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ABSTRACT
Background: Imaging features derived from MRI scans can be used for not only 

breast cancer detection and measuring disease extent, but can also determine gene 
expression and patient outcomes. The relationships between imaging features, gene/
protein expression, and response to therapy hold potential to guide personalized 
medicine. We aim to characterize the relationship between radiologist-annotated 
tumor phenotypic features (based on MRI) and the underlying biological processes 
(based on proteomic profiling) in the tumor.  

Methods: Multiple-response regression of the image-derived, radiologist-scored 
features with reverse-phase protein array expression levels generated association 
coefficients for each combination of image-feature and protein in the RPPA dataset. 
Significantly-associated proteins for features were analyzed with Ingenuity Pathway 
Analysis software. Hierarchical clustering of the results of the pathway analysis 
determined which features were most strongly correlated with pathway activity and 
cellular functions.

Results: Each of the twenty-nine imaging features was found to have a set of 
significantly correlated molecules, associated biological functions, and pathways.

Conclusions: We interrogated the pathway alterations represented by the 
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protein expression associated with each imaging feature. Our study demonstrates 
the relationships between biological processes (via proteomic measurements) and 
MRI features within breast tumors.

INTRODUCTION

Breast cancer is the most common cancer in 
women [1], with incidence rates rising since the 1990s 
[2]. Molecular expression profiling of tumors has been 
effective in allowing for individualized therapy plans in 
certain types of breast cancer [3]. Expression of three 
receptors-- estrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 
(HER2)—are routinely used to determine optimal 
treatment plans for breast cancer patients [4]. PR and ER 
expression are associated with luminal A and B subtypes 
of breast cancer, with a lower proliferation index and 
pathological grade [5]. Disease-free and overall survival is 
lower in HER2 over-expression and triple negative breast 
cancers when compared to luminal A and B subtypes [5]. 

Despite obtaining multiple specimens from 
percutaneous biopsies as well as analysis of surgical 
specimens, the temporal and spatial heterogeneity of 
tumor gene and protein expression cannot be adequately 
determined [6, 7, 8]. Readily available imaging databases 
such as The Cancer Imaging Archive (TCIA) are leveraged 
in order to address the problem of tumor heterogeneity 
and to predict gene expression and patient responses to 
therapy based on imaging data [9]. MRI, as well as other 
modalities, is now used by researchers for extraction of 
features which correlate with patient responses and gene 
expression [10-12]. Breast cancer radiomic signatures can 
potentially predict recurrence when compared with multi-
gene assays [13]. Deciphering the associations between 
imaging features, breast tumor gene/protein expression 
levels, and patient outcomes holds the potential to guide 
personalized medicine [12, 14]. 

High-dimensional variable selection (Supplementary 
Table S1) is commonly used to analyze relationships 
between multiple modalities (copy number, expression, etc.) 
in genomic data. To avoid generating spurious correlations, 
a number of Bayesian and frequentist approaches have 
been devised. Bayesian approaches use a sparsity-inducing 
prior, such as spike-and-slab [15, 16], double-exponential 
[17], horseshoe [18], horseshoe+[19], or generalized double 
Pareto prior [20]. Frequentist approaches use penalized 
regression models: l1[18], horseshoe+ [19], generalized 
double Pareto prior [20], L1-norm penalty of the LASSO 
[21], combined l1/l2 penalty of elastic net [21], or combined 
L1 and L2- norm penalty of elastic net [22]. These regression 
models allow us to ignore the loss of statistical efficiency 
that occurs through correlation structures because they 

treat all variables as independent [23]. Several approaches 
to high-dimensional variable selection in highly-correlated 
datasets have been taken [24-26]. In this study, we used 
a Bayesian approach to model the correlation structure as 
previously described [27]. 

Analyzing a cohort of 82 breast cancer patients 
included in the TCGA database, we built a model 
correlating MRI-derived imaging features with proteomics 
data using a high-dimensional regression approach. 
Though a previous study of 353 breast cancer patients 
assessed correlations between 21 imaging traits and mRNA 
transcript levels [28], to our knowledge our approach has 
not yet been applied to proteomics data for breast cancer. 

RESULTS

Molecules were found to be significantly correlated 
to each imaging feature (Supplementary Table S2) with 
the exception of clumped non-mass internal enhancement. 
These molecules were obtained through high dimensional 
regression of the RPPA protein expression data on 
the imaging features set. For example, the axillary 
lymphadenopathy feature was found to be directly 
correlated with expression of EIF4EBP1 and PRDX1, and 
inversely correlated with RAB25, SHC1, XRCC1, and 
PARK7. Cell surface receptors associated with imaging 
features are EGFR, KDR, and PDK1. 

IPA analysis was implemented to determine the 
functional implications of the molecules. The IPA software 
generated p-values and Z-scores for the IPA Canonical 
Pathways of each feature (Figure 2), as well as scores 
for the IPA Diseases and Biological Functions of each 
feature (Figure 3). The Canonical Signaling Pathways 
most strongly associated with each imaging feature are 
summarized in Table 2. The results show that the same 
proteins are found to be correlated with a specific feature, 
irrespective of whether the data sets were separated into 
global or primary features. 

In order to determine which features were most 
strongly associated with functional alterations to signaling 
pathways, agglomerative unsupervised hierarchical 
clustering was performed on the p-values and Z-scores 
(Figures 2 and 3). This analysis separated the features 
into groups based on the strength of their correlations 
with altered pathway activity and disease functions. The 
most strongly deregulated IPA Diseases and Biological 
functions featured activation Z-scores between -3.5 and 
+3.5 (Supplementary Table S3).
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DISCUSSION

The strength of the associations between imaging 
features and protein expression, signaling pathways, and 
biological functions was computed using a sequential 
analysis of the protein expression data found through 
RPPA analysis of MRI scans of the TCGA patients. 
Correlation coefficients for each possible combination 
of imaging feature and protein were computed using a 
high-dimensional regression with a Bayesian selection 

of covariates. Corrected p-values were computed for 
each correlation coefficient in order to minimize the false 
discovery rate (FDR). Only the strongest ten percent of 
significantly-correlated molecules were analyzed using 
the standardized Core Analysis workflow in IPA, using 
correlation coefficients in lieu of gene expression values. 
The IPA analysis provides associations with pathway 
activity and pathobiology, allowing for hypotheses 
regarding the relationship between pathway activity at the 
cellular level and the manifestations of the alterations at 
the macroscopic, imaging levels. The activation Z-scores 
computed from the correlation coefficients indicate 
whether each pathway (or function) is up- or down-
regulated by upstream transcription factor activity. A 
similar approach integrated breast cancer transcriptomics 
data with imaging features and extended the interpretation 
with gene set enrichment analysis to identify metagene 
signatures such as wound response and hypoxia [28]. 
Our study extends this approach by leveraging the IPA 
Knowledge Base to interpret the patterns of protein 
expression associated with each imaging feature.

In our study, we used a stringent two-step method 
to select the correlations least likely to result from 
chance association, overcoming a common issue with 
high dimensional regression analysis. Despite this, the 
approach we have described is essentially a hypothesis-
generation pipeline, and should be interpreted carefully, 
following in-vivo perturbation experiments in appropriate 
model systems. 

We found that enhancing rim fraction score, a 
quantitative MRI feature, was shown to be significantly 
associated with the expression of the long, non-coding 
RNA HOTAIR [29]. This expression is known to be 
associated with breast cancer progression and metastasis 
[30]. The results of the high dimensional regression 
method used hints at the molecular underpinnings of 
macroscopic imaging phenotypes. It is known that MRI 
features correlate with pathologic stage and lymph node 
involvement [31]. The results found in this study point 
to multiple significant associations between molecular 
expression patterns in the tumor cells and how these 
manifest as MRI phenotypes [32].

METHODS

TCGA patient datasets

Eighty-two patients from multiple institutions 
with de-identified MRIs and reverse-phase protein array 
(RPPA) expression data were included in this study. All 
subject data was de-identified prior to the study through 
inclusion in The Cancer Genome Atlas (TCGA), and 
was thus exempt from requiring institutional review 
board approval, following the terms of the TCGA data 

Figure 1: Sagittal T1 post-contrast MRI of a 48-year-
old female patient diagnosed with infiltrating ductal 
carcinoma (ER-, PR-, HER2-) shows an oval rim 
enhancing mass. MRI sequences were obtained from The 
Cancer Imaging Archive [37].

Table 1: Patient demographic information. 
Demographics are given for the 82 patients 
included in this study.

Statistic
Mean Age at Diagnosis (Range) 53.2(29 - 82)
Median Overall Survival (Months) 41.72
Median Disease-Free Survival 
(Months) 42.015
Estrogen Receptor (ER) Status 
(Positive / Negative) 67/ 15
Progesterone Receptor (PR) Status 
(Positive / Negative) 59/ 23
Infiltrating Lobular Carcinoma 9
Infiltrating Ductal Carcinoma 69
Medullary Carcinoma 1
Other 3
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use agreement. Imaging data was obtained through The 
Cancer Imaging Archive (TCIA) database.  RPPA protein 
expression data was obtained from the TCGA through 
Firehose (https://gdac.broadinstitute.org/).

Scores of twenty-nine MRI semantic features were 
defined by the TCGA Breast Phenotype Research Group 
[33]. We used the imaging features as defined by the 
TCGA group to include mass- and non-mass associated 
features as shown in Table 3. These feature groups 
include background features, tumor related features, 
tumor dimensional features, features associated with the 
morphology of the non-mass enhancing lesion, and T2-
weighted MR acquisition features.

In order to ensure that the effects of each individual 
feature were appropriately described, the feature set was split 
into three subsets: one set with only the 8 mass-associated 
features, one with only the 21 global features, and an 

aggregate set with all 29 features. The features were isolated 
in order to determine if there were any significant proteins, 
associated pathways, or biological functions that appeared in 
purely global or mass-associated-only feature sets. 

Statistical analysis

High dimensional regression

High dimensional regression was done in 
Matlab using the joint Bayesian selection of covariates 
developed by Bhadra and Mallick [27]. In this analysis, 
the independent variables were the imaging features, 
and the molecules (proteins and phospho-proteins) 
were the response variables. This arrangement allowed 
the expression of each protein to be correlated with the 
expression of many other proteins. 

Figure 2: Representative pattern of associations between BRCA imaging features and IPA Canonical Pathways based 
on (A) p-values and (B) activation Z-scores. A subset of the p-values and Z-scores are shown. Values shown are -log(p-value).



Oncoscience43www.impactjournals.com/oncoscience

Multiple-testing correction

Multiple testing correction was employed to 
control the false-discovery rate (FDR) by sequentially 
designating p-value thresholds [34]. First, the posterior 
probabilities of the covariates were thresholded at an 
FDR of 0.25, giving a sparse set of predictors (imaging 
variables). Second, t-tests were performed using “no-
association” as the null hypothesis and “non-zero 
association” as the alternative hypothesis. The t-tests 
were computed between each combination of imaging 
features and molecules in the RPPA dataset. Correlation 
coefficients with p-values in the 10th percentile and 
that were less than 0.05 after adjustment for multiple 
comparisons were considered statistically significant. 
This approach is similar to that used to discern 
the relative impact of copy number alterations on 

messenger RNAs and microRNAs in glioblastoma [30].
Pathway analysis

Pathway analysis was performed on each of the 
three data sets (based on the image feature subsets) using 
the “Core Analysis” feature in the IPA software [35]. 
For the purposes of this analysis, regression correlation 
coefficients served as expression values. P-values and 
activation Z-scores were computed internally in IPA as 
previously described.
Hierarchical clustering

Agglomerative unsupervised hierarchical clustering 
of p-values and activation Z-scores was carried out the 
using the “Stats” package in R. Euclidean distance 
matrices were computed and Ward’s method was 
minimized within-cluster variance [36].

Figure 3: Representative pattern of associations between BRCA imaging features and IPA Diseases and Bio-Functions 
based on (A) p-values and (B) activation Z-scores. A subset of the p-values and Z-scores are shown. Values shown are -log(p-
value).
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Table 2: Radiological features are associated with unique pathway alterations in breast invasive 
carcinoma. Lists of molecules (proteins and post-translational modifications) were analyzed in IPA. Top 
pathways for each feature are shown with the associated –log (p-value) computed by IPA demonstrating 
the strength of the association of each imaging feature to each pathway. 

3 greatest P-values 
per imaging 

feature
1 2 3

T2 Signal Intensity Pancreatic Adenocarcinoma 
Signaling  6.177 Melanoma Signaling  4.405 Non-Small Cell Lung Cancer 

Signaling  4.111

T2 Heterogeneity UVB-Induced MAPK Signaling  
6.245 EGF Signaling  6.206 ErbB Signaling  5.725

Skin Thickening Epithelial Adherens Junction 
Signaling  8.957

Regulation of the 
Epithelial-Mesenchymal 

Transition Pathway  8.282

Pancreatic Adenocarcinoma 
Signaling  5.692

Skin Invasion 14-3-3-mediated Signaling  
10.378

Cell Cycle: G2/M DNA 
Damage Checkpoint 

Regulation  7.914

UVB-Induced MAPK Signaling  
7.385

Irregular Shape UVC-Induced MAPK Signaling  
6.845 EGF Signaling  6.206 STAT3 Pathway  6.112

Rim Enhancement ATM Signaling  8.26 AMPK Signaling  6.385 Cell Cycle: G2/M DNA Damage 
Checkpoint Regulation  5.037

Pectoral Invasion PI3K/AKT Signaling  12.834 Neuregulin Signaling  
10.295 p70S6K Signaling  9.069

Non-Mass 
Heterogeneous 

Internal 
Enhancement

ILK Signaling  7.812 PI3K/AKT Signaling  
6.646

Endometrial Cancer Signaling  
5.511

Non-Mass 
Clustered 

Ring Internal 
Enhancement

ATM Signaling  4.078 CDK5 Signaling  3.892 B Cell Receptor Signaling  3.349

Non-Mass 
Clumped Internal 

Enhancement

DNA Double-Strand Break 
Repair by Homologous 
Recombination  3.181

DNA Double-Strand 
Break Repair by Non-

Homologous End Joining  
3.181

DNA damage-induced 14-3-3σ 
Signaling  3.049

Regional Non-
Mass Distribution

Acute Myeloid Leukemia 
Signaling  3.745

Cancer Drug Resistance By 
Drug Efflux  1.94 autophagy  1.853

Multiple Regions 
Non-Mass 

Distribution PI3K/AKT Signaling  4.471 IL-8 Signaling  4.068 CD27 Signaling in Lymphocytes  
2.311

Linear Non-Mass  
Distribution ErbB2-ErbB3 Signaling  6.883 ErbB Signaling  6.421 Relaxin Signaling  5.845

Focal Non-Mass 
Distribution

UVC-Induced MAPK Signaling  
11.037

Cancer Drug Resistance By 
Drug Efflux  10.613 AMPK Signaling  10.337

Diffuse Non-Mass 
Distribution

DNA Double-Strand Break 
Repair by Homologous 
Recombination  5.395

Role of BRCA1 in DNA 
Damage Response  3.879 ATM Signaling  3.857
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Nipple Retraction PI3K/AKT Signaling  6.112 UVB-Induced MAPK 
Signaling  4.246

FLT3 Signaling in Hematopoietic 
Progenitor Cells  4.025

Nipple Invasion Estrogen-mediated S-phase 
Entry  2.346

Induction of Apoptosis by 
HIV1  1.949

Lymphotoxin β Receptor 
Signaling  1.901

Margin Molecular Mechanisms of 
Cancer  3.746

DNA damage-induced 14-
3-3σ Signaling  2.205 GADD45 Signaling  2.205

Lesion Size Hereditary Breast Cancer 
Signaling  7.625

PI3K/AKT Signaling  
5.976 Insulin Receptor Signaling  5.753

Heterogeneous 
Enhancement 

Intensity
Prolactin Signaling  6.64 Th1 Pathway  6.001 Th1 and Th2 Activation Pathway  

5.588

Fibroglandular UVC-Induced MAPK Signaling  
13.629

UVB-Induced MAPK 
Signaling  12.176 Neuregulin Signaling  11.271

Extent 
Heterogeneity Prostate Cancer Signaling  7.076 UVB-Induced MAPK 

Signaling  4.546
FLT3 Signaling in Hematopoietic 

Progenitor Cells  4.325
Extent - Multi-

focal CNTF Signaling  4.587 UVB-Induced MAPK 
Signaling  4.546 EGF Signaling  4.52

Extent - Multi-
centric

Hepatic Fibrosis / Hepatic 
Stellate Cell Activation  3.359

Tumoricidal Function of 
Hepatic Natural Killer 

Cells  2.346
Coagulation System  2.182

Edema Hereditary Breast Cancer 
Signaling  4.797 AMPK Signaling  4.425 Endometrial Cancer Signaling  

3.607
Dark Internal 

Septum
Huntington’s Disease Signaling  

3.418
Glucocorticoid Receptor 

Signaling  3.267 Parkinson’s Signaling  2.646

Background Insulin Receptor Signaling  
5.753

Molecular Mechanisms of 
Cancer  5.539 NF-κB Signaling  5.331

Axillary 
Lymphadenopathy ERK/MAPK Signaling  4.8 EGF Signaling  3.824 Erythropoietin Signaling  3.693

Associated 
Non-Mass 

Enhancement

Pancreatic Adenocarcinoma 
Signaling  7.206

UVC-Induced MAPK 
Signaling  6.399

Cancer Drug Resistance By Drug 
Efflux  6.194

Table 3: List of imaging features.

Feature Group Features

Background Background Enhancement
Fibroglandular

Tumor Features

Irregular Shape
Heterogeneous Enhancement Intensity

Dark Internal Septum
Rim Enhancement

Margin

Tumor Dimensions

Lesion Size
Multicentric Extent
Multifocal Extent

Heterogeneity Extent
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