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Abstract

Study design: Secondary analysis of a clinical trial

Objectives: To perform a secondary analysis on the effects of neuromuscular electrical 

stimulation resistance training (RT) combined with testosterone replacement therapy (TRT) 

compared to TRT on the untrained muscles after spinal cord injury (SCI).
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Setting: Medical research center

Methods: Twenty-two men with chronic motor complete SCI were randomized into TRT+RT 

group (n=11) or TRT group (n=11). Both groups received 16 weeks of TRT (2-6 mg/day) via 

testosterone patches. The TRT+RT group received twice-weekly progressive RT of the knee 

extensor muscles using electrical stimulation and ankle weights. Magnetic resonance images were 

captured to measure cross-sectional areas (CSAs) of trunk, glutei, and leg muscles.

Results: Total and absolute gluteus maximus m. (14%, P= 0.003 and 16%, P= 0.001), gluteus 

medius m. (10%; P= 0.008 and 14%; P= 0.02) and total glutei m. (8%, P= 0.01 and 11%, P= 

0.005) CSAs increased overtime for the TRT+RT group. Mean between group differences of 2.86 

(95% CI:0.30, 5.4), 1.89 (95% CI:0.23, 3.58) and 5.27 (95% CI:0.90, 9.69) cm2 were noted for 

absolute gluteus maximus, total gluteus medius and total glutei CSAs, respectively (P< 0.05). 

Trunk muscle CSAs showed a trend towards an interaction between groups.

Conclusion: RT combined with low-dose TRT results in significant hypertrophy compared to 

TRT only on the adjacent untrained glutei muscles. Trunk muscles may require direct stimulation 

to evoke hypertrophy. These exploratory findings may be of clinical relevance in the reduction of 

incidence and severity of pelvic pressure injuries.

INTRODUCTION

Recent guidelines have recommended that 2-3 days per week of moderate to vigorous 

physical activity may be necessary to attenuate secondary comorbidities after spinal cord 

injury (SCI) [1]. However, the guidelines did not address the extensive muscle atrophy and 

how this may accelerate the risks of developing secondary comorbidities [2–5]. Resistance 

training (RT) has been shown to be an effective rehabilitation approach in mitigating muscle 

atrophy, infiltration of intramuscular fat (IMF), evoking muscle hypertrophy, and improving 

the metabolic profile in healthy individuals, elderly populations and in persons with SCI [6–

14]. Such changes are likely to reduce the heightened risks of developing serious health 

consequences including cardiovascular disease and type II diabetes [4, 5]. In persons with 

motor complete (AIS A or B) SCI (i.e. unable to voluntary contract their muscles below the 

level of injury), electrically evoked RT using neuromuscular electrical stimulation (NMES-

RT) resulted in a robust muscle hypertrophy for the trained knee extensor [7,11,12]. One 

study demonstrated 40% increase in skeletal muscle size following 12 weeks of NMES-RT 

in persons with SCI [8]. Another study demonstrated an increase in whole thigh, knee 

extensor and flexor cross-sectional area (CSA) by 28%, 35% and 16%, respectively, 

following 12 weeks of NMES-RT [7]. These studies used Dudley’s protocol that relied on 

progressively loading the paralyzed muscle twice weekly using NMES and ankle weights 

[10]. The combinatory effect of 16 weeks of NMES-RT in conjunction with low-dose 

testosterone replacement therapy (TRT) on cardio-metabolic risk factors was recently 

completed [11]. Low-dose TRT and electrically evoked RT resulted in 43% hypertrophy of 

the trained knee extensors, 14-17% increase in basal metabolic rate and decrease in visceral 

adiposity compared to TRT only [11].

Previous studies using electrically evoked RT have been directed toward knee extensors 

considering the extensive muscle atrophy that may exceed 40-50% of the original muscle 
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size [2,3]. Progressive RT programs have also been shown to promote hypertrophy of the 

surrounding untrained muscle groups [12, 13]. However, it is still unclear whether NMES-

RT of the knee extensors may induce similar hypertrophy of the untrained muscles (i.e. not 

directly exposed to electrical stimulation) in persons with SCI. This is highly important 

considering the wide spectrum of complications associated with muscle atrophy in the lower 

extremities including blood clotting, venous pooling [15] and sacral pressure injuries 

following changes in the size and the quality of the glutei muscles [16, 17]. Furthermore, 

Abilmona and Gorgey noted that increases in trunk muscle CSA may be associated with 

decreases in visceral adiposity and improvement in the metabolic profile of persons with SCI 

[18]. Therefore, it is possible to hypothesize that an increase in lower leg, glutei and trunk 

muscle CSAs could attenuate several of the aforementioned complications.

In attempt to test this hypothesis, the effect of electrically evoked RT on the untrained trunk 

muscles was previously conducted [12]. The hypothesis was based on the fact that the 

untrained trunk muscles have close proximity to the NMES current, anatomically serving as 

stabilizers during NMES-induced leg extension or may be responsive to increased 

circulating insulin growth factors [7,12]. The findings indicated that NMES-RT resulted in 

hypertrophy of knee extensors, flexors, and hip adductors but without changes in the trunk 

muscles following 12 weeks of training [12]. A possible explanation is the short duration of 

application (12 weeks) and limited endogenous growth factors that may maximize 

applications of NMES-RT on untrained muscles.

Persons with SCI suffer an average 43% decline in serum testosterone levels. Low serum 

testosterone (< 325ng/dL) has been observed in 40-60% of men with SCI [19–21]. Recently, 

strong associations were noted between serum testosterone and cardio-metabolic risk factors 

in persons with SCI [20]. High circulating testosterone is associated with increased leg lean 

mass, thigh muscle CSA and decreased visceral adiposity [20]. In fact, those with low-levels 

of circulating testosterone have 72% greater visceral adiposity than those with normal 

testosterone [20]. TRT has been shown to be a safe and effective strategy in improving lean 

tissue mass and basal metabolic rate in men with SCI [21, 22]. Therefore, the addition of 

low-dose TRT may maximize the effects of NMES-RT on the proximal (trunk and glutei) 

and distal (lower leg) untrained muscles during training of the knee extensor muscle group.

Therefore, we have expanded the analysis on recently published work to investigate the 

effects of low-dose TRT and NMES-RT on untrained muscles [11]. The primary objective of 

the current pilot study was to examine the additive effect of low-dose TRT to NMES-RT for 

16 weeks on the untrained trunk, glutei and lower leg muscles compared to TRT only in 

persons with motor complete SCI. Our hypothesis was that the addition of testosterone 

would amplify the effects of NMES-RT on the CSAs of untrained muscles (lower leg, glutei 

and trunk) when compared to TRT only in persons with chronic motor complete SCI.

METHODS

Participants

Twenty-two men with chronic (≥ 1-year post injury) motor complete (AIS A or B) SCI 

between the ages of 18 and 50 participated in the current study (NCT01652040). 
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Recruitment started in August 2012 and ended in April 2015 after meeting the target sample 

size [14]. Inclusion/exclusion criteria have previously been published in detail elsewhere 

[11,14]. After providing written consent which was approved by a local ethics committee, a 

physical examination was conducted on each subject by a certified physician. Participants 

were then randomized in a blinded manner into one of two groups either TRT and NMES-

RT (TRT+RT) or TRT only for 16 weeks (Table 1).

Magnetic resonance imaging (MRI; 1.5T; General Electric) was performed at baseline (BL, 

week 0) and post intervention (PI, week 17) of the trunk, glutei and lower leg muscles. MRI 

images were captured to measure the CSA of specific muscle groups and intramuscular fat 

(IMF) within each muscle group (i.e. absolute muscle CSA). The recently published primary 

outcomes of the clinical trial were knee extensor and whole thigh muscle CSA [11]. Three 

untrained muscle group CSAs (trunk, glutei and leg) were considered secondary outcome 

variables of the current study (see table 2). The trunk muscle group included six individual 

muscles (see below), the glutei group included the total glutei, gluteus maximus and gluteus 

medius muscles and the lower leg included the soleus, gastrocnemius and tibialis anterior 

muscles.

Interventions

Testosterone Replacement Therapy (TRT)—Each participant received a low-dose of 

2-6 mg/day of testosterone administered through transdermal testosterone patches 

(Androderm; Watson Pharma, Parsippany, NJ) and alternated between both shoulders [11, 

14]. Participants were instructed to place the patches before bedtime on dry skin and to 

temporarily remove patches during bathing. Baseline measurements of serum testosterone 

were used to determine initial dosages, and subjects with <300, 300-600, or >600 ng/dL 

received 6, 4 or 2 mg/day dosages respectively. Participants or caregivers were instructed to 

count the used patches and provided a log-form to report adherence on a monthly basis to 

the study team. Monthly measurements of serum testosterone were monitored in a blinded 

fashion by an endocrinologist to adjust for the dose. If the participant’s serum testosterone 

levels exceeded 1000 ng/dL during testing, a decreased dosage of 2 mg/day was 

recommended. Participants with serum testosterone concentrations <250 ng/dL received 

reeducation regarding their procedure for administering TRT and whether the patches were 

placed correctly or not.

Resistance Training (RT)—Participants randomized in the TRT+RT group received 

progressive resistance exercise of the knee extensor muscle groups [10–14]. Twice weekly 

for the 16-week period, a research team member conducted exercise sessions for both lower 

extremities starting with the right leg and followed by the left leg. Blood pressure and heart 

rate were monitored through the entire session. Electrical stimulation was administered 

using large (8x10 cm) electrodes that were placed laterally on the proximal thigh and 

medially on the distal thigh. Participants remained in their wheelchair while their knee 

extensors were stimulated through manually adjusted NMES current (Theratouch 4.7; 

Richmar, Inola, OK; Biphasic waveform, 30 Hz, 450 μs pulse width, current intensity 

enough to elicit full knee extension) for 4 sets of 10 repetitions. During the first week, no 

ankle weights were used during training. If the participant completed all exercise sets 
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without fatigue, weights were increased in 2-pound increments. Progression in current 

amplitude and ankle weights were recorded and monitored throughout the 16-week 

intervention [11].

Magnetic Resonance Imaging

Participants were stationed in a supine position with their lower extremities strapped to 

minimize spontaneous involuntary movements due to muscle spasms. Images were captured 

with Echelon RAPID Torso/Body Coil (Hitachi Medical Systems America, Twingsburg, 

OH). The technician ensured that lower portion of the coil was placed at the symphysis 

pubis both BL and PI for each participant [18, 20]. A fast spin-echo sequence was used to 

perform T1-weighted imaging (axial in-phase (IP) /out-phase (OP) with a repetition time of 

140 ms and echo time of 4.2 and 2 ms for the IP and the OP, respectively; a 42-cm field of 

view, matrix size of 256 x 256, one NEX and acquisition time of 40 seconds) to measure 

trunk and glutei muscles. Transverse slices were acquired from the xyphoid process to the 

femoral heads (0.8 cm thick, 0.4 cm apart) [7, 11, 18, 20]. A series of two stacks were 

acquired, using L4-L5 as a separating point. The umbilicus was located to identify the 

intervertebral space between L4 and L5 after acquisition of a localizer sequence. To reduce 

respiratory-motion artifact, participants were asked to inhale deeply and hold their breaths 

for 10-15 seconds. Two sets of 9-12 slices were captured, the first set extended superiorly 

from L4-L5 to the xyphoid process and the second set extended distally from L4-L5 to the 

femoral heads [7, 11, 18, 20].

To capture bilateral lower leg muscles, transaxial images (8 mm thick, 15 mm apart) were 

captured from the knee to the ankle joints using a localized GE body array flex coil to ensure 

an adequate signal-to-noise ratio and higher image resolution (repetition time, 850-1,000ms; 

echo time, 6.7ms; field of view, 20cm; matrix, 256×256) [15]. The coil was placed at the 

proximal border of the patella and extended to cover the entire leg [15].

Images were analyzed in a blinded fashion to the group assignment using a specialized 

imaging software (Win Vessel 2, Ronald Meyer, MSU, MI, USA). Using Image J-software, 

images were matched between BL and PI based on bony landmarks. Images were 

automatically segmented into fat, skeletal muscle and background/bone (high, mid and low 

intensity, respectively). To correct for intensity variations caused by radio frequency 

heterogeneity, a first pass segmentation was used. The corrected image was then re-

segmented to the three intensity components using a fuzzy c-mean clustering algorithm [3, 

11]. For each selected image, the anatomical region of interest was manually traced pixel-

by-pixel to quantify CSA (cm2). Absolute IMF CSA was then quantified using a bimodal 

histogram at the midpoint between the muscle and fat peaks [3,11,15]. Each muscle group 

was presented as total CSA (muscle CSA without subtracting IMF) and absolute muscle 

CSA (muscle CSA after subtracting IMF).

Trunk Muscles—Six to seven images were selected between the upper lobes of the 

kidneys and the top of the iliac crest [12,18]. The images were selected to cover the primary 

trunk muscles as has been previously indicated [12,18]. The muscles that were manually 

traced are presented in Figure 1C, and include the erector spinae (ES; 1), multifidus (MF; 2), 
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quadratus lumborum (QL; 3), iliopsoas (PS; 4), rectus abdominis (RA; 5) and the external 

and internal obliques (EIO; 6) [18].

Glutei Muscles—Four images were selected between the iliac crest and the top of the 

femur. The images were selected based on anatomical distinction of the boundaries of the 

glutei muscles and overall image quality. The left or the right glutei were analyzed based on 

optimal quality of the signal intensity. The muscles that were manually traced and analyzed 

are presented in Figure 1A and B. These include the gluteus maximus (GMX; A1), gluteus 

medius (GMD; A2) and total glutei (GTOT= GMX+ GMD+ gluteus minimus; B). Muscle 

CSA and IMF CSA values were averaged across all four images.

Lower Leg Muscles—Twelve to fifteen images were selected between the knee and the 

ankle joints based on image quality. The regions that were manually traced are shown in 

Figure 1D and include the tibialis anterior (TA; 1), soleus (SOL; 2), gastrocnemius (GAS; 

3), and total leg muscles (TLM; entire traced region excluding bone). The leg selected for 

analysis was determined based on the side chosen for glutei analysis. The analyzed images 

of the leg muscles were divided equally into three groups (proximal, middle and distal) 

CSAs and the slices within each group was then averaged.

Data Analysis

Participant characteristics were summarized using means and standard deviations or 

frequencies or percentages. All data are presented as mean ± standard deviation (SD). 

Separate means and standard deviations of each of the cardio-metabolic risk factors were 

summarized by treatment group and time. To determine within time (BL vs. PI) and between 

group (TRT+RT vs. TRT only) differences, a 2 x 2 repeated measures ANOVA tests were 

performed. This model included fixed effects for both factors, as well as the interaction, and 

a random effect to account for dependence between the measures for a single individual. 

Statistical significance was set at α less than 0.05 and due to the secondary focus of these 

outcomes in the clinical trial, no multiple adjustment correction was made [23]. The 

statistical software package R (v3.4.1) was used to perform all statistical analysis.

RESULTS

Participant Characteristics

The results presented are a follow-up analysis to our recently published work examining the 

effects of low-dose TRT+RT vs. low-dose TRT only on cardio-metabolic risk factors in 

persons with SCI [11]. All participants received low-dose TRT from 2-6 mg per day for 16 

weeks and serum testosterone levels increased from 413.5-525 ng/ dl in both groups [11]. 

There were no significant differences in the physical characteristics between the TRT+RT 

and TRT groups (P> 0.1; Table 1). One participant in the TRT+RT group withdrew in week 

8 due to recurring episodes of syncope, therefore PI MRI images were not captured. In the 

TRT only group, MRI was not captured in one participant due to the existence of remaining 

bullet fragments in his spine. Another two participants in the TRT group lacked optimal 

quality images of the glutei and lower leg muscles, therefore analysis was not performed. 

Glutei IMF data for two participants, one in the TRT+RT and one in the TRT group, were 
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not measured due to poor signal intensity quality; which resulted in difficulty separating 

pixels of the muscles from those of IMF.

1. Trunk Muscles—Table 2 summarizes the CSAs of the trunk muscles in the TRT+RT 

and TRT only groups at BL and PI with 95% CI. TRT+RT and TRT only did not induce 

changes (P>0.05) in muscle CSAs of any of the trunk muscles [ES, MF, QL, IP, RA and 

EIO]. Furthermore, there was no difference between groups. However, notable differences in 

the change scores were observed between TRT+RT and TRT for QL (P =0.078) and EIO (P 
=0.093).

2. Glutei Muscles—Table 2 displays the CSAs of total glutei, absolute glutei (i.e. after 

subtracting IMF) and IMF CSAs at different time points (BL and PI) following both 

interventions (TRT+RT vs. TRT only), with the mean between group differences and 95% 

CI for each individual muscle.

a. Total and absolute gluteus maximus muscle: Total gluteus maximus CSA increased 

by 14% (P= 0.003) in the TRT+RT group; however, there was no changes in the TRT group 

(P =0.555; Figure 2A). TRT+RT resulted in a nominally greater increases in the gluteus 

maximus CSA with a mean difference of 2.59 cm2 compared to TRT only [95% CI: --0.04, 

5.24 cm2; P= 0.072]. There was a 16% increase in absolute gluteus maximus for the TRT

+RT group (P= 0.001) with little to no change in the TRT group (P =0.496; Figure 2B). TRT

+RT produced a greater increase (P=0.044) in absolute gluteus maximus m. compared to 

TRT only group with a mean between group differences of 2.86 cm2 and 95% CI: 0.30, 5.45 

cm2. However, gluteus maximus IMF did not change in either intervention.

b. Total and absolute gluteus medius muscle: A 10% increase in the total gluteus medius 

CSA was observed for the TRT+RT group (P= 0.001) but not for the TRT group (P=0.372). 

TRT+RT produced a greater increase (P=0.042) in total gluteus medius m. compared to TRT 

only group with a mean between group differences of 1.89 cm2 and 95% CI: 0.23, 3.58 cm2.

The absolute gluteus medius CSA increased by 14% in the TRT+RT group (P= 0.006), but 

not for the TRT group (P =0.173). No differences in absolute glutes medius CSA were 

observed between both groups (P =0.153) (Figure 2D).

c. Total and absolute whole glutei muscle: Total glutei m. increased (P= 0.02) for both 

groups from BL to PI with an interaction between the TRT+RT and the TRT groups (P= 

0.04). The TRT+RT group showed an 8% increase (P= 0.01) in the total glutei CSA (Figure 

2E). TRT+RT produced a greater increase (P=0.035) in total glutei m. compared to TRT 

only group with a mean between group differences of 5.27 cm2 and 95% CI: 0.90, 9.69 cm2.

Absolute total glutei CSA increased (P= 0.004) for both groups from BL to PI. Absolute 

total glutei CSA increased by 11% (P= 0.005) for the TRT+RT group, but there were no 

changes in the TRT group (P=0.3; Figure 2F). There was a trend towards an interaction 

between the two groups (P= 0.09). TRT+RT produced a nominal increase (P=0.09) in 

absolute glutei m. compared to TRT only group with a mean between group differences of 

4.56 cm2 and 95% CI: −0.23,9.42 cm2.
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3. Lower Leg Muscles—The CSA values for the leg muscles are summarized in Table 

2 for the TRT+RT and TRT groups at BL and PI. There were no observed differences 

between the two groups and changes from BL to PI following either TRT+RT or TRT for the 

proximal, middle and distal tibialis anterior m., soleus m., gastrocnemius m. and total leg 

muscle.

DISCUSSION

The major findings of this secondary pilot study indicated that the addition of low-dose TRT 

to RT induced hypertrophy of non-targeted untrained glutei muscles. Mean between group 

differences suggested that TRT+RT resulted in greater increases in glutei m. CSA compared 

to the TRT only. Although trunk muscles were not significantly affected, a trend towards an 

interaction between the two groups for the QL and EIO may indicate that these muscles are 

positively affected in the TRT+RT group compared to the TRT only group. Neither TRT+RT 

nor TRT alone increased CSA of the untrained lower leg muscles. Furthermore, the 

combined application of RT and low-dose TRT may be recommended as a future 

prophylactic intervention for the prevention of pressure injuries and improvement of body 

composition because of its positive effects on the trained as well as untrained muscle groups.

Rationale of studying untrained muscles

The rationale of studying the untrained muscles was based on previous work that 

demonstrated the effects of unilateral RT on contralateral untrained muscles [24]. We have 

previously shown that 8 weeks of unilateral NMES-RT did not result in contralateral muscle 

hypertrophy of the untrained knee extensor muscle group [13]. The concept of evoking 

muscle hypertrophy in untrained muscles may be beneficial to those with sacral ulcers 

greater than grade II, in which sitting may induce shear stress or direct applications of 

electrical stimulation on the exposed ulcer may not be feasible. Biomechanically, it is also 

difficult to load the hip extensors to evoke hypertrophy because of the long lever arm of the 

lower extremity and difficulty of attaining prone position for extended period after SCI.

Potential mechanisms of evoking hypertrophy in the untrained muscles

The mechanism behind hypertrophy of untrained muscles still remains unclear; however, 

there are several hypotheses that may explain these findings. During training of the knee 

extensors, possible bleeding of the electrical current to the glutei muscles may have occurred 

due to the smaller muscle size after SCI. Additionally, there may be occurrence of a volley 

phenomenon after using a long pulse duration of 1ms and lead to anti-dromic afferent 

stimulation of knee extensors [25]. This afferent stimulation may activate the alpha motor 

neuron pools and lead to indirect stimulation of the adjacent untrained muscle groups. 

Despite the fact that we used a pulse duration of 450 μs, increasing the current amplitude to 

stimulate the knee extensors reflexively resulted in noticeable hip flexion and ankle 

dorsiflexion in several of our participants; suggesting the possibility of anti-dromic volley 

stimulation of the untrained muscles. Moreover, isometric torque data at 100 mA and 30 Hz 

suggested the occurrence of the volley phenomenon during examining knee extensor peak 

torque in response to either intervention (data not shown). Gorgey et al. also noted a 

significant increase in IGF-1 following 12 weeks of NMES-RT in men with SCI. This 
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increase was also associated with hypertrophy of the knee extensors [7]. However, in the 

current trial, we noticed a decrease in IGF-1 and increase in insulin growth factors binding 

protein-3 following 16 weeks of training [11]. The discrepancy between both studies may 

either attribute to the influence of TRT on insulin growth factors or due to the duration of 

both studies (12 vs. 16 weeks) [11].

Clinical relevance of hypertrophy of the glutei muscles

Our baseline measurements of gluteus maximums m. agreed with a previous report using CT 

scans in persons with chronic SCI [17]. Wu et al showed that gluteus maximus m. in persons 

with SCI was 55% of that of able-bodied controls [17]. Furthermore, the authors highlighted 

that muscle quality has dramatically changed by increasing infiltration of IMF (SCI: 29% vs. 

AB: 8%) [17]. Therefore, TRT+RT is likely to reciprocate this profile by increasing glutei 

muscle size, improving intrinsic tissue health, enhancing regional blood flow and preventing 

the frequent occurrence of pressure injuries in this population. Dolbow et al. studied seat 

pressure changes in men with SCI after eight weeks of functional electrical stimulation 

cycling [26]. The study showed a positive trend towards a reduction in ischial seat pressure 

[26]. Our findings indicate that this trend may result from increasing glutei CSA noted in the 

current work. Eight weeks of NMES helped to improve tissue oxygenation levels and seating 

pressure distribution in individuals with SCI [16]. Increases in muscle size may have been 

the underlying mechanism for previous findings [16,26], as muscle helps to improve 

surrounding tissue health through increased vascularization and mitochondrial oxygen 

utilization. These are all critical factors in preventing costly and potentially life-threatening 

pressure injuries after SCI.

In elderly population, an increase in knee extensor CSA by 5-15% following RT for 6-30 

weeks is considered clinically relevant [27]. Wu et al. demonstrated small 5-11% increases 

in sacral interphase pressures following applications of implanted electrical stimulation 

system for 5 minutes [28]. Therefore, the increase in glutei muscle CSA (8-16%) is a 

noteworthy finding, and may lead to a number of important health benefits including 

increasing tissue interphase pressures and tissue oxygenation in individuals with SCI. We 

recently showed that 16 weeks of low-dose TRT+RT led to an increase in total and absolute 

thigh muscle CSA by roughly 20 cm2, while no changes in muscle size were noted 

following low-dose TRT only [11]. Our findings suggest that the addition of RT to low-dose 

TRT may be beneficial in inducing muscle hypertrophy of the trained thigh muscles and 

adjacent glutei muscles. Higher serum testosterone in men with SCI is linked to positive 

body composition [18] and cardiometabolic outcomes [29]. However, low-dose TRT 

administered in the current study was not enough to induce trunk, glutei or lower leg muscle 

hypertrophy.

Why study trunk muscles?

Exercise involving NMES and functional electrical stimulation has primarily focused on the 

lower and upper extremity muscle groups. Trunk fat-free mass represents 49-51% of total 

body fat-free mass [30] and is essential for posture, transfers, coughing and breathing [31]. 

Additionally, trunk muscles have been associated with a positive metabolic profile and 

negatively related to central adiposity [18]. Gorgey et al. investigated the effects of 12 weeks 
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of NMES on the CSA of adjacent trunk muscles and concluded that trunk muscles were not 

affected by NMES-RT of the thigh muscles [12]. Our results showed a trend towards an 

interaction between the low-dose TRT+RT and TRT group, which may indicate that the 

addition of TRT to RT helps to amplify the effects of RT. Bauman et al. showed increase in 

trunk lean mass following 12 months of administering TRT in hypogonadal men with SCI 

[22]. The lack of robust changes in the size of trunk muscles may be explained by the fact 

the trunk muscle mass collectively is only 1.2 kg [30] and the large mass of the surrounding 

visceral and subcutaneous adipose tissue may impede the progression of the current to 

directly activate them. The current findings may also suggest that direct stimulation of the 

trunk muscles is necessary to yield muscle hypertrophy in persons with SCI. A future 

clinical larger scale trial may reveal such interaction noted with the trunk muscles.

MRI as an imaging technique

MRI captures multi-axial slices across the entire length of the muscle [15]. This provides 

robustness of comparing muscle CSA at the same location between BL and PI as well as 

accurate quantification of absolute muscle CSA after separation of IMF [3,7–11]. 

Furthermore, the use of a localized coil improved signal-to-noise ratio and greatly enhance 

image quality; which further helps in easily matching images based on bony landmarks 

between BL and PI. The improvement in mage quality, accurate matching of images at 

different timepoints as well as capturing and analyzing images in a blinded fashion reduce 

the likelihood of introducing error from using different location or orientation.

Limitations

The age range was only limited to 18-50 years to ensure safety and avoid potential 

cardiovascular risk consequences that may result from using TRT. Only men were recruited 

with motor complete SCI (AIS A or B) and women were not enrolled for ethical 

consideration regarding using TRT.

Because of budgetary constraints, the design of the study did not include NMES-RT only or 

TRT placebo-controlled groups. The NMES-RT effects on muscle size have been widely 

studied on the trained knee extensor and untrained trunk muscle groups in persons with 

motor complete SCI [7,11–14]. Five different studies have clearly demonstrated 35-40% 

hypertrophy of the knee extensor muscle group following NMES-RT in persons with motor 

complete SCI [7,8,10,11,13]. However, NMES-RT was ineffective in evoking changes in the 

untrained trunk muscles. The rationale behind the current design (TRT+RT vs. TRT only) 

was to introduce an alternative rehabilitation approach that can promote muscle hypertrophy 

or increase lean mass in pre-existing medical conditions that may be inadequate to 

participate in NMES-RT program; because of low tolerance to electrical stimulation with 

intact sensation below the level of injury, autonomic dysreflexia, pressure ulcers greater than 

grade II, and peripheral lower motor neuron injury.

Additionally, few participants were not included in the final analysis because of specific 

precautions regarding using MRI or because of low-image quality. The overall final sample 

size may have impacted the findings of the current study. A larger sample would be ideal to 

account for the attrition rate or failure to capture MRI in persons with SCI. It is likely that 
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the trunk muscles were impacted due to the trend towards an interaction between the two 

study groups, however these results may have been masked by the heterogeneity of our study 

sample. According to Rankin et al., individuals with tetraplegia have 13% smaller trunk 

muscle CSA than individuals with paraplegia [30]. Our sample included persons with 

tetraplegia and paraplegia; suggesting that the effects of training may have been masked.

The use of low-dose TRT may not suffice to evoke necessary changes in muscle size. Our 

participants received 2-6 mg of testosterone (average of 4 mg per day) over a 4-month period 

[11]. Bauman et al. used a dose of 5-10 mg per day in hypogonadal men SCI and showed 

increase in both lean mass and basal metabolic rate following 12 months [22]. Nightingale et 
al. recommended an optimum dose of 6-8 mg per day to increase lean mass in men with SCI 

[21].

Considering the cost and time of conducting randomized clinical trials, additional data on 

untrained muscle groups, spasticity, bone architecture and FES-cycling peak VO2 were 

intentionally collected. The original study was not powered based on these outcome 

variables and possibly type II error (1-β) was committed. The current study may have lacked 

the necessary power to demonstrate statistical changes in both the trunk and leg muscles. 

Our main clinical trial was primarily directed towards studying the effects of low dose TRT

+RT vs TRT only on muscle size, body composition and visceral adiposity (primary 

outcome variables) and metabolic profile as determined by the changes in basal metabolic 

rate, carbohydrate, lipid and inflammatory biomarkers (secondary outcome variables) [11]. 

Therefore, the findings of the current trial should be treated with caution; because the work 

is considered a secondary analysis of the untrained muscles; which was not the primary 

focus of our concluded clinal trial [11]. The findings may be considered as exploratory pilot 

work that can be effectively used to calculate effect sizes for untrained muscles to 

adequately power future clinical trials. Pilot studies are of substantial value to gain 

feasibility and a preliminary indicator of adverse events [32]. The two groups were matched 

at baseline and adherence to therapies exceeded 95% with very minimal side effects. The 

preliminary results are promising and a larger powered randomized placebo-controlled trial 

may be warranted to test the hypothesis and provide firm scientific conclusions.

Conclusion

The pilot findings support that 16 weeks of low dose TRT+RT leads to hypertrophy of 

untrained glutei muscles, which may be of health-related significance considering the 

prevalence of pressure injuries in this population. The findings support between group 

differences that favor the effects of TRT+RT compared to the TRT only on the glutei 

muscles. Additionally, there was a trend towards an interaction between the two groups in 

the QL and EIO trunk muscles, and no effect was seen on the lower leg muscles. The 

findings may suggest the need to directly stimulate the trunk muscles or administering a 

higher dose of TRT to achieve reasonable changes in the size of the trunk muscles. 

Furthermore, applying and evaluating novel combinatory therapies is warranted given the 

heterogenous SCI population and the limited effectiveness of single therapies. Overall, these 

findings may help developing future exercise protocols that can be used to prevent pressure 
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injuries and increase muscle size, thereby improving muscle quality and overall cardio-

metabolic health in persons with SCI.
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Figure 1: 
Representative MRI images of the analyzed muscle groups which include: gluteus maxumus 

(1A), gluteus minimus (2A), total glutei (B), erector spinae (1C), multifidus (2C), quadratus 

lumborum (3C), iliopsoas (4C), rectus abdominus (5C), external and internal obliques (6C), 

tibialis anterior (1D), soleus (2D), gastrocnemius (3D) and total leg muscles (D).
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Figure 2: 
The mean ± SD of total and absolute gluteus maxiumus (A,B), minimus (C,D) and total 

muscle (E,F) CSA for the TRT+RT and the TRT only group during BL and PI. * significant 

change in muscle CSA at P< 0.05.
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Table 1:

Participants’ physical and SCI characteristics for the TRT+RT and TRT groups. Values are presented as means 

± SD.

TRT+RT (n = 11) TRT (n = 11)

Age (years) 37±12 35±8

Height (m)- BL 1.8±7 1.8±5

Height (m)- PI 1.8±7 1.8±5

Weight (kg)- BL 80.5±16 77.6±10

Weight (kg)- PI 83.1±16 78.8±10

BMI (kg/m2)- BL 25±4.5 24.0±3.4

BMI (kg/m2)- PI 25±4.7 24.0±3.4

LOI C5-T11 C6-T11

TSI (years) 10±9 7±6

ISNCSCI Classification A (n=8)
B (n=3)

A (n=8)
B (n=3)

BL: baseline (immediately prior to 16-week interventions); BMI: body mass index; ISNCSCI: International Standards for Neurological 
Classification of Spinal Cord Injury; LOI: level of injury; PI: post-intervention; RT: resistance training; TSI: time since injury. There were no 
statistical differences in physical and SCI characteristics between groups at baseline.
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