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Abstract

We report the isolation and characterization of two Elizabethkingia anophelis strains

(OSUVM-1 and OSUVM-2) isolated from sources associated with horses in Oklahoma.

Both strains appeared susceptible to fluoroquinolones and demonstrated high MICs to all

cell wall active antimicrobials including vancomycin, along with aminoglycosides, fusidic

acid, chloramphenicol, and tetracycline. Typical of the Elizabethkingia, both draft genomes

contained multiple copies of β-lactamase genes as well as genes predicted to function in

antimicrobial efflux. Phylogenetic analysis of the draft genomes revealed that OSUVM-1

and OSUVM-2 differ by only 6 SNPs and are in a clade with 3 strains of Elizabethkingia ano-

phelis that were responsible for human infections. These findings therefore raise the possi-

bility that Elizabethkingia might have the potential to move between humans and animals in

a manner similar to known zoonotic pathogens.

Introduction

Organisms from the Elizabethkingia genus are ubiquitous and have been isolated from arthro-

pods [1–5], lizards [6], fish [7], frogs [8], corn [9], hospital sinks and water spigots [10, 11],

and the Mir space station [12]. Some Elizabethkingia spp. are considered opportunistic patho-

gens that can cause serious infections such as meningitis and bacteremia, primarily in neonates

or immunocompromised individuals. In general, Elizabethkingia infections are associated

with high mortality rates [13, 14], likely due in part to the intrinsic antibiotic resistance pheno-

type expressed by these organisms, with the majority of isolates showing resistance to broad

spectrum β-lactams, tetracyclines, and aminoglycosides, both in vivo and in vitro, while more

variability is found in resistance to vancomycin and ciprofloxacin [8, 15–42]. This variability
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in vancomycin susceptibility is of interest as there appear to be discrepancies between labora-

tory reports for a variety of Elizabethkingia strains which were not susceptible to vancomycin

in vitro based on CLSI standard antimicrobial susceptibility testing methods [19, 39], and clini-

cal reports suggesting that vancomycin exhibits in vivo therapeutic efficacy [19, 20, 22, 26, 32,

35, 37, 43–45]. Recently, an unprecedented Elizabethkingia anophelis outbreak occurred in

Wisconsin, Michigan, and Illinois, with 65 confirmed cases and 20 deaths reported [46, 47].

This outbreak is particularly notable because in addition to the high case count, this outbreak

was primarily community-associated rather than healthcare-associated, and to date, no reser-

voir for this outbreak has been identified. E. anophelis is also the etiologic agent of disease in

healthcare associated outbreaks that have occurred in Illinois [48], the Central African Repub-

lic [49], Hong Kong [14], Taiwan [25], Singapore [36], and other isolated cases [23, 28, 33, 40,

50, 51].

It has been well documented that both food and companion animals may serve as reservoirs

for antibiotic-resistant bacterial pathogens [52–60]. The findings of Elizabethkingia meningo-
septica isolated from a dog suffering from bacteremia [60] and contagious Elizabethkingia miri-
cola among farmed frogs [8] suggest that farm and/or companion animals may also act as

reservoirs for Elizabethkingia with the potential to cause human disease.

We report here the draft genomes and antibiotic susceptibility profiles of two E. anophelis
strains isolated from horses. Whole genome sequence analysis suggests that these two strains

are clonal and closely related to certain human clinical E. anophelis isolates.

Materials and methods

Strains and growth conditions

Strains OSUVM-1 and OSUVM-2 were isolated in 2016 from diagnostic specimens associated

with horses in Oklahoma that were submitted to the Oklahoma Animal Disease Diagnostic Labo-

ratory. OSUVM-1 was cultured from a swab taken from an endoscope used at an equine hospital;

and OSUVM-2 was isolated from a guttural pouch aspirate obtained from a 9-year-old intact

female quarter horse that presented to Boren Veterinary Medical Teaching Hospital (BVMTH)

with a previous history of strangles. In addition to OSUVM-1 and OSUVM-2, Pseudomonas aer-
uginosa, Stenotrophomonas maltophilia and Chryseobacterium spp. like bacteria were isolated

from both specimens. All bacterial isolates were identified using MALDI-TOF MS. Working

stocks of the Elizabethkingia isolates OSUVM-1 and OSUVM-2 were prepared from pure cul-

tures grown on heart infusion agar (Remel, San Diego, CA, USA) supplemented with 5% defi-

brinated rabbit blood (Hemostat Laboratories, Dixon, CA, USA) that were incubated overnight

at 37˚C and subsequently stored at 4˚C. Working cultures of each strain were prepared by inocu-

lating a single colony into 3 ml of heart infusion (HIB) or Mueller Hinton broth (MHB) (Becton

Dickinson and Company, Cockeysville, MD, USA) and incubated overnight (37˚C, 200 rpm).

Isolate identification using MALDI-TOF mass spectrometry

For bacterial identification, fresh colonies grown on tryptic soy agar containing 5% sheep

blood (Fisher Scientific, Hampton, NH, USA) were applied to a spot on the MALDI-TOF MS

target plate and overlaid with freshly made matrix solution (Bruker Daltonics, Billerica, MA

USA) containing 70% formic acid (Sigma-Aldrich, St Louis, MO, USA) and α-cyano-4-hydro-

xycinnamic acid following the manufacturer’s recommendations. Bacterial identification was

carried out using a Microflex LT MALDI-TOF mass spectrometer (Bruker Daltonics) using

default settings. Bacterial peptide spectra were collected using FlexControl software (version

3.4, Bruker Daltonics) in positive linear mode with a mass range from 2 to 20 kDa and a laser

frequency of 60 Hz (IS1–20 kV; IS2–18 kV; lens—6 kV; extraction delay time of 100 ns) in
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automatic mode by accumulating a maximum of 240 profiles (40 laser shots from six different

positions of the target spot). Microbial peptide mass spectra were then analyzed using the Bio-

typer RTC software version 3.1 using the default settings and database version 4.0.0.1 (Bruker

Daltonics). Both OSUVM-1 and OSUVM-2 were identified by MALDI-TOF MS as E. menin-
goseptica. This is consistent with the known insufficiency of MALDI-TOF MS default data-

bases to correctly identify certain Flavobacteriacae, including species belonging to the

Chryseobacterium and Elizabethkingia genera [61–63].

Genome sequencing, assembly, annotation, and phylogenetic analysis

Genomic DNA was isolated from 3 ml overnight cultures of OSUVM-1 and OSUVM-2 grown

in HIB as described above using Qiagen Genomic-tip 100/g columns (Qiagen, Germantown,

MD, USA) following the manufacturer’s protocol. The resulting DNA samples were sent to

Molecular Research LP (Shallowater, TX, USA) where library preparation was performed

using the Nextera DNA sample preparation kit (Illumina Inc., San Diego, CA, USA). Genomic

DNA was then sequenced using PacBio SMRT sequencing and Illumina MiSeq systems and

assembled using SeqMan NGen1 version 12.0 (DNASTAR, Madison, WI, USA) with paired

end sequencing parameters on the default settings. The resulting assemblies were annotated

using the Rapid Annotations Using Subsystems Technology (RAST) server [64–66] and the

Prokaryote Genome Annotation Pipeline [67]. Both genomes were further analyzed using the

nucleotide and protein Basic Local Alignment Search Tool (BLAST) [68, 69]. The draft

genome sequences can be found under bioproject PRJNA397081. OSUVM-1 and OSUVM-2

are represented by biosamples SAMN08100548 and SAMN08100549 and nucleotide accession

numbers PJMA00000000 and PJLZ00000000, respectively.

The OSUVM-1 and OSUVM-2 genomes were shared with the Special Bacteriology Refer-

ence Laboratory (SBRL) at CDC, where they were compared to the genomes of E. anophelis
isolates derived from human clinical specimens which were obtained after the 2016 Wisconsin

Elizabethkingia outbreak [30] in response to a general request from CDC to the various state

public health departments for all Elizabethkingia isolates, which have been sequenced as a part

of a larger project. Three isolates were found to be closely related to OSUVM-1 and OSUVM-

2. These genomes had been sequenced from cultures grown at 35˚C on heart infusion agar

(Difco) supplemented with 5% rabbit blood (Hemostat Laboratories). DNA was extracted

using the Zymo ZR Fungal/Bacterial DNA Microprep kit (Zymo Research, Irvine, CA; strain

16–293), or the MasterPure™ Complete DNA and RNA Purification Kit (Epicentre, Madison,

WI; strains 16–487 and 17–001), according to the manufacturer’s instructions. Libraries were

prepared using the NEBNext Ultra DNA library prep kit (New England Biolabs, Inc., Ipswich,

MA, USA), then sequencing was done with an Illumina MiSeq instrument using a 2x250

paired-end protocol as described previously [70]. The de Bruijn graph de novo assembler in

CLC Genomics Workbench version 9.0. (CLCbio, Aarhus, Denmark) was used on reads

trimmed with a quality limit of 0.02 to produce draft genomes. Ambiguous nucleotides (N’s)

in the resulting contigs were resolved using read alignments, and contigs were split wherever

N’s could not be resolved. The accession numbers of these strains are NWMM00000000,

NWMI00000000, and NWMH00000000. Genomes were aligned and single nucleotide poly-

morphism (SNP) trees produced using HarvestTools [71], and exported Newick files were

edited using MEGA v6 [72].

Antibiotic susceptibility testing

Minimum inhibitory concentrations (MIC) of antibiotics were determined using either stan-

dard CLSI protocols [73] for clindamycin, vancomycin, and fusidic acid, or the Sensititre
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automated system (Thermo Scientific, Waltham, MA, USA) following the manufacturer’s pro-

tocol for equine samples.

Results and discussion

Sequencing and mass spectrometry analysis

The assembly of OSUVM-1 sequence data produced 7 contigs and a genome of 4,153,767 bp

(%GC = 35.5). OSUVM-1 contained 3,850 putative coding sequences (CDS), of which 3,777

were protein CDS. RAST annotation assigned function to 2,421 (64%) predicted protein CDS

and identified 75 rRNA and tRNA CDS.

OSUVM-2 sequences were assembled into 10 contigs to produce a genome of 4,109,384 bp

(%GC = 35.5). OSUVM-2 contained 3814 CDS, of which 3,750 were protein CDS. RAST

annotation assigned function to 2,404 (64%) predicted protein CDS and identified 64 rRNA

and tRNA CDS.

Bacterial identification using MALDI-TOF indicated that both OSUVM-1 and OSUVM-2

were members of the Elizabethkingia genus. The Elizabethkingia are nonmotile [42] and RAST

analysis of the draft genomes of OSUVM-1 and OSUVM-2 revealed no features supporting

motility and chemotaxis (S1 Table). The subsystem feature count in both strains were identical

for 16 of 25 subsystems identified in the draft genomes (S1 Table). The two draft genomes dif-

fered in the feature count of the following subsystems: cell wall and capsule; virulence, disease,

and defense; miscellaneous; membrane transport; iron acquisition and metabolism; protein

metabolism; stress response; metabolism of aromatic compounds; and phages, prophages, and

transposable elements (S1 Table). This last finding is consistent with our expectation that the

loci carried by mobile genetic elements will be better represented in a complete genome than a

draft genome, since a draft genome will contain a single copy of a transposon sequence (with

coverage levels scaled to the number of copies of the transposon in the genome) while a com-

plete genome will allow each gene in multiple copies to be identified.

Core genome and phylogenetic analysis

Nucleotide BLAST and phylogenetic analysis of the core genome of both isolates revealed that

both strains were E. anophelis It is of interest to note that OSUVM-1 and OSUVM-2 are part

of a clade of strains resembling E. anophelis strain JM-87 [9, 74] (which was isolated from Zea
mays stem tissue and initially described as the type strain of “Elizabethkingia endophytica”

before whole genome sequence analysis revealed it to belonged to the E. anophelis species)

rather than the clade containing E. anophelis type strain DSM_23781, which was isolated from

the midgut of a mosquito (Fig 1) [9, 75].

Using the HarvestTools v1.1.2 module ParSNP, we determined that both OSUVM-1 and

OSUVM-2 are closely related to E. anophelis isolates derived from human clinical specimens

in Minnesota, Illinois, and Tennessee (Fig 1). A second analysis limited to OSUVM-1,

OSUVM-2, and the three human clinical isolates, detected an 87% core genome among the

five strains. Once ambiguous nucleotides were excluded only 198 SNP positions were located,

scattered throughout the core genome of the five strains, and OSUVM-1 and OSUVM-2 dif-

fered by only 6 SNPs.

These results indicate that these five strains are highly related and that the two OSUVM iso-

lates share commonalities with strains isolated from humans manifesting with disease caused

by Elizabethkingia. Interestingly, Hu et al. [8] reported that an Elizabethkingia miricola strain

responsible for a contagious disease resulting in black-spotted frog losses at farms in China

was comparable to a human E. miricola isolate. Collectively these findings suggest that Eliza-
bethkingia are not host-specific, which raises the possibility that Elizabethkingia might have the
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potential to move between humans and animals in a similar manner to known zoonotic

pathogens.

Subsystem analysis

Beta-lactamases. Genomic analysis of Elizabethkingia spp. consistently identifies multiple

β-lactamases, including three characterized β-lactamases [41, 76, 77], along with a varying num-

ber of putative β-lactamases [1, 2, 4, 5, 9, 11, 25, 29, 30, 70, 78]. The 19 putative β-lactamase

CDS in both OSUVM-1 and OSUVM-2 included the previously characterized class A serine β-

lactamase (SBL) blaCME-1 [76], and metallo-β-lactamases (MBL) class B1 blaB14 [41] and class B3

blaGOB18 [77]. Of the remaining 16 putative β-lactamases, one is similar to the previously

Fig 1. Core genome single nucleotide polymorphism tree showing the position of OSUVM-1 and OSUVM-2

compared to the Elizabethkingia anophelis strains reported by Nicholson et al. Type strains are denoted by a

superscript T, and the location of the isolates from this study is denoted by a bracket.

https://doi.org/10.1371/journal.pone.0200731.g001
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characterized class A SBL blaCIA-1 from Chryseobacterium indologenes (67% amino acid identity)

[79], 11 are similar to class C SBLs, and the remaining 7 are classified as putative MBLs.

Multidrug efflux pumps. Efflux pumps are a key component of the intrinsic antibiotic-

resistance mechanism of many bacteria and function by transporting antibiotics from within

the cell to the outside [80–82]. Efflux pumps are characterized as belonging to five families:

ATP-binding cassette (ABC) [83], major facilitator superfamily (MFS) [84, 85], multidrug and

toxic compound extrusion (MATE) [86], resistance-nodulation-cell division (RND) [87], and

small multidrug resistance (SMR) [88]. Genomic annotation of all Elizabethkingia spp. reveals

the presence of several drug efflux pumps, yet none of these transporters has been phenotypi-

cally characterized [1, 2, 4, 5, 9, 11, 25, 29, 30, 70, 78]. RAST annotation revealed 32 CDS related

to antibiotic efflux in both OSUVM-1 and OSUVM-2: 18 of the 32 CDS (56%) were identified

by RAST analysis as components of RND efflux operons, 12 CDS (38%) as components of MFS

operons, while the remaining 2 CDS (6%) were identified as MATE efflux pumps.

We are interested in the RND pumps in the draft genomes of OSUVM-1 and OSUVM-2

since RND efflux pumps can be a major factor contributing to clinically-relevant resistance to

certain antibiotics in Gram-negative organisms [80]. Tripartite RND efflux pumps consist of an

inner membrane pump attached to an outer membrane porin by way of a periplasmic adaptor

protein [82, 87, 89, 90]. Although the arrangement of the genes that encode RND components

varies among organisms, they can be found in a single operon in organisms such as Pseudomo-
nas aeruginosa (e.g. mexAB-oprM) and Campylobacter jejuni (e.g. cmeABC) [87, 91]. When

genes encoding the MexAB-OprM efflux pump in P. aeruginosa and the CmeABC efflux operon

in C. jejuni are inactivated, a significant decrease in the MICs for various β-lactams, chloram-

phenicol, ciprofloxacin, erythromycin, nalidixic acid, and tetracycline is observed [90, 92–94].

The 18 CDS identified by RAST analysis as components of tripartite RND efflux pumps

were all identical in OSUVM-1 and OSUVM-2 at the nucleotide level. These genes presented

as six, three-gene operons, organized in the same manner as the mexAB-oprM and cmeABC
operons. The OSUVM-1 and OSUVM-2 RND inner membrane pumps demonstrated 28–42%

amino acid identity to MexB and CmeB, the periplasmic adaptor proteins demonstrated 24–

27% amino acid identity to MexA and CmeA, while the outer membrane porins demonstrated

25–29% amino acid identity to OprM and CmeC. These homologies only suggest a relation-

ship between these operons and characterized RND efflux systems. It should be noted that

when Schindler et al. [95] cloned and expressed 21 genes putatively identified as encoding

efflux proteins in Staphylococcus aureus, none resulted in increased MICs for any of the sub-

strates tested, calling into question the function of these genes in drug efflux. As a result, it is

important that the putative efflux genes from Elizabethkingia isolates be confirmed as drug

resistance efflux pumps through biochemical analysis.

Antimicrobial susceptibility testing

Both OSUVM-1 and OSUVM-2 demonstrated high MICs for cefazolin, ceftazidime, ceftiofur,

ampicillin, penicillin, ticarcillin, ticarcillin + clavulanic acid, imipenem, amikacin, gentamicin,

chloramphenicol, fusidic acid, and tetracycline (S2 Table). While the confirmed active β-lacta-

mases in Elizabethkingia are known to contribute to resistance to a wide array of antibiotics

that target penicillin-binding proteins [45–47], other mechanisms such as multidrug efflux,

outer membrane alterations and penicillin-binding proteins that demonstrate reduced affinity

for β-lactams can also contribute to β-lactam resistance, although these mechanisms remain

untested in Elizabethkingia [81, 92, 93].

Interestingly OSUVM-1 demonstrated an oxacillin MIC of 0.25 mg/l, while OSUVM-2

showed a higher oxacillin MIC (� 4 mg/l), and overall OSUVM-2 displayed higher MICs for
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11 of the antibiotics tested (S2 Table). Since the genes associated with resistances are identical

in both strains, these MIC differences may be attributed to unidentified SNPs or specific gene

content differences outside the core genome.

Both OSUVM-1 and OSUVM-2 demonstrated low MICs to ciprofloxacin and enrofloxacin,

suggesting they are susceptible to these fluoroquinolones (S2 Table). Ciprofloxacin resistance

in Gram-negative bacteria is driven primarily by mutations in the gene encoding the DNA gyr-

ase A subunit (gyrA), and resistance is enhanced in both cases by mutations in gyrB, parC, and

parE [96–101]. The E. anophelis gyrA encodes a predicted protein of 858 amino acids, and Per-

rin et al. [30] identified a Ser83Ile mutation in the gyrA of an E. anophelis strain isolated during

the 2016 Wisconsin outbreak that displayed an increased ciprofloxacin MIC. Lin et al. [25]

subsequently identified the same mutation in another E. anophelis strain which also demon-

strated an elevated ciprofloxacin MIC. Thus, it is probable that the gyrAmutation Ser83Ile

imparts ciprofloxacin resistance in E. anophelis, as it does for E. coli [102–107]. Both OSUVM-

1 and OSUVM-2 contain the wild-type serine at position 83, along with two mutations,

Val841Ala and Ala842Ile. Positions 841 and 842 lie outside of the region of gyrA thought to be

responsible for fluoroquinolone resistance [96, 97, 102, 104] and the low fluoroquinolone

MICs demonstrated by both strains are consistent with the expectation that these mutations

would not convey fluoroquinolone resistance.

Vancomycin is used extensively for treating Gram-positive infections, in particular infec-

tions caused by methicillin-resistant S. aureus (MRSA) and Clostridum difficile [108, 109].

Gram-negative organisms are normally intrinsically refractory to the action of vancomycin and

exhibit MICs> 64 mg/l [21], except Elizabethkingia, which have been reported to exhibit van-

comycin MICs as low as 1 mg/l [16–19, 78, 110]. Vancomycin has been used singly or in combi-

nation therapies to treat Elizabethkingia infections with mixed success (reviewed in [110]).

Furthermore, Hazuka et al. [24] reported that when an isolate of E. meningoseptica was exposed

to vancomycin for 6 days, the MIC increased from 8 mg/l to 64 mg/l. Vancomycin dosing rec-

ommendations suggest that a serum trough concentration of between 15 to 20 mg/l should be

reached and maintained to kill susceptible organisms, but this guidance requires that the target

organism has a vancomycin MIC< 1 mg/l [108, 109, 111]. Using this standard, OSUVM-1 and

OSUVM-2 (vancomycin MICs = 8 and 32 mg/l, respectively) would be resistant to vancomycin.

Conclusion

Here we report the first two draft genomes from Elizabethkingia associated with horses, and

that these two isolates are closely related to isolates derived from human infections, although

to date no direct evidence for transmission of Elizabethkingia between humans and animals

has been observed. We further demonstrated that both isolates display low MICs for ciproflox-

acin and that both isolates display an elevated MIC for vancomycin. Clinical reports have

shown potential efficacy for vancomycin in treating Elizabethkingia infections despite in vitro
susceptibility results that would suggest otherwise [20, 22, 26, 32, 35, 37, 43–45], although

treatment failure with vancomycin has also been reported [24, 27, 38]. We hope that this report

of vancomycin-resistant E. anophelis isolates will stimulate discussion and further research to

determine the efficacy (or lack thereof) of vancomycin in treating Elizabethkingia infections.

Supporting information

S1 Table. Distribution in coding sequence function as identified by RAST. Subsystems with

differences in the number of coding sequences in the two strains are highlighted in bold.

(PDF)
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S2 Table. Minimum inhibitory concentrations for select antibiotics determined by the Sen-

sititre system or broth microdilution method. Antibiotics displaying different MICs are

highlighted in bold.

(PDF)
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