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Abstract

Melon necrotic spot virus (MNSV) can cause significant economic losses due to decreased

quality in cucurbit crops. The current study is the first to use reverse transcription loop-medi-

ated isothermal amplification (RT-LAMP) for detection of MNSV. A set of four LAMP primers

was designed based on the coat protein gene sequence of MNSV, and a RT-LAMP reaction

was successfully performed for 1 h at 62˚C. The results of RT-LAMP showed high specificity

for MNSV and no cross-reaction with other viruses. Compared to traditional reverse tran-

scription-PCR (RT-PCR), the RT-LAMP assay was 103-fold more sensitive in detecting

MNSV. Due to its sensitivity, speed and visual assessment, RT-LAMP is appropriate for

detecting MNSV in the laboratory.

Introduction

The quality of melons can be affected by the harmful pathogen melon necrotic spot virus

(MNSV), which results in significant losses to the economy of producer countries [1]. Research

into the disease caused by MNSV has been reported extensively [2–7] and the first case of the

disease in China was reported in 2008 [8].

MNSV belongs to the genus Carmovirus of the family Tombusviridae [9]. Host selection is

relatively specific, with species representing only part of the Cucurbitaceae family acting as

hosts [10]. The virus can cause necrosis of roots, leaves and fruits, from which the virus is

transmitted mainly by the chytrid fungus Olpidiumbornovanus in nature [11–14]. In addition,

MNSV can also be spread through mechanical inoculation [7] and propagation via infected

seeds [10, 15].

The MNSV genome containing at least five open reading frames (ORFs) such as p29, p89,

p7a, p7b, and p42 consists of a 4.3-kb positive single-stranded RNA chain [16, 17].

Conventional detection of MNSV is performed by enzyme-linked immunosorbent assay

(ELISA) or reverse transcription–polymerase chain reaction (RT-PCR) [18], but these meth-

ods have the disadvantages of taking a long time to complete, and of requiring the availability

of specialized equipment and expensive consumables. Recent research has used the reverse
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transcription-loop-mediated isothermal amplification (RT-LAMP) to detect plant [19, 20],

animal [21, 22] and human viruses [23, 24]. This method has been shown to exhibit high sensi-

tivity, reliability and rapid completion time; furthermore, it requires cheaper consumables and

simpler equipment than the conventional RT-PCR detection method. This paper focuses

mainly on the practical value of rapid detection of MNSV by RT-LAMP.

Materials and methods

Source of materials

Scientific researchers from Shandong Agricultural University and Weifang University of Sci-

ence and Technology were allowed to collect and test samples during September 2018 to May

2019 in the company (Shouguang Wanglin Agricultural Development Co., Ltd., China)’s vege-

table planting bases such as Shouguang and Changle districts of Shandong Province, China.

We collected symptomatic virus-infected melon and cucumber leaves from Shouguang

and Changle, respectively, in Shandong Province, China. Viruses present were identified by

RT-PCR and sequencing as MNSV and cucurbit chlorotic yellows virus (CCYV) (from

melon), cucumber mosaic virus (CMV) and cucumber green mottle mosaic virus (CGMMV)

(from cucumber), and healthy leaves from melon were stored in the laboratory (S1 Table).

Design of RT-LAMP primers

The inner (MNSV-FIP and MNSV-BIP) and the outer primers (MNSV-F3 and MNSV-B3)

constituted a set of RT-LAMP primers, which were designed based on the conserved

sequences of MNSV coat protein gene (GenBank accession number EU016217,DQ922807,

GU480022,KT923150,KY124137,AB044292,AB106106,AF488692,MK604924,KR094068) and

using Primer Explorer V5.0 (http://primerexplorer.jp/lampv5e/index.html) (S1 Fig). For con-

ventional RT-PCR amplification, specific primers MNSV-F and MNSV-R were designed

(Table 1 and S1 Fig). All primers were synthesized by Invitrogen (Shanghai, China).

Extraction of total RNA

Total RNA was extracted from MNSV-infected naturally melon leaves and healthy melon

leaves using the MiniBEST Universal RNA Extraction Kit (TaKaRa). The concentration of

total RNA was determined using a micro-volume UV spectrophotometer (Nanodrop 2000;

Thermo Fisher Scientific) and the RNA samples were then stored at -80˚C prior to carrying

out RT-LAMP and RT-PCR assays.

Initial establishment of RT-LAMP

The RT-LAMP reaction was performed in a 25 μL reaction mixture containing 1.6 μM of each

of the MNSV-FIP and MNSV-BIP primers, 0.2 μM of the MNSV-F3 and MNSV-B3 primers,

Table 1. Primers designed for RT-LAMP and PT-PCR of MNSV.

Primer names Length (bp) Position Sequence(5’-3’) Application

MNSV-F3 18 397–414 TCGGCTCCGTTTCACCTA RT-LAMP

MNSV-B3 20 601–620 ACTTCCGGTCGACAGCATTA

MNSV-FIP 42 470–491,425–444 TGGGGAGGGGGTCTTGTGAATC-ACCGGATCTACTTCCACTGG

MNSV-BIP 42 517–538,567–586 TGCTCATTACGCTGACTCAGCG-CCTCCACGTATTGTCACACG

MNSV-F 18 38–55 GCTATAGATGTGGTTCCT RT-PCR

MNSV-R 20 581–600 GTATCATTCATGTACCTCCA

https://doi.org/10.1371/journal.pone.0230023.t001
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12.5 μL of 2 x RT-LAMP reaction buffer [40 mM Tris-HCl (pH 8.8), 20 mM KCl, 20 mM

(NH4)2SO4,16 mM MgSO4, 0.2% Triton X-100, 2.4 mM dNTP, 1.6 M betaine] (Sigma–

Aldrich), 1 μL of Bst DNA polymerase (8 U/μL, New England Biolabs), 1 μL of M-MLV reverse

transcriptase (200 U/μL, Promega), 1 μL of RNasin1ribonuclease inhibitor (40 U/μL, Pro-

mega), 2 μL of RNA template (replaced by RNA of healthy melon leaves for the negative con-

trol and ddH2O for the blank control) and RNase/DNase-free ddH2O.

The RT-LAMP reaction mixture was heated for 1 h at 61˚C and the reaction was terminated

by heating for 10 min at 80˚C. Aliquots (5 μL) of the products of RT-LAMP amplification

were verified using 1.5% agarose gel electrophoresis (DL 2000 DNA marker (100–2000 bp);

TaKaRa). Positive results could be translated into a fluorescent color change which could be

observed under UV light at 365 nm by adding 0.2 μL SYBR Green I (10×, Invitrogen) to the

post-reaction solution, or into a visual color change by adding 2 μL of 60 μM hydroxynaphthol

blue (HNB; Sigma–Aldrich) to the pre-reaction solution, the latter change in color (from violet

to sky blue) being clearly observable with the naked eye.

In order to optimize the reaction conditions, different reaction temperatures of 60˚C, 61˚C,

62˚C or 63˚C were carried out for 1 h, and different reaction times of 30, 45, 60 or 70 min at

62˚C were tested.

Specificity analysis of RT-LAMP assay

The total RNA from leaf tissues infected naturally by CGMMV, CMV or CCYV was extracted

by the same method. Total RNA from plants infected with these viruses and MNSV was used

as templates in the RT-LAMP assay under the optimized conditions determined in the current

study.

Sensitivity analysis of RT-LAMP and RT-PCR assays

The relative sensitivities of RT-LAMP and RT-PCR were assessed using 10-fold serial dilutions

of the MNSV total RNA as templates. Using the PrimeScript II 1st Strand cDNA Synthesis Kit

(TaKaRa) with the reverse primer (MNSV-R), reverse transcription was carried out according

to the manufacturer’s instructions. A PCR reaction mixture of 25 μL contained 2.5 μL of

cDNA, 0.2 μM each of MNSV-F and MNSV-R primers and 2x Taq PCR MasterMix (Tiangen),

with thermocycling conditions of 94˚C for 5 min, 30 cycles of 94˚C for 30 s, 55˚C for 30 s, and

72˚C for 30 s, with a final extension of 72˚C for 10 min.

Applicability of RT-LAMP assay

A total of 24 samples of melon leaves suspected of being naturally infected with MNSV (on the

basis of characteristic symptoms) were collected from various commercial melon greenhouses

in the ShandongProvince area and RNA was extracted from each sample. RT-PCR and the

optimized RT-LAMP methods were used for sample detection, with the amplification prod-

ucts being observed by electrophoresis and color/fluorescence indicator dyes.

Results

Establishment of optimal reaction conditions for RT-LAMP

Different temperatures in the range 60–63˚C were tested to optimize the reaction temperature

for RT-LAMP, under which the ladder of bands of different sizes could clearly be distinguished

by agarose gel electrophoresis (Fig 1A). With regard to the intensity of the bands obtained,

62˚C was selected as the optimal reaction temperature, on the basis that band intensity was the

strongest at that temperature. When the reaction time reached 60 min or more (up to 70 min),
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the intensity of the product of RT-LAMP was the clearest and tended to be stable. The optimal

time at a reaction temperature of 62˚C was determined to be 60 min (Fig 1B).

Specificity of RT-LAMP assay for MNSV

RNA templates extracted from cucumber and melon leaves infected by other viruses were used

to test the specificity of RT-LAMP for MNSV. Under the optimized reaction conditions, elec-

trophoresis analysis showed that only the ladder of bands was observed in samples infected

with MNSV, whereas the other samples gave negative results (Fig 2A). Meanwhile, when

SYBR Green I (post-reaction) or HNB (pre-reaction) were added into individual samples, the

fluorescence and sky blue, respectively, appeared only in samples infected by MNSV (Fig 2B

and 2C).

Sensitivity comparison of RT-LAMP with RT-PCR

In a comparison of RT-LAMP with RT-PCR, the detection limits were determined using

10-fold serial dilutions of total RNA (7.5×10−1 to 7.5×10−8μg/μL) from MNSV-infected melon

leaves. At a dilution of 7.5×10−6μg/μL, a positive reaction was observed from RT-LAMP ampli-

fication (Fig 3A, 3B and 3C), whereas the lowest dilution was 7.5×10−3μg/μL at which the

563bp target fragment of RT-PCR (Fig 3D) was amplified. The sensitivity of RT-LAMP for

MNSV was 103-fold greater than that for RT-PCR, which also took about 2 h to amplify and

detect, compared with 1 h for RT-LAMP.

Detection of MNSV from diseased samples

Twenty-four melon leaves with symptoms typical of MNSV infection (Fig 4) were collected

and assessed for the presence of MNSV using RT-LAMP and RT-PCR. The results showed

that 21 of the 24 samples tested positive using the RT-LAMP assay, representing good

Fig 1. Optimization of RT-LAMP reaction conditions for MNSV. (A) Effects of reaction temperature on the RT-LAMP reaction: lanes 1, 2, 3, and 4

corresponded to amplification temperatures at 60, 61, 62, and 63˚C, respectively. (B) Effect of reaction time on the RT-LAMP reaction: lanes 1, 2, 3, and

4 corresponded to 30, 45, 60, and 70 min, respectively. Lane M corresponded to DL 2000 DNA marker (100–2000 bp), lanes 5, and 6 corresponded to

negative control and blank control.

https://doi.org/10.1371/journal.pone.0230023.g001
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feasibility and applicability of the samples detection by agarose gel electrophoresis and visuali-

zation of RT-LAMP (Fig 5A and 5B). Positive results of 19 samples by conventional RT-PCR

were due to the fact that two samples were not detected compared to RT-LAMP (Fig 5C). In

addition, three of these samples could not be detected by either method, which may confirm

that these samples were not infected by MNSV.

Fig 2. Specificity of RT-LAMP reaction conditions for MNSV. (A) Specificity analysis of RT-LAMP by 1.5% agarose gel electrophoresis. Lane M, DL

2000 DNA marker; lane 1, MNSV-infected melon leaf from Shouguang, China; lane 2, MNSV-infected melon leaf from Changle, China; lane 3,

CGMMV-infected cucumber leaf; lane 4, CMV-infected cucumber leaf; lane 5, CCYV-infected melon leaf; and lanes 6–7, negative control and blank

control. (B) Visualization of the RT-LAMP following staining with SYBR Green I under UV light. (C) Visualization of the RT-LAMP by the naked eye

with the color change of hydroxynaphthol blue from violet (negative) to sky blue (positive).

https://doi.org/10.1371/journal.pone.0230023.g002

Fig 3. Comparison of the sensitivity of RT-LAMP and RT-PCR assays for MNSV. (A) Sensitivity analysis of the RT-LAMP by agarose gel

electrophoresis using a serial dilution of total RNA. Lane M, DL 2000 DNA marker (100–2000 bp); lanes 1–8, from 7.5×10−1 to 7.5×10−8 μg/μL of total

RNA extracted from MNSV-infected melon leaves per assay; and lanes 9–10, negative control and blank control. Visualization of the RT-LAMP assay

according to (A) with addition of SYBR Green I under UV light (B) or the color change of hydroxynaphthol blue (C). (D) Agarose gel illustrating the

RT-PCR products from the same dilution series of total RNA as in lanes 1–10 in (A).

https://doi.org/10.1371/journal.pone.0230023.g003
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Discussion

Related research has shown that MNSV can infect many cucurbitaceous plants in a number of

countries [18], making it one of the major risk factors for fruit and vegetable production in

this plant family. Developing an efficient and convenient method to rapidly detect MNSV is

necessary and has stimulated research in this area. In a comparison of real-time PCR, multi-

plex PCR and RT-PCR [25–27], the products of positive reactions of these assays were

achieved through a series of temperature changes using specific instruments. But the emer-

gence of RT-LAMP and Recombinase Polymerase Amplification (RPA) [28, 29], based on iso-

thermal amplification technology, makes sample detection faster, more economical and more

operator friendly, as a consequence of the color-based visual results, based on color which pro-

vide a qualitative reaction that can be detected by the naked eye. Unfortunately, RPA technol-

ogy uses a very complex enzyme reaction system resulting in higher detection costs [30] than

with RT-LAMP.

Fig 4. Melon leaf symptoms of MNSV infection. (A) and (B)Symptoms of front and back MNSV-infected naturally

melon leaves.

https://doi.org/10.1371/journal.pone.0230023.g004
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The one-step RT-LAMP method described in this study was designed and established to

detect MNSV in melon efficiently and effectively. Using either a heated block or a water bath,

RT-LAMP for MNSV was performed successfully with the optimal conditions of 62˚C and a

60 min reaction time. After adding HNB or SYBR Green I, the DNA band-based positive

response could be translated into a color change that could be observed clearly. The RT-LAMP

detection was highly specific for MNSV, with none of the other viruses from cucurbitaceous

hosts exhibiting any amplification. The current evaluation study proves that the RT-LAMP

assay is a reliable method with which to detect MNSV.

Numerous studies have confirmed that the RT-LAMP method has greater sensitivity than

either standard RT-PCR or nested RT-PCR [20, 22, 31]. The visual assessment of the

RT-LAMP assay can be independent of expensive equipment such as a PCR thermocycler or a

metal thermostat-controlled heater. The presence of white turbidity in the RT-LAMP positive

reaction is due to the production of a large amount of magnesium pyrophosphate by-product,

which can be observed with the naked eye [32, 33]. However, other factors, such as the inten-

sity of light, transparency of the reaction container material, the concentration of the product

or a visual error by the observer, can make false positives (based on the accumulation of pyro-

phosphate) possible [34]. The use of a turbidimeter (e.g. the Loopamp Realtime Turbidimeter)

can avoid this problem [35, 36], but requires the purchase of additional, albeit relatively inex-

pensive, equipment.

The addition of a fluorescent dye after the reaction, such as SYBR Green I, causes bright

green fluorescence of the positive product (Figs 2B and 3B), but opening of the tubes to carry

out this addition may cause aerosol pollution [34]. By adding hydroxynaphthol blue (HNB) or

calcein to the pre-reaction solution, rather than adding SYBR Green I to the post-reaction

solution, brings about color changes visible to the naked eye associated with positive reactions

to highlight the positive/negative distinction without the need for expensive instrumentation;

it would also reduce the risk of contamination by aerosol pollution [34, 37]. However, the

color change caused by calcein is from the orange color of the negative reaction to the yellow

of the positive reaction, and subjective judgment based on such a small color difference can

Fig 5. Use of RT-LAMP assay to detect MNSV. (A) Agarose gel illustrating the RT-LAMP products from 24 melon leaf samples in lanes 1–24; lane 25,

positive control; and lanes 26–27, negative control and blank control. (B) Visualization of the RT-LAMP assay according to 24 samples with the color

change of adding hydroxynaphthol blue. (C) Agarose gel illustrating the RT-PCR products from 24 melon leaf samples in lanes 1–24; lane 25, positive

control (MNSV samples that had been detected above); and lanes 26–27, negative control and blank control.

https://doi.org/10.1371/journal.pone.0230023.g005
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increase observer error. Therefore, the present study used HNB, which produced consistent

experimental results and a clear distinction between positive (sky blue) and negative results

(violet) (Fig 5B).

In order to obtain better RT-LAMP reaction conditions, further optimization would be

advantageous. Adjustment of Mg2+ concentration in the reaction mixture has been reported to

further optimize the reaction conditions in previous studies, and the published results have

shown that 8 mM Mg2+ was the optimum concentration applicable in most situations [33, 38],

consequently, Mg2+ optimization steps were omittedfrom the current study [39, 40]. Specific

Mg2+ concentrations, such as 4 mM and 7 mM [41, 42], depending on the virus type, have

been used in published RT-LAMP detection assays. So based on previous research results, 8

mM Mg2+ was used in this work with consistent and clear outcomes.

In summary, the one-step RT-LAMP assay developed in this study has excellent practical

features, achieving rapid, accurate and visible detection of MNSV in the laboratory.

Supporting information

S1 Fig. Multiple sequence alignment of the partial coat protein gene of 10 isolates of

MNSV from different countries. The RT-LAMP and RT-PCR primers used in this work were

designed based on conserved genome regions (green box). Primer MNSV-FIP was a combina-

tion of primers F1c and F2 (5’-3’), Primer MNSV-BIP was a combination of primers B1c and

B2 (5’-3’).
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S1 Table. Primer sequences for detection of CCYV, CMV, CGMMV.
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