levels during acoustic
stimulation may influence this contrast by presenting
the stimuli at SL plus 60 dB (Neff et al., 2017) compared
with presentation 6 dB above individual’s minimum
masking level (MML). While we expect generally stron-
ger tinnitus suppression for the SL stimuli due to the
higher presentation loudness compared with the MML
stimuli, we still hypothesize that the effect of better sup-
pression of AM compared with unmodulated sound will
become evident in both loudness regimes. In addition,
aiming both at better understanding of RI profiles and
at possible future acoustic interventions for tinnitus, sub-
jective evaluation of tolerability of the stimuli is deemed
as critical and was assessed by means of pictorial scales
(manikins) of valence and arousal (Bradley & Lang,
1994). Given the broad use of these pictorial scales for
emotional assessment, also for reactivity to sounds
(Bradley & Lang 2000), these scales are deemed as suit-
able to test the tolerability of stimuli used in this study.
Hence, we expect better tolerability (reflected by higher
valence and lower arousal scores) for the AM compared
with the PT sounds. To the best of our knowledge, the
present study is the first study to directly compare AM
and PT sounds matched to the tinnitus frequency (i.e.,
using the same PT carrier sound). Results could have
implications for both the RI phenomenon as well as
for possible future sound therapies.

Methods

Methods, procedures, and sample size of the study are
directly comparable to our former study (Neff et al.,
2017) with some changes in the tinnitus matching
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equipment and protocol. Numeric participant character-
istics, tinnitus parameters, and tinnitus matching results
are listed in Table 2 in the Results section.

Participants

Twenty-nine patients (9 females, between age 18
and 75 years) with chronic bilateral tonal tinnitus
(>12 months since tinnitus onset) from the
Interdisciplinary Tinnitus Clinic of Regensburg were
included in this study. Patients with a history or presence
of any severe and relevant somatic, neurological, or
mental disorders were excluded. Further exclusion cri-
teria were ongoing intake of any psychotropic medica-
tion or substance and the participation in other tinnitus
studies or treatments. The study was approved by the
local ethics committee (16-101-0061). After a compre-
hensive explanation of the procedures, risks, and bene-
fits, all participants gave written informed consent.

Psychometry

Upon the actual experiment, participants filled in an
online questionnaire comprising German adaptations
of the Tinnitus Sample Case History Questionnaire for
clinical and demographic data (Langguth et al., 2007),
tinnitus questionnaire (Goebel & Hiller, 1994), tinnitus
handicap inventory (Kleinjung et al., 2007), and a short
version of the hyperacusis questionnaire (mini-HQ9
[Goebel, Berthold, Scheffold, & Bläsing, 2013]).

Audiometry

Hearing thresholds were measured in the frequency
range from 125Hz to 8 kHz in octave steps with semioc-
tave steps between 0.5 and 1 (i.e., 0.75 kHz), 1 and 2 (i.e.,
1.5 kHz), 2 and 4 (i.e., 3 kHz), and 4 and 8 kHz (i.e.,
6 kHz), respectively (Madsen Midimate 622D; GN
Otometrics, Denmark). Sennheiser HDA 2000 head-
phones (Sennheiser, Germany) were used for audiom-
etry, subsequent tinnitus matching, and the actual
acoustic stimulation procedure.

Tinnitus Matching

Tinnitus matching was performed applying a method of
adjustment approach (Henry, Rheinsburg, & Ellingson,
2004) with a custom-tailored MAX program (MAX 7;
Cycling 074, USA) and a modular hardware controller
(Palette Expert Kit; Palette; Canada). For the actual pro-
cedure, we adhered to the sequence of the tinnitus tester
procedure (Roberts et al., 2008) without tinnitus likeli-
ness ratings, tests for RI, and loudness matching of
1 kHz reference tones. An octave confusion test was
included at the end of the procedure. Participants were

accustomed to the device and subsequently trained for
the procedure. Main parameters of interest assessed by
the matching procedure were tinnitus loudness (in dB),
tinnitus side (on a continuum between 0 [¼left ear] to 127
[¼right ear] with the value of 63 representing equally
distributed bilateral tinnitus) and tinnitus frequency
(in Hz). The frequency dial’s step size (i.e., endless dial)
was slightly below a semitone, and its frequency range
between 40 and 16000Hz. During the actual matching
procedure, participants self-reliantly adjusted all the par-
ameters with no need to check with the study personnel
or a computer screen (tinnitus parameters were indicated
on the controller upon touching of the respective control
units): First, a 500Hz PT was set to a comfortable level.
Following on that, participants proceeded with the
matching of the frequency. Finally, the sound was
adjusted in loudness to fit the perceived tinnitus loudness
and localized in the stereo spectrum with the panning
dial. Participants were then given the opportunity to
rate the correspondence between matched sound and
their tinnitus as well as the general usability of the
matching equipment on a scale ranging from 1 to 10.
The time of the self-reliant matching procedure was
assessed by the study personnel, and the matching pro-
cedure was repeated after acoustic stimulation described
in the next paragraph. In the case of multiple tinnitus
sensations, participants were instructed to focus on their
dominant tinnitus.

Acoustic Stimulation

Five amplitude modulated sounds (10 or 40Hz modula-
tion rates at 60 dB SL and MML þ 6 dB presentation
loudness, and a single, inaudible 10Hz stimulus 6 dB
below SL) and two unmodulated sounds (PTs at 60 dB
SL and MML) were prepared in MATLAB (MATLAB
R2015a; Mathworks, USA) with the matched tinnitus
pitch acting as the frequency of the PT carrier sounds.
SL was defined by the hearing threshold at the frequency
neighboring (i.e., lower) to the matched tinnitus fre-
quency (e.g., the hearing threshold of 3 kHz when tin-
nitus frequency was matched to 3.2 kHz). In the
remainder of the manuscript, the stimuli are termed as
follows (Table 1): AM1060 refers to the AM sound
modulated with 10Hz at 60 dB SL, AM10MML to the
10Hz AM sound at 6 dB above MML, AM4060 to the
40Hz AM sound at 60 dB SL, AM40MML to the 40Hz
AM sound at 6 dB above MML, P60 to the PT at 60 dB
SL, PMML to the PT at 6 dB above MML, and finally
AM10U to the undetectable 10Hz AM sound 6 dB
below SL. The sum total of seven acoustic stimuli with
3minutes of duration each was produced for each par-
ticipant individually. Details regarding how stimuli were
created are indicated in the section ‘‘Sound Stimuli’’ and
Figure 1 of our previous publication (stimuli in the
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current study correspond to the ‘‘AMTinnitus’’ stimulus
in the former study; Neff et al., 2017). The stimuli pre-
sented were matched in peak amplitude between the PT
and AM stimuli classes in both loudness regimes. As a
consequence, AM stimuli had a slightly lower root mean
square sound pressure level (<5.3 dB root mean square
for the AM sounds) compared with the PT sounds;
80 dBA (peak) was the upper limit for the sound level
of all stimuli, which were presented idiotically.
Participants were reminded to interrupt the procedure
whenever a sound was deemed uncomfortable. No par-
ticular instruction was given to focus their attention on
either the sound or tinnitus. Presentation sequence of the
seven stimuli was randomized for each participant. To
assess the residual tinnitus suppression of the sounds,

participants were instructed to rate the loudness of
their tinnitus on a numeric rating scale in percentage,
compared with the prestimulation loudness (i.e.,
normal or recuperated loudness), after each stimulation
at time points 0, 30, 60, 90, 120, 150, and 180 seconds
(Neff et al., 2017; Reavis et al., 2012). Furthermore, par-
ticipants were asked to rate all stimuli in valence and
arousal on pictorial manikin scales with nine steps
(Bradley & Lang, 1994). Participants were thus shown
scales with increasing arousal states, represented by dif-
ferent stages of an explosion in the manikin’s chest
region, and increasing valence ratings, represented by a
spectrum between sad and smiling faces. At the end of
the stimulation procedure, participants again performed
the tinnitus matching task and were finally dismissed.

Data Analysis

R (R version 3.3.3; R Foundation for Statistical
Computing, Austria) was used to calculate statistics
including descriptives, Pearson correlations, and paired
samples t test to test the matching outcomes as well as
the differences in evaluation of the stimuli. To investigate
the main research question, namely the difference
between modulated and unmodulated sounds at the tin-
nitus frequency, mixed effect models were computed with
the nlme package (https://cran.r-project.org/web/
packages/nlme/). After identifying an effect for position

Figure 1. Mean hearing thresholds and matched tinnitus of all participants. Hearing thresholds: Colored ribbons indicate one standard

deviation interval for the two ears, respectively. Tinnitus matching: Cyan diamonds are indicative individual tinnitus pitch and loudness

matches. Notably, 80 dB was the upper limit for tinnitus loudness matches.

Table 1. Overview and Nomenclature of the Acoustic Stimuli.

Stimulation

level

Modulation

rate (Hz) 60 dB SL MML þ 6 dB SL �6 dB

0 P60 PMML –

10 AM1060 AM10MML AM10U

40 AM4060 AM40MML –

Note. SL¼ sensation level; MML¼minimum masking level.
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(i.e., the order of the presented seven stimuli), the
final model consisted of fixed effects for condition (i.e.,
different acoustic stimuli), random effects for time and
subjects, and an added term for position as a covariate,
both modeled linearly and with a polynomial term
for optimal model fit. The model was fitted using the
maximum likelihood method unbiased for the fixed
effects and appropriate for the given sample size.
A priori contrasts of interest were defined between
AM and PT conditions for both stimulation level
regimes (i.e., 10 and 40Hz AM vs. PT sounds at 60 dB
SL and MML).

Given the weak effects of previous work (Neff et al.,
2017; Reavis et al., 2012; Tyler et al., 2014) and adher-
ence to statistical rigor, we report the results of two-
tailed tests. Both corrected (Bonferroni adjustment for
the number of contrasts) and uncorrected results are
reported side by side, which enables readers to draw
their own conclusions from the results presented while
we focus our discussion of results on significant and
trending (i.e., p< .1) corrected results. For the explora-
tory analysis of valence and arousal related to the
stimuli, two-tailed tests were used given the lack of a
directed hypothesis. Furthermore, Bonferroni adjust-
ment was performed for the number of contrasts.

Results

Participants’ Characteristics and Audiometry

Participants’ characteristics, questionnaire scores,
and main tinnitus matching parameters are listed in

Table 2. Mean hearing thresholds did not differ between
the two ears (left side: mean¼ 21.21, SD¼ 9.54; right
side: mean¼ 20.96, SD¼ 11.03; t(28)¼ 0.36, p¼ .722).
Eleven participants indicated their tinnitus location in
both ears, three inside the head, six in both ears stronger
in the left ear, four in both ears stronger in the right ear,
one in the left ear, and four in the right ear.

Tinnitus Matching

Results of the matching procedure before acoustic stimu-
lation are listed in Table 2 and plotted in the audiogram
of Figure 1. Participants’ ratings of the matched sound
and the matching procedure were high (matched sound:
mean¼ 8.66, SD¼ 0.936; matching procedure: mean-
¼ 8.62, SD¼ 1.237 [range 1–10]). Notably, all partici-
pants were able to match their single (or in three cases:
dominant) tonal tinnitus with subjectively satisfactory
results. We double-checked the outlier matching of
298Hz (see Table 2 and Figure 1 with the participant
[i.e., with multiple upward octave shifts, oral discussion])
with no change in the resulting matched frequency.
Average time spent for the first matching run was 382
seconds (SD¼ 207). Moreover, there were no significant
differences of matching parameters, namely tinnitus
frequency, loudness, and side, t(max)¼�0.644,
p(min)¼ .525, between the matching procedures before
and after the actual stimulation. This further enhances
confidence in the applied matching method, which is also
reflected by high correlations between matching param-
eters of interest (tinnitus frequency: r¼ .826, p< .001;
loudness: r¼ .833, p< .001; side: r¼ .937, p< .001).

Table 2. Participants’ Characteristics and Tinnitus Parameters (n¼ 29).

Mean SD Median Minimum Maximum

Age (years) 54.72 11.26 57.00 22 73

Tinnitus duration (months) 168.97 113.92 132.00 16 420

Hearing loss (both ears, dB) 21.08 10.14 19.09 3 44

SL near tinnitus frequency (both ears, dB)a 33.45 18.67 30.00 0 70

TQ total score (0–84) 36.83 17.22 40.00 10 63

THI total score (0–100) 53.10 11.26 53.00 33 71

Mini-HQ9 (0–27) 12.38 5.39 11.00 4 24

Tinnitus awareness (%) 66.00 25.74 70.00 20 100

Tinnitus loudness (%) 59.83 21.90 60.00 20 100

VAS loudness (0–100) 50.90 2.59 50.90 1 90

MML (dB) 60.28 18.05 58.00 29 80

Tinnitus loudness (matching, dB) 57.72 15.38 56.61 19 80

Tinnitus frequency (matching, Hz) 4040.66 2122.25 3530.00 298 10965

Tinnitus side (matching, 0–127) 66.66 35.53 63.00 0 127

Note. TQ¼ tinnitus Questionnaire (Goebel & Hiller, 1994); THI¼ tinnitus handicap inventory (Newman et al., 1996); Mini-HQ9¼mini hyperacusis inven-

tory (Goebel et al., 2013); VAS¼ visual analog scale; MML¼minimum masking level.
aNearest frequency of pure-tone audiometry to the matched tinnitus frequency.
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Tinnitus Suppression

The mean tinnitus loudness suppression profile over time
after stimulus offset is shown in Figure 2 and the single
responses in Figure 3. Notably, tinnitus suppression is
strongest 0 seconds after stimulus offset for all stimuli
except AM10U and converges toward prestimulation
loudness after 90 seconds toward 180 seconds. This pat-
tern is typical for RI (Roberts, 2007), and only a few
responses were indicative of temporarily increased tin-
nitus loudness (see Figures 3 and 4). AM sounds at
60 dB SL seem to exert the strongest suppression
(AM1060 and AM4060) on average followed by their
variations at MML and the PT at 60 dB SL. Finally,
PMML and AM10U produced only slight or no average
suppression, respectively. The results of the omnibus
analysis of variance for the final model are listed in
Table 3 and, in contrast to our previous study, indicative
of a significant effect for position (i.e., the presentation
order of the stimuli).

Within the mixed effects model, the contrasts
of interest between AM1060/AM4060 and P60, and

AM10MML/AM40MML and PMML, respectively,
resulted in a trend for the main effect of condition of
AM1060 versus P60 but not for AM4060 versus P60.
This finding substantiates the observed tendencies in
our previous article, partly confirms our hypotheses
(trend in 1 of 4 contrasts), and is related to observations
(Reavis et al., 2012; Tyler et al., 2014) that certain
unmodulated sounds produce less tinnitus suppression
than AM sounds. On the other hand, looking at stimu-
lation levels near the tinnitus’ actual loudness (slightly
below tinnitus loudness as in [Reavis et al., 2012] and
6 dB above MML in our study), no significant results
can be observed for both 10 and 40Hz contrasts.

As we identified an effect for position, we evaluated
this position effect in an ancillary model seen in Table 6
(Supplemental material) to probe possible influences on
the interpretation of the main results. In consequence,
and in contrast to the prima facie impression of similar
suppression curves of AM1060 and AM4060 in Figure 2,
this may explain the null-finding of the contrasts
AM4060 versus P60 in the final model with position as
a covariate.

Figure 2. Mean tinnitus suppression after stimulus offset for all stimuli. Brackets indicate 95% confidence interval for each condition.

Two-tailed tests of significance are reported (see Table 4). Generally, AM sounds tend to elicit slightly stronger or similar tinnitus

suppression compared with PTs except the AM10U condition. Main contrasts of interest between AM and PT conditions for both

stimulation levels show a trend toward more tinnitus suppression for AM1060 versus P60, t¼ 2.417, p(bonf)¼ .064, Table 4. Notably, this

is only true for the main effect of condition and not the interaction of Condition�Time.
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Figure 3. Tinnitus suppression after stimulus offset for the single stimuli. Each line is representative of a single subject’s tinnitus loudness

growth function after stimulus offset at 0 seconds. The mean response and the standard deviation (locally weighted scatterplot smoothing)

are plotted as a thick line and a gray ribbon, respectively. Notably, the variability after stimulation offset is considerable while it converges

over time as typical in RI (Roberts, 2007).
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Tinnitus suppression in the responder profile
(Figure 4) is defined as ‘‘good’’ if participants rated the
tinnitus loudness to be at a level of 50% or less of the
initial loudness, ‘‘slight’’ at a level of 55% up to 95%,
‘‘same’’ if unchanged (¼ 100%), and ‘‘worse’’ if loudness

was temporarily increased at stimulation offset.
Respective percentage values are plotted on the bars of
each stimulus. The observed distributions further con-
firm that the observed tinnitus suppression, or RI poten-
tial of the AM stimulus class, is especially pronounced at
high presentation levels.

Stimulus Evaluation

Valence and arousal scores for the entire set of stimuli
are plotted in Figure 5, and statistical contrasts of inter-
est are listed in Table 5. Of particular interest and partly
according to our hypotheses, valence was rated signifi-
cantly higher for AM1060 versus P60, t¼ 3.480,
p(bonf)¼ .013, whereas only trends were observed
AM40MML versus PMML, t¼ 2.896, p(bonf)¼ .058.
Taken together, these results may imply a slightly
better tolerability of the AM sounds compared with
their PT pendants, while statistical differences were
only observed for two out of four contrasts and not
for arousal at corrected significance levels.

Figure 4. Responder profiles of tinnitus suppression for all stimuli. Initial suppression after stimulus offset (t0) is plotted here.

Suppression of >50% compared with prestimulus tinnitus loudness is considered ‘‘good’’ (green), ‘‘moderate’’ if <50% and �0%

(light green), ‘‘same’’ if¼ 0%, and ‘‘worse’’ (i.e., residual excitation) if <0% (orange).

Table 3. Analysis of Variance of the Final Mixed Effects Model.

numDF F p

Intercept 1 8452.589 <.001

Condition 6 22.495 <.001

Time 1 7.962 .005

Poly(position, 2) 2 16.155 <.001

Condition: time 6 4.721 <.001

Note. Poly¼ polynomial term.

Degrees of freedom¼ 1,377. Notably, unlike in our previous study, an

effect for position (order effect) was detected and had to be included as

a covariate in the model (see Table 6 in the Supplemental Material for the

interaction model). We observe significant effects for all main effects and

the Interaction Condition�Time.
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Discussion

The experimental study at hand examined the difference
between AM and PT sounds at the tinnitus frequency
regarding temporary tinnitus suppression. Specifically,
we investigated whether AM sounds with modulation
rates of 10 and 40Hz (four sounds) induce stronger tin-
nitus suppression after stimulation than unmodulated
PTs (two sounds) within two stimulation level regimes,
namely 60 dB SL and 6 dB above MML (both at the
tinnitus frequency). In an additional exploratory ana-
lysis, we compared both valence and arousal of the dif-
ferent stimuli between the two stimuli classes. The aim of
this analysis was to further evaluate if AM sounds are
suitable to induce residual tinnitus suppression, or RI,
and beyond that, may qualify as possible principles for
tinnitus sound therapy.

The results, taking into account the effect of position
(i.e., presentation order of the stimuli), could not con-
vincingly show (i.e., only producing a trend) that 10Hz
AM sounds in the matched tinnitus frequency produce
stronger tinnitus suppression on average after stimula-
tion than unmodulated PTs in the same frequency at
stimulation level 60 dB above SL. Looking at different
modulation rates (i.e., 40Hz) and stimulation levels

(i.e., 6 dB above MML), we can only report nonsignifi-
cant results at the corrected level. Generally, but espe-
cially in the case of the AM4060, this may be explained
by an (unfortunate) order effect (see Tables 4 and 6). The
absent significant effects of the same contrasts at the
lowered stimulation level 6 dB above MML may be fur-
thermore explained by the inherent increased sound
energy in the stimuli at the 60 dB SL level. Yet, given
the observed statistical trend and the considerably large
array of similar sound stimuli (i.e., identical regarding

Figure 5. Valence and arousal rating for all stimuli. Brackets indicating 95% confidence interval for valence and arousal for each condition.

P60 exhibits lowest tolerability mirrored by high arousal and low valence ratings.

Table 4. Results of the Contrasts of Interest in the Final Mixed

Effects Model.

Value SE t p p(bonf)

Intercept 89.955 3.469 25.929 <.001

AM1060—P60 2.840 1.175 2.417 .016 .064

AM4060—P60 1.308 1.173 1.116 .265 1

AM10MML—PMML 2.248 1.175 1.914 .056 .224

AM40MML—PMML 2.089 1.173 1.781 .075 .3

Note. SE¼ standard error.

Degrees of freedom¼ 1,377. Main contrasts of interest between AM and

PT conditions for both stimulation levels show a trend of stronger tinnitus

suppression for AM1060 versus P60, t¼ 2.417, p(bonf)¼ .064.
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their carrier frequency at the matched tinnitus fre-
quency), these results may not come as a surprise but
rather may be better elucidated in a sleeker experimental
design where presentation level regimes are not mixed
within one experiment or experimental block. We find
this interpretation further plausible, as the narrow spec-
trum of different carrier sounds in the study at hand, in
contrast to the wide array of carrier sounds in our former
study (Neff et al., 2017), may have eased learning effects
and therefore introduced the observed position effect. In
conclusion, we only observed trends of better tinnitus
suppression properties for 10Hz AM sounds compared
with their unmodulated pendants at 60 dB SL presenta-
tion level. These results are partly in line with previous
inconclusive findings (Neff et al., 2017; Reavis et al.,
2012; Tyler et al., 2014) in that they show a tendency
of stronger residual tinnitus suppression than commonly
used unmodulated sounds. Notably, the current study is
the first one directly comparing AM and PT sounds with
matched tinnitus tones as carriers.

The comparison between arousal and valence ratings
between modulated and unmodulated stimuli is similar
to the findings in tinnitus suppression, as AM1060 elicits
significantly higher valence but not lower arousal (see
Table 5). Different modulation rates and stimulation
levels only produced a trend in differences of arousal
and valence between conditions of interest, namely
higher valence for AM40MML compared with PMML
(Table 5). A former study (Terry & Jones, 1986) com-
pared a variety of different tones and sounds. Their
results did not show any specific difference between
AM and PT, while filtered noises were generally less
annoying than tones. As noise stimuli were not used in
the current study, we cannot provide data on a contrast
between tones and noise at this point.

Taken together, these results indicate that tolerability
for AM sounds seems to be slightly better compared with
PTs, especially in the ratings of valence. At the same

time, the high valence ratings were usually accompanied
by low arousal ratings further supporting better toler-
ability of the AM sounds. On the other hand, it cannot
be disputed that the effect is not consistent across the
different stimulation levels and modulation rates and
almost totally absent in the case of arousal. The latter
observation may be further explained by the assumption
that arousal is a concept not directly accessible to one’s
conscious evaluation, complicating the abstract task of
judging a sound along this particular categorization
system. Future studies should consider these shortcom-
ings by elaborating on subjective evaluations of stimuli.
Nevertheless, we still conclude that the stimulus class of
AM sounds was well tolerated by participants, at least
for the stimulation duration of 3 minutes.

A possible mechanism of action for the observed tin-
nitus suppression of the AM stimulus class beyond the
respective body of knowledge in RI research (Roberts,
2007) may be neural (or cortical) entrainment which nor-
malizes aberrant neural oscillations acting as putative
correlates of tinnitus (Reavis et al., 2012) or other
pathologies (e.g., in pain with alpha entrainment [Ecsy
et al., 2017] or in schizophrenia with gamma entrainment
[Voicikas, Niciute, Ruksenas, & Griskova-Bulanova,
2016]). A respective entrainment of neural oscillations
may be especially relevant for specific frequency bands
in tinnitus like alpha (Weisz, Moratti, Meinzer,
Dohrmann, & Elbert, 2005) or gamma (Ashton et al.,
2007; Sedley et al., 2012; Weisz, Dohrmann, & Elbert,
2007). Yet, the exact role of these frequency bands in the
tinnitus pathology is still under debate. In any case, we
agree with the considerations of Reavis et al. (2012) that
modulated sounds, contrary to noise or PTs that mostly
produce onset and offset auditory cortical activity, may
produce sustained acoustically driven activity that may
help restructure cortical firing patterns away from those
that generate tinnitus. A comparable model has been
postulated where prolonged tinnitus suppression or RI

Table 5. Paired Differences of Valence and Arousal Between Stimuli Contrasts of Interest.

Mean difference CI Lower CI Upper t p p(bonf)

V_AM1060 - V_P60 1.241 0.511 1.972 3.480 .002 .013

A_AM1060 - A_P60 �0.759 �1.503 �0.014 �2.087 .046 .369

V_AM10MML - V_PMML 0.552 �0.320 1.424 1.296 .206 .999

A_AM10MML - A_PMML �0.138 �1.005 0.729 �0.326 .747 .999

V_AM4060 - V_P60 1.069 0.213 1.925 2.557 .016 .130

A_AM4060 - A_P60 �0.828 �1.502 �0.153 �2.512 .018 .144

V_AM40MML - V_PMML 1.310 0.384 2.237 2.896 .007 .058

A_AM40MML - A_PMML �0.724 �1.693 �0.245 �1.530 .137 .999

Note. CI¼ confidence interval of 95%; V¼ valence; A¼ arousal.

Valence of AM1060 is significantly higher than P60, t¼ 3.480, p(bonf)¼ .013, whereas a trend is reported for higher valence of AM40MML versus PMML,

t¼ 2.896, p(bonf)¼ .058.
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may be explained by inhibition of central synchrony via
feedforward projections (Noreña & Eggermont, 2003;
Roberts et al., 2010). AM sounds in the alpha band
may also have an influence on tinnitus maintenance or
attentional networks through a temporary up-modula-
tion of alpha networks driven by the auditory stimulus.
This up-modulation may then reinstantiate the shifted
brain network homeostasis in tinnitus (e.g., the decay
of wide-spread alpha networks, [related] increase of
gamma networks [Schlee, Hartmann, Langguth, &
Weisz, 2009]). Regarding possible alpha entrainment,
we cannot rule out effects of general relaxation
(Hartmann, Lorenz, Müller, Langguth, & Weisz, 2013)
or mere attentional processes, as the alpha band is at the
lower bound of the spectrum of entrainable oscillations
(Joris, Schreiner, & Rees, 2004; Picton et al., 2003). At
this point, we also embrace the possibility of similar
effects produced by stimuli with modulation rates other
than 10 or 40Hz, particularly covering frequency bands
higher than 40Hz (e.g., 20–100Hz electrical stimulation
of the cochlea [Zeng et al., 2011]). Yet, with increasing
modulation frequency (>40Hz), modulated acoustic sti-
muli start to produce residual tones (Joris et al., 2004)
and furthermore elicit less cortical entrainment (Picton
et al., 2003).

Taking an all-embracing point of view given the vari-
ous systems of the auditory hierarchy from the inner ear
to the brain influenced by acoustic stimulation, it may be
conceivable that the observed suppression effect of AM
or generally modulated sounds is a conglomerate of
altered activity in the auditory pathway, central auditory
cortex, and widespread cortical network activation as
sketched earlier. To continue this line of research,
entrainment and RI effects should therefore be studied
using electro- or magnetoencephalographic methods
where direct causal relationships between cortical
entrainment, RI, and tinnitus suppression can be
tested. Beyond that, the influences of the putative
entrainment mechanism and the mere RI effect of the
carrier sound (here: matched tinnitus frequency) have
to be differentiated to better understand the individual
and joint mechanisms of action on tinnitus suppression.

Limitations

Unfortunately, five participants did not meet the criter-
ion of bilateral tinnitus contrary to their declaration
during recruitment and the informed consent procedure.
At this point, we would like to point to a possible inapti-
tude of tinnitus sufferers to generate valid self-reports of
tinnitus characteristics (Pryss et al., 2018) and also to
fluctuations of the tinnitus percept over time (Probst
et al., 2017). Certainly, this issue should be considered
in future studies and respective audiometric features of
tinnitus specifically tested at the recruitment or informed

consent stage of the study’s proceedings. In this study, all
participants were consequently stimulated idiotically to
adhere to the study protocol.

More importantly, AM stimuli with pure-tone carriers
naturally introduce sidebands alongside the carrier
sound (Zwicker & Fastl, 2013), which in turn may gen-
erate off frequency patterns of activation and distortion
products on the basilar membrane. These phenomena
could produce a different and possibly greater afferent
drive on the auditory system. The (increased) auditory
input related to the sidebands may therefore explain the
larger tinnitus suppression by the AM sounds in our
results. As the study at hand does not allow for further
insights on this issue, future studies could take this issue
into account by increasing the number and range of
tested modulation frequencies. In such a research
design, sideband parameters could then be included
and tested in statistical modeling of the tinnitus suppres-
sion as predictors or covariates.

Finally, the position effect emerging from the data
and included in the final fitted model was detrimental
on significance levels of the main contrasts of interest.
Future studies should therefore consider smaller stimuli
sets, a shorter stimulation duration per stimulus and
more repetitions in a well-balanced randomized design.

Conclusion

Despite the mentioned limitations and inconclusive
results as well as mechanisms of action, we conclude
that AM sounds in the matched tinnitus frequency are
effective in temporarily suppressing tinnitus. This conclu-
sion is substantiated by similar or slightly stronger tin-
nitus suppression or RI effects of AM compared with PT
sounds and slightly better tolerability of the AM stimu-
lus class by tinnitus sufferers. Future work should focus
on understanding the neurophysiological correlates of
the observed suppression effects during and after the
acoustic stimulation as well as on testing long-term
effects of the approach. Given the efficacy, tolerability,
and simplicity of use, we furthermore propose the stu-
died stimulus class as a suitable principle to be tested for
masking or long-term tinnitus sound therapy.
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