
REVIEW
published: 28 May 2015

doi: 10.3389/fpubh.2015.00147

Edited by:
Mohiuddin Md. Taimur Khan,

Washington State University, USA

Reviewed by:
M. Jahangir Alam,

University of Houston College of
Pharmacy, USA

M. A. Karim,
Kennesaw State University, USA

*Correspondence:
Mahnaz Mazaheri Assadi,

Iranian Research Organization for
Science and Technology (IROST),
Sh. Ehsani Rad St., Enqelab St.,

Parsa Sq., Ahmadabad Mostoufi Rd.,
Azadegan Highway, P. O. Box

3353-5111, Tehran 3353136846,
I. R., Iran

mxmazaheriassadi@yahoo.com

Specialty section:
This article was submitted to

Environmental Health, a section of the
journal Frontiers in Public Health

Received: 18 February 2015
Accepted: 08 May 2015
Published: 28 May 2015

Citation:
Mazaheri Assadi M, Chamanrokh P,
Whitehouse CA and Huq A (2015)

Methods for detecting the
environmental coccoid form

of Helicobacter pylori.
Front. Public Health 3:147.

doi: 10.3389/fpubh.2015.00147

Methods for detecting the
environmental coccoid form
of Helicobacter pylori
Mahnaz Mazaheri Assadi1*, Parastoo Chamanrokh2, Chris A. Whitehouse3 and
Anwar Huq2

1 Environmental Biotechnology Group, Biotechnology Department, Iranian Research Organization for Science and Technology,
Tehran, Iran, 2Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA, 3 The Geneva Foundation,
Frederick, MD, USA

Helicobacter pylori is recognized as the most common pathogen to cause gastritis,
peptic and duodenal ulcers, and gastric cancer. The organisms are found in two forms:
(1) spiral-shaped bacillus and (2) coccoid. H. pylori coccoid form, generally found in
the environment, is the transformed form of the normal spiral-shaped bacillus after
exposed to water or adverse environmental conditions such as exposure to sub-inhibitory
concentrations of antimicrobial agents. The putative infectious capability and the viability
ofH. pylori under environmental conditions are controversial. This disagreement is partially
due to the fact of lack in detecting the coccoid form of H. pylori in the environment.
Accurate and effective detection methods of H. pylori will lead to rapid treatment and
disinfection, and less human health damages and reduction in health care costs. In this
review, we provide a brief introduction to H. pylori environmental coccoid forms, their
transmission, and detection methods. We further discuss the use of these detection
methods including their accuracy and efficiency.
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Introduction

Helicobacter pylori is recognized as the most common cause of gastritis, peptic and duodenal
ulcers, and gastric cancer (1, 2). For many years, the transmission dynamics of H. pylori largely
remained unknown and has thus gained the interest of many researchers around the world. In many
studies, contaminated water is implicated as a source of transmission of this pathogen that colonizes
more than 50% of humans (3). Water supplies contaminated by sewage with bodily fluids or feces
from infected people have been considered as a potential source of H. pylori infection (4, 5). The
transmission of H. pylori may occur from person to person both via the oral-to-oral and fecal-to-
oral routes (6). Some previous studies showed a positive correlation betweenH. pylori infection and
consumption of untreated or low-quality drinking water suggesting the waterborne transmission of
H. pylori (7–9). H. pylori transforms from the normal spiral-shaped bacillary form into the coccoid
form when it is exposed to water in adverse conditions (5, 10). Like other Gram-negative bacteria,
the coccoid forms of H. pylori are also usually in viable but non-culturable (VBNC), less virulent,
and less likely to colonize and induce inflammation than the spiral forms. It has been demonstrated
that bacteria in the VBNC state are able to maintain their metabolic activity and pathogenicity (11)
as well as may revert to active re-growth conditions (12, 13). It is well known that the detection
of H. pylori in coccoid forms is difficult using traditional methods (14). It was long assumed that
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the bacterial cells were deadwhen theywere no longer able to form
colonies on routine culture media. We now know this assumption
is too simplistic and there are many situations where bacterial
cells lose culturability but remain viable and are potentially able
to regrow. Recently, investigators have demonstrated that the
coccoid forms of H. pylori can be cultured on enrichment culture
(15). Epidemiological studies suggest that the level of sanitation,
particularly, water sanitation influences the probability of infec-
tion with H. pylori. The risk of H. pylori infection was suggested
to be 2–13 times higher in people who drink untreated river or
well water and swim in rivers, streams, or pools than those who
drink municipal tap water and do not swim in such environments
(8, 9, 16, 17).

Helicobacter pylori has been detected from drinking water (4,
18–20) as well as sea water (5). OneH. pylori strain stored in deep
groundwater or in natural seawater at 4°Cwas observed to survive
significantly longer than the same strain stored in nutrient-rich
media (21). Several studies indicate that H. pylori may survive as
culturable forms for weeks in water and may survive longer in
natural systems than in artificial nutrient-rich systems (14, 22).
Only a few studies reported the detection of H. pylori coccoid
form in environmental water samples. In one study, the bacterium
was found in a municipal wastewater canal on the U.S.–Mexico
border, which was suggestive to be a fecal–oral route of con-
tamination (4). In another study, H. pylori coccoid form was
identified from a seawater sample (23). Furthermore, Samra et al.
(24) examined 600 drinking water samples collected by water
and sanitation agencies from ground-drilled water in different
localities. In this review, we summarize the current approaches
to detect the environmental coccoid form ofH. pylori and discuss
their sensitivity, specificity, and accuracy.

VBNC State and Environmental H. pylori
Coccoid Forms

Viable but non-culturable state is a bacterial response to some
forms of natural adverse conditions such as nutrient starvation
(25), extreme temperatures (26), incubation outside of the per-
missive pH or saltiness ranges for cell growth (27, 28), high- or
low-osmotic concentrations (29), variable oxygen concentrations
(30), exposure to food preservatives (31), and exposure to visible
light and UV irradiation (32). Shahamat et al. demonstrated the
entrance ofH. pylori into the VBNC state for the first time during
laboratory studies in which cells were observed to become non-
culturable in freshwater microcosms (33). Cells in the VBNC state
typically demonstrate very low levels of metabolic activity, but on
resuscitation become culturable again (5, 34–36). Many suggest
that H. pylori persists in the environment in a VBNC form (21,
34, 37, 38) and there is only scattered evidence for reversion to
the actively dividing form (39, 40). H. pylori is mostly found in a
spiral shape within the human host, but it converts into a coccoid
shape when is exposed to unfavorable environments (41). It has
been suggested that based on evidence gathered over the last few
years, the VBNC cells of human pathogens should be viewed
as a potential hazard to public health rather than considered as
dead cells (42). In addition, pathogens in a VBNC state may
remain virulent or produce enterotoxins (43). An issue of much
significance is to detect VBNC and viable-culturable (VC) cells

by novel and more efficient methods. There is an urgent need
for a method, which lowers selectivity, reduces bias from sample
storage and incubation, and decreases assay time (44).

Culture

There are no established culture methods for the detection of
H. pylori in the drinkingwater supplies (45).Despite efforts to pro-
duce a culture-specific, media-culturing H. pylori from drinking
water has not been successful (46, 47). A simple plating medium
was suggested to detectH. pylori in the environment (48). Several
studies have reported that H. pylori enters into the coccoid form
when exposed to a nutrient deficient environment (49), drug
supplementation (50), pH change (39), abnormal temperature
(51), or prolonged culture (52). It is believed that the spiral form
(Figure 1A) is transformed immediately and rapidly into the
coccoid form (Figure 1B) (34). The first successful isolation of
H. pylori from environmental water using the enriched culture
was from amunicipal wastewater canal heavily contaminated with
untreated raw sewage at the U.S.–Mexico border where H. pylori
infection was reported frequently (4). However, the history of
unsuccessful attempts to culture H. pylori from environmental
waters led investigators to explore the use of molecular methods
to detect and identify this organism.

Autoradiography

Autoradiography was optimized and employed to detect
metabolic activity of VBNC cells of H. pylori in water. Tritium-
labeled cells of H. pylori showed the aggregations of silver grains
associated with uptake by H. pylori of radiolabeled substrate.
Temperature is a significant environmental factor for the viability
of the organism in water. Autoradiography revealed that H. pylori
remain viable at 4°C for 26months. However, sterile water
does not reflect the natural environment in which competition
with naturally occurring populations of microorganisms can
occur. Findings based on an autoradiography approach provided
evidence supporting the hypothesis that there is a waterborne
route of infection for H. pylori (51).

Electron Microscopy

Coccoid forms have been divided into two types, a and b, by
electron microscopy although the function of the two different

FIGURE 1 | Conversion from the H. pylori bacillary form (A) to the
coccoid form (B) (15).
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FIGURE 2 | Morphological appearances of Helicobacter pylori.
(A) Rod-shaped (B) Coccoid form. Original magnification×20,000 (58).

coccoid forms of H. pylori is unclear. One possibility is that
coccoid form in general represents a degenerating state of the
organism (53). Kusters et al. (54) indicated that the coccoid
cells of H. pylori were the morphological manifestation of bacte-
rial cell death, observing the transformation process by electron
microscopy. However, others suggested this form to be VBNC
(55). Benaissa et al. (56) asserted that coccoid H. pylori was
devoid of degenerative change. Willén et al. (57) studied mor-
phologic conversion of H. pylori from spiral (Figure 2A) to coc-
coid (Figure 2B) form where scanning electron microscopy and
transmission electron microscopy were employed.

Fluorescent In Situ Hybridization

Fluorescent in situ hybridization (FISH) with ribosomal RNA
oligonucleotide probes has been used successfully for the detec-
tion and identification of VBNC forms of bacteria (59). FISH
was validated as a quick and sensitive method for the detec-
tion of H. pylori in environmental samples (60). In the U.S.,
actively respiring H. pylori from surface and well water has
been detected using fluorescent antibody-tetrazolium reduction
(FACTC) microscopy (18) and confirmed using species-specific
polymerase chain reaction (PCR) (61). These findings helped to
determine the presence of H. pylori in the natural environment
and a possible waterborne route of transmission. Use of FISH
provides an alternative to PCR detection ofH. pylori in water (60)
and raw bovinemilk (62). These findings imply that at some point
in time helicobacters have entered the water source but it is not
possible for PCR or hybridization methods to establish if viable
organisms are present although coccoids in VBNC forms may be
transmitted via water (63, 64).

DNA-Based Techniques

Among the molecular methods, PCR has been widely used for the
diagnosis of H. pylori infection as well as the analysis of diversity,
virulence, persistence, and resistance patterns of these bacteria
(65) including detection of the organisms in environmental
samples (66, 67). Specific target genes are selected to avoid cross-
reactivity betweenH. pylori and other bacteria. For example, PCR
targeting the 16S rRNA gene, random chromosome sequences,
the 26-kDa species specific antigen gene, the urease A (ureA)
gene, and the urease C (ureC) gene or glmM gene have been used

(68–70). Among these gene targets, PCR-based detection of the
ureC gene appears to be the most promising for the detection of
H. pylori (69).

The presence ofH. pylori in drinking water, which was detected
by PCR, has been reported from many different countries (71,
72). Despite the requirement for a microaerobic atmosphere,
helicobacters can possibly survive for short periods in water in
a VBNC coccoid form (40, 49), which would allow them to
be transmitted via the water distribution system while remain
undetectable by culture techniques. Moreover, recent findings
suggest that H. pylori cells may be able to tolerate the levels of
disinfectant normally used in water purification plants. Results
from one study showed the presence ofH. pylori from U.S. surface
water (18). H. pylori DNA has also been amplified from drinking
water samples in Japan (73),Mexico (74), and Peru (75), untreated
well water in the U.S. (76), from water samples taken from a water
delivery truck and two lakes near Repulse Bay in the Canadian
arctic (77), and from drinking water storage pots in Gambia (70).

Clearly, PCR is the only way to demonstrate the presence of
H. pylori in water supplies and seawater (5, 78).H. pylori could not
be cultured and the cell membrane was disintegrated but nucleic
acid was still detected by PCR (47, 61). Furthermore, because of its
high sensitivity, PCR was suggested to be an appropriate method
to detect organisms when they are in low numbers, slow growing,
or non-culturable form (79).

Despite the findings of much research to identify H. pylori in
water, it is important to consider the fact that the use of PCR and
other molecular methods for the detection of pathogens in envi-
ronmental samples suffers from a number of limitations. Themost
serious limitation is that PCR does not enable us to distinguish
between live and dead cells. It also suffers from the fact that it is
biased and time consuming (44).

Nayak and Rose (80) demonstrated that quantitative PCR
(qPCR) could determine H. pylori concentrations in water. In
this study, qPCR was shown to be a specific, sensitive, and rapid
method to quantify H. pylori in sewage. Another study showed
that coccoid forms, regardless of viability, are readily detected
in small numbers by qPCR assays (81). Nayak and Rose (80)
investigated the detection of H. pylori in sewage and water using
a new qPCR method with SYBR green. Janzon et al. (81) detected
H. pylori DNA in drinking and environmental water in Dhaka,
Bangladesh, using highly sensitive real-time PCR. Sen et al. (82)
developed an internal control for evaluation and standardization
of a qPCR assay for the detection of H. pylori in drinking water.
There are also reports of the failure to identifyH. pylori in drinking
water in the U.S. (83) and in drinking water or reclaimed wastew-
ater in low-endemic developed countries such as Belgium, Spain,
and Italy (84).

The H. pylori qPCR test has several advantages. First, it does
not rely on culturing. Second, many samples can be analyzed
quickly, since real-time qPCR instruments are easily available and
it can analyze up to 384 samples in 2 h. Third, real-time qPCR
removes many of the sources of human error from the analysis
process and lessens the potential of contamination. The results of
McDaniels et al. (83) support the idea that a rapid real-time qPCR
may be useful for the screening of large numbers of drinkingwater
samples for the presence ofH. pylori at low concentrations. Due to
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metabolic and morphological changes that can prevent H. pylori
cells in water from growing on conventional media, an H. pylori-
specific TaqMan qPCR assay that uses a 6-carboxyfluorescein-
labeled probe has been developed (83).

In addition, there are a number of studies reporting traces
of H. pylori in various water sources, mainly using PCR-based
methods, although the successful isolation of live H. pylori from
river water (4) or marine zooplankton (5) has been reported.
However, some of these studies were performed with river water,
lake water, or seawater (20, 85, 86) rather than drinking water, and
some used nested PCR (20, 78, 87), which may increase detection
sensitivity but is more prone to contamination.

Flow Cytometry

Flow cytometry is an analytical technique, which has the poten-
tial to make a distinction among the four physiological states of
bacteria: reproductively viable, metabolically active, intact, and
permeabilized. It can determine the proportions of VBNC and
VC states and dead cells, based on membrane integrity of Gram-
negative bacteria (44). The application of this technique makes
rapid in situ analysis of single cells possible. In addition, using
this technique along with staining techniques such as live/dead
staining, it is possible to obtain qualitative data (88). Although the
use of flow cytometry has revealed four physiological states, rapid
approaches to distinguish between VBNC and VC cells are not yet
available (44).

Loop-Mediated Isothermal Amplification
Method

Loop-mediated isothermal amplification (LAMP) is a promising
technique that can overcome some of the technical shortcomings
of PCR. LAMP is a novel gene amplification strategy in which all
reactions are conducted under isothermal conditions (i.e., no need
for thermocycling) using a single type of enzyme. Thismethod has
high-amplification efficiency and provides faster amplification
times than PCR (65, 89). LAMP amplifies targeted DNA produc-
ing magnesium pyrophosphate as a by-product DNA amplifica-
tion can be detected by turbidity measured via photometry due
to the increase of magnesium pyrophosphate in solution (65, 90)
or by SYBR green addition, which can change the color detectable
with naked eyes without the need for expensive equipment. Also,
the detection of DNA amplification can use manganese loaded
calcein, which starts fluorescing upon mixing with manganese by
pyrophosphate during in vitro DNA synthesis (91).

It is, therefore, possible to detect the amplification of the
products without gel electrophoresis using the white precipitate
of magnesium pyrophosphate in the reaction mixture. This can
be achieved due to high specificity and amplification efficiency
of LAMP (65, 89). The simple operation of the LAMP assay
offers advantages over currently available DNA probe and PCR
methods (65). Although PCR methods are rapid and accurate
compared to other detection techniques to detect coccoid forms
of H. pylori, LAMP was found to be even more efficient detecting
H. pylori coccoid forms in water samples (Figure 3) in terms of
accuracy, rapidity, and sensitivity based on laboratory microcosm

FIGURE 3 | LAMP test. 1: negative control, 2: positive control (15).

experiments (15), similar level ofH. pylori detection was archived
in the stomach biopsy samples, employing LAMP method (92).

Next-Generation DNA Sequencing and
Metagenomics

Metagenomics is the application of modern genomics techniques
for studying microbial community directly in their natural envi-
ronments (93). Importantly, metagenomics bypasses the need
for laboratory cultivation of individual bacterial species, thereby
allowing for the study of unculturable microorganisms (94). The
presence of unculturable bacteria in the environment has been
known for more than a century and has often been referred to
as the “Great Plate Count Anomaly” (95). This concept is the
condition in which there is a discrepancy – often by several orders
of magnitude – between the sizes of a bacterial population esti-
mated by culture compared to that observed under microscope.
It may be fair to mention that the demonstration that H. pylori
causing gastric ulcers and cancer helped to draw attention on the
importance of the unculturable microbial world. Although spiral
bacteria were observed in the gastric mucosa of dogs in 1893 and
in humans in 1906 (96), and correlations between the occurrence
of the bacteria and peptic ulcers were noted in 1938 (97), it was
not untilH. pyloriwas culturedwhen its role as the disease causing
agent was accepted (98, 99).

By the mid-1980s, microbiologists began describing the phy-
logenetic diversity of microorganisms in “exotic” environments,
such as oceans, deep sea vents, hot springs, soil, and others using
molecular methods alone. Much of these culture-independent
methods were based on isolating total DNA from an environ-
mental sample, cloning the DNA into a suitable vector, trans-
forming the clones into a host bacterium (i.e., producing a clone
library), and screening the clones for a phylogenetic marker (e.g.,
16S rRNA). Clones were then sequenced and 16S rRNA gene
sequences cataloged to reveal the diverse taxa present in the
sample (94). This technique has been used widely to identify
bacteria and archaea from a variety of environments (100–103).
Today, high-throughput, next-generation DNA sequencing has

Frontiers in Public Health | www.frontiersin.org May 2015 | Volume 3 | Article 1474

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


Mazaheri Assadi et al. Detecting environmental Helicobacter pylori

made this process vastly more efficient. Advancements in next-
generation sequencing (and reduced costs) now provide a techni-
cal means by which to not only monitor environmental microbial
communities but also to study the occurrence of pathogens in
the natural environmental, especially those that are no longer
culturable, such as VBNC forms of bacterial pathogens. Metage-
nomics coupled to next-generation sequencing has been used
to study microbial communities in many natural environments,
including coastal areas of Thailand (104), waters of the Puget
Sound in the U.S. (105), freshwater and marine sediments along
the Pearl River in China (106), among others. While none of these
studies have specifically focused on non-culturable bacteria or
the coccoid form of H. pylori, Zheng et al. developed methods
for metagenomic analysis of H. pylori from old formalin-fixed
and paraffin-embedded gastrointestinal biopsies using Roche 454
high-throughput pyrosequencing (107). It is reasonable to sug-
gest that these approaches can be used for the detection and
characterization of H. pylori in the natural aquatic environment.

Conclusion

Helicobacter pylori is a significant human pathogen that is esti-
mated to infect the gastric mucosa of half of the world’s popu-
lation (108). The transmission dynamics of H. pylori are poorly

understood; however, epidemiological data and the detection
of H. pylori in a wide variety of natural aquatic environments
points to waterborne transmission. Although, most attempts to
culture H. pylori from water samples have proved unsuccessful,
likely due to the presence of VBNC coccoid form, great tools
to detect H. pylori in water samples, most commonly, PCR and
qPCR are now available. As a powerful and accurate detection
method for H. pylori, the qPCR technique provides diagnostic
microbiology laboratories with a capacity to quantify and achieve
a high degree of sensitivity and specificity of targets as compared
to standard PCR. Other promising techniques for the detection
of environmentalH. pylori include the LAMP assay, which can be
performedwithout a thermocycler and results can be visualized by
eye (Figure 3). Perhaps one of the most exciting areas in microbi-
ology, in the past decade, is the increasing use of next-generation
DNA sequencing andmetagenomics. As the instruments for DNA
sequencing become more widespread and conveniently portable
while the cost of sequencing continues to decrease, metagenomics
will likely become the mainstream technology used in environ-
mental microbiology and microbial ecology, including research
into the transmission dynamics and potential reservoirs of envi-
ronmental H. pylori. This awareness eventually will help public
health official to take necessary action to protect people from
H. pylori infection.
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