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Abstract

COVID‐19 has been proposed to be an endothelial disease, as endothelial

damage and oxidative stress contribute to its systemic inflammatory and

thrombotic events. Polyphenols, natural antioxidant compounds appear as

promising agents to prevent and treat COVID‐19. Polyphenols bind and inhibit

the F1Fo‐ATP synthase rotary catalysis. An early target of polyphenols may be

the ectopic F1Fo‐ATP synthase expressed on the endothelial plasma membrane.

Among the pleiotropic beneficial action of polyphenols in COVID‐19,
modulation of the ecto‐F1Fo‐ATP synthase, lowering the oxidative stress

produced by the electron transfer chain coupled to it, would not be negligible.
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The novel β‐coronavirus SARS‐CoV‐2 emerged in
December 2019 was recognized as a pandemic on March
11, 2020, by the World Health Organization (WHO).1 As
of May 6, 2022, 513 955 910 confirmed cases of COVID‐
19, including 6 249 700 deaths, of COVID‐19 have been
reported worldwide.2 The availability of effective vac-
cines based on different platforms worldwide has
changed the COVID‐19 scenery,3 although there is
concern about novel variants and waning of protection
over time.4

Systemic inflammation, endothelial damage, and
abnormal coagulation are the hallmarks of the novel
coronavirus infectious disease COVID‐19.5 COVID‐19 is
an acute respiratory disease; however, many severe cases
develop life‐threatening multiorgan dysfunction that may
not transition from the pulmonary infection.6 COVID‐19
is associated with an increased risk of arterial and venous
thromboembolic events in critically ill patients.7,8 The
endothelial cell (EC) expressing the angiotensin‐
converting enzyme type 2 (ACE2), is a target of SARS‐

CoV‐2.9 Consistently, COVID‐19 has been proposed to be
an endothelial disease,10 where a vascular inflammation
would promote oxidative stress and thrombus forma-
tion.11 It has previously been proposed that an early EC
dysfunction in COVID‐19 may induce a pro‐oxidant
status.12 The expression of a functional F1Fo‐ATP
synthase (i.e., coupled to an electron transfer chain,
ETC) on the surface of ECs was reported.13–16 It was
supposed that in COVID‐19, the virus would damage the
EC plasma membrane, as well as the proteins therein
expressed. An impairment of the ETC ectopically
residing on the EC membrane would produce reactive
oxygen species (ROS), in turn priming the EC to acquire
a pro‐inflammatory and prothrombotic phenotype.12 In
fact, the ETC is a major ROS producer.17

The F1Fo‐ATP synthase (ATP synthase, or Complex V)
is the nanomotor that produces the bulk of cell ATP in the
presence of a proton gradient generated by the ETC, by a
rotary mechanism.18 It is expressed not only on the inner
mitochondrial membrane but also in ectopic locations,19
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among which neuronal surface,20 photoreceptor outer
segment,21 and cell plasma membranes.22–24

Polyphenols are a large group of bioactive natural
phytochemicals, divided into multiple subclasses,25

known for their antioxidant, anti‐inflammatory, and
immunomodulatory properties.26,27 Notably, it was dem-
onstrated by X‐ray crystallography that polyphenols such
as resveratrol, quercetin, and piceatannol bind the
mitochondrial F1Fo‐ATP synthase, specifically targeting
a hydrophobic pocket between the gamma and beta
subunits of its F1 catalytic domain, as shown in Figure 1
inhibiting its rotary catalysis,28 consistently with previ-
ous biochemical data.29 Table in Figure 1 reports the
IC50 values for six polyphenols assayed by three different
studies.30–32

Several papers reported that polyphenols inhibit the
catalytic activity of the F1Fo‐ATP synthase.28,31–33 In a
model of ecto‐F1Fo‐ATP synthase expression, inhibition
by polyphenols lowered the ROS production by the ETC
coupled to it.34,35 The inhibition of the EC ecto‐F1Fo‐ATP
synthase by angiostatin was proven to bear antiangio-
genic effects.16

Evidence supports the potential applicability of poly-
phenols in the prevention and treatment of COVID‐19,36

due to their antioxidant, anti‐inflammatory, and potential
antiviral properties.37–41 Moreover, some polyphenols, have
been recently approved in clinical trials for COVID‐19
prevention and/or therapy.41,42 Quercetin has been exten-
sively studied for the treatment of COVID‐19 patients.43–48

An overlap between resveratrol targets and SARS‐CoV‐2
differentially expressed genes was demonstrated.49 The use
of green tea polyphenols in the management of COVID‐19
has been also proposed.50 On the other hand, it has been
observed that current COVID‐19 treatments can potentially
cause nutrition‐drug interactions, negatively affecting

nutritional status also by acting on the intestinal micro-
biota, in turn partly responsible for the metabolism of
polyphenols in turn affecting their availability.51

Even though polyphenols are antioxidants, and their
scavenging ability can directly lower ROS levels, modu-
lation of the F1Fo‐ATP‐synthase rotary catalysis by
polyphenols may not be negligible when considering
the overall beneficial action of these natural compounds
in COVID‐19. It is tempting to suppose that polyphenols
could modulate the ecto‐F1Fo‐ATP synthase expressed
onto the EC plasma‐membrane in case of dysfunction
due to the SARS‐CoV‐2 binding to it. This, in turn, would
lower the ROS production by the imbalanced ecto‐ETC
being coupled to the F1Fo‐ATP synthase. Evidence
indicates that ROS damage plays a critical role in
COVID‐19.52 This would be one of the pleiotropic
positive actions53 polyphenols exert on COVID‐19, and
notably the earliest, as it would occur in the blood, where
bioavailability is optimal. Since the ETC is a major
producer of ROS, modulating the F1Fo‐ATP synthase
would hamper the vascular luminal oxidative stress, the
ultimate trigger of the inflammation and thrombus
formation in COVID‐19. Notably, the inhibition of the
ecto‐ F1Fo‐ATP synthase would also lower the concen-
tration of the extracellular ATP, thus limiting the
activation of the P2 purinergic receptors, among which
P2X7, key mediators of the vast array of biological effects,
among which the pro‐inflammatory and pro‐thrombotic
ones.54 The hypothesis presented here, may help in
expanding the mechanism by which polyphenols can
modulate SARS‐CoV‐2 pathogenic actions.
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FIGURE 1 Crystal structure of the bovine mitochondrial F1Fo‐ATP synthetase inhibited by resveratrol as solved by X‐ray crystallography
by Gledhill et al.,28 retrieved searching the term 2JIZ on the PDB database. In the zoom on the binding site, the interactions between the
macromolecule and the ligand are visible as dashed lines, blue dashed lines are hydrogen bonds, whereas the orange dashed line is a cation‐pi
interaction between the resveratrol and Lys260 on the Gamma chain (A). Table showing the IC50 for six polyphenols assayed by three different
studies for their inhibitory effects on ATP synthase (B).
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