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Abstract

Background: Many gram-negative bacteria use type Ill secretion systems (T3SSs) to translocate effector proteins into
host cells. T3SS effectors can give some bacteria a competitive edge over others within the same environment and
can help bacteria to invade the host cells and allow them to multiply rapidly within the host. Therefore, developing
efficient methods to identify effectors scattered in bacterial genomes can lead to a better understanding of
host-pathogen interactions and ultimately to important medical and biotechnological applications.

Results: We used 21 genomic and proteomic attributes to create a precise and reliable T3SS effector prediction
method called Genome Search for Effectors Tool (GenSET). Five machine learning algorithms were trained on effectors
selected from different organisms and a trained (voting) algorithm was then applied to identify other effectors present
in the genome testing sets from the same (GenSET Phase 1) or different (GenSET Phase 2) organism. Although a select
group of attributes that included the codon adaptation index, probability of expression in inclusion bodies, N-terminal
disorder, and G + C content (filtered) were better at discriminating between positive and negative sets, algorithm
performance was better when all 21 attributes (unfiltered) were used. Performance scores (sensitivity, specificity and
area under the curve) from GenSET Phase 1 were better than those reported for six published methods. More
importantly, GenSET Phase 1 ranked more known effectors (70.3%) in the top 40 ranked proteins and predicted
10-80% more effectors than three available programs in three of the four organisms tested. GenSET Phase 2 predicted
43.8% effectors in the top 40 ranked proteins when tested on four related or unrelated organisms. The lower
prediction rates from GenSET Phase 2 may be due to the presence of different translocation signals in effectors from
different T3SS families.

Conclusions: The species-specific GenSET Phase 1 method offers an alternative approach to T3SS effector prediction
that can be used with other published programs to improve effector predictions. Additionally, our approach can be
applied to predict effectors of other secretion systems as long as these effectors have translocation signals embedded
in their sequences.
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Background

Many gram-negative bacteria possess contact-dependent
type III secretion systems (T3SSs) that translocate di-
verse effector proteins from the bacterial cytosol into
host cells [1, 2]. Effectors secreted by T3SSs play essen-
tial roles in the host-pathogen interactions by mimicking
host proteins in structure and function, and by suppress-
ing the host innate immunity [3]. Since effectors are
crucial to the virulence of pathogenic bacteria, identify-
ing and characterizing effectors is critical to our under-
standing and prevention of animal and plant diseases.

Improved sequencing technologies and the exponential
growth in genomic and proteomic databases have opened
up new and faster ways to identify and characterize effec-
tors [4, 5]. Use of computational approaches to accurately
predict novel effectors scattered in the genomes of T3SS-
containing bacteria is an exciting area of research [4, 6].
Machine learning is an area of Artificial Intelligence in
which computer programs are used to identify patterns
and distinguish between different classes of objects result-
ing in phylogenetic tree construction, protein function
prediction, and recognition of translocation signals in
effectors [4, 7, 8].

Researchers have used homology sequence compari-
sons and machine learning algorithms to identify novel
effectors in genomes from unannotated nucleotide and
peptide sequences [4, 9]. However, designing a predic-
tion program is difficult because effector features or at-
tributes have not been well defined [4, 6]. One of the
earliest effector prediction software programs, Effecti-
veT3, analyzed amino acid composition and secondary
structure properties in the N-terminus of effectors and
was used to predict effectors from several animal and
plant pathogens [10]. Subsequent in silico approaches
such as T3SEpre, SIEVE, and BPBAac have used machine
learning to train algorithms on features such as G+C
content, protein solvent accessibility, and position prefer-
ence of the N-terminus amino acids [11-13]. These
methods used T3SS effectors from unrelated genomes to
generate the positive data sets. Although each of these
methods identified putative effectors, the methods are
not effectively and efficiently applicable across differ-
ent bacterial species and are difficult to customize to
a specific species.

In contrast to the other methods, Sato et al. [14] de-
veloped a meta-analytical approach to predict effectors
from features derived from two genome sequences
through machine learning. The resulting effectors were
further enriched by secondary filters such as co-
expression analysis. This program performed better than
the BPBAac, SIEVE, and EffectiveT3 methods in predict-
ing T3SS effectors in Salmonella enterica serovar Typhi-
murium (S. Typhimurium). Although Sato’s program
had good predictive power, the program did not show
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significant improvements in accuracy. We propose that
new and increased attribute combinations, together with
a refinement of the positive set composition, can lead to
the development of an even more accurate program.
Additionally, it is necessary to develop a program that
can be customized to different bacterial genomes for
species-specific effector predictions.

We used a comprehensive list of 21 effector attributes
(Table 1) to establish an effective machine learning
method of predicting T3SS effectors called Genome
Search for Effectors Tool (GenSET). In GenSET Phase 1,
we used known effector and non-effector sequences
from one bacterium to train five machine learning algo-
rithms. A voting (trained) algorithm was then applied to
predict effectors included in the testing set. This ap-
proach was species-specific and was successfully applied
to the genomes of four different organisms. In GenSET
Phase 2, we trained the five algorithms on a combined
list of known effectors and non-effectors from two re-
lated bacteria with well-studied T3SS effectors, namely
S. Typhimurium and Shigella dysenteriae. The voting al-
gorithm was then used to predict effector sequences in
the genomes of four different bacteria that were not used
in the original training. The GenSET Phase 1 approach
improves effector prediction for any species, is easy to
apply, and can be used in well-studied as well as less-
studied bacteria. The resulting candidates can then be
tested further in wet bench experimental validation. The
GenSET Phase 2 approach can be used to predict T3SS
effectors in less studied organisms albeit with low pre-
diction rates that may be explained by the presence of
different families of T3SSs in different organisms.

Table 1 A summary of all 21 attributes used in the project

Program Attribute Full length or
N3o region
Pepstats® Peptide properties: tiny, small, aliphatic, N3 region
aromatic, polar, non-polar, charged,
basic, acidic
Molecular weight
Charge Full length
Asgo Molar extinction coefficient N5 region
Asgo Molar extinction coefficient N3 region
(1 mg/ml) Nso region
Probability of expression in inclusion N3 region
bodies (PEPIB)
CAPF Codon adaption index Full length
ProtParam®  Isoelectric point Full length
Instability index N3 region
Aliphatic index Nso region
GRAVY Score N3o region
POODLE-S* N-terminal disorder (N3 disorder) N3 region
This study G+ C content Full length

Web links of the above programs
®http://emboss.sourceforge.net/
Phttp://web.expasy.org/protparam/
‘www.cbrc.jp/cbrc-software
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Results

Attribute selection

GenSET Phase 1 generated data sets based on the ge-
nomes of the four test organisms (Fig. 1). All 21 attri-
butes were used to set up a data set for machine
learning called the unfiltered set (Table 1). At the same
time, attributes that gave a good separation between the
positive set and the negative set were used in the filtered
set. In GenSET Phase 1, four attributes gave good separ-
ation between the positive and negative sets were se-
lected for each organism, except for Pseudomonas
syringae where eight attributes gave good separation and
were selected using WEKA (Table 2; Additional file 1).
The filtered set included at least three out of the four at-
tributes (PEPIB, CAI, N3, disorder, and G + C content)
for each organism. In GenSET Phase 2, eight attributes
(aliphatic, acidic, PEPIB, instability index, molecular
weight, CAIL, G + C content, and N3, disorder) were se-
lected for the filtered set. The means and standard devia-
tions, for each attribute, were calculated and the values of
the positive and negative sets compared. In general, the
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Fig. 1 An Overview of GenSET Phase 1 selection of the training and
testing sets for T3SS effector prediction. Protein or nucleotide
sequences from each genome were grouped into three categories
that included (i) all known T3SS effectors, (i) non-effectors including
non-T3SS annotated proteins, and (iii) all unannotated hypothetical
proteins including all T3SS-related proteins. Fifteen randomly picked
effectors (E. coli, S. dysenteriae, and S. Typhimurium) or 21 effectors
(P. syringae) from (i) became the positive set. The negative training
set was 10-fold larger group of non-effector randomly selected from
(i) of the same genome. GenSET was trained on the positive and
negative sets (training set) using unfiltered attributes and filtered
attributes and then applied to all remaining sequences of the whole
genome (testing set)
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Table 2 Statistical analysis of attributes chosen by the feature
selection methods for the four organisms. Four attributes (PEPIB,
CAl, N3, disorder, and G + C content) out of the 21 appeared in
at least three of the four organisms tested. Actual values for all
attributes are given in Additional file 1)

Organism Attribute Positive set Negative set
Average  SD° Average SD

E. coli Non-Polar 48.67 8.89 5842 1070
PEPIB 0.86 0.07 0.77 0.14
CAl 0.58 0.02 0.71 0.06
Nsq disorder 053 0.1 0.38 0.13

P. syringae Tiny 41.11 945 3032 9.09
Charge® 0.93 1.25 0.60 240
pl® 7.74 142 6.71 1.76
PEPIB 0.90 0.11 0.74 0.16
Aliphatic index 61.19 1833 10096 3215
CAl 0.51 0.06 0.68 0.07
G+ C content 51.62 5.77 59.04 391
Nsq disorder 0.67 0.07 041 0.14

S. dysenteriae Non-Polar 4511 9.07 5609  10.01
Tiny® 24.22 10.87 29.16 9.29
G+ C content 3462 1.80 51.65 3.70
Nsq disorder 047 0.12 022 0.13

S. Typhimurium  PEPIB 0.88 0.12 0.74 0.21
Instability index 6521 2255 3843 2254
CAl 0.58 0.04 0.69 0.05
G+ C content 43.99 6.18 52.18 574

Attributes that are not statistically different between the positive and
negative sets
PSD standard deviation

statistical analysis of the attributes correlated with the fea-
ture selection programs used in this study (Table 2).

The five attributes that gave good discrimination
between positive and negative sets in the four test organ-
isms for both GenSET Phase 1 and 2 included the non-
polar, PEPIB, CAI, N3, disorder and G + C content. All
effector proteins, except those for S. dysenteriae, had
N3o disorder average values above 0.50 for the positive
and below 0.50 for the negative sets, respectively
(Table 2, Additional file 1). Values above 0.50 represent
disordered regions [15]. The positive set for S. dysenter-
iae had values below the disorder threshold, but it
should be noted that the average values for the negative
sets were also significantly lower than those calculated
for other organisms. Although some workers have re-
ported prediction of T3SS effectors based on the N-
terminal disorder [15], this feature is rarely used in the
literature. Attributes utilizing the nucleotide sequences,
CAI and/or G + C content, gave positive and negative set
values that were statistically different in all organisms.
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Similarly, two attributes that utilized protein sequences,
non-polar and/or PEPIB values, also gave positive and
negative set values that were statistically different in the
four organisms (Table 2).

Algorithm performance

Algorithm performance was evaluated by calculating the
TPR, SPC, PPV, and AUC values (Table 3, Additional file
2). Generally, algorithm performance was slightly better
with unfiltered rather than with filtered attributes.
Therefore, the unfiltered attribute values were used in
subsequent analyses for both Phase 1 and 2. AUC is a
general bench mark for algorithm performance and our
AUC scores for all algorithms were high in Phase 1
(above 0.900 for most organisms) except for SVM which
gave AUC scores below 0.750 for S. Typhimurium
(Additional file 2). We were most concerned with the
sensitivity (TPR) of the methods since this measured
whether or not the algorithms would be able to pick out
effectors from the genomic haystack. Excellent TPR
values (1.000) were recorded for three organisms in
Phase 1 (S. Typhimurium, S. dysenteriae, and Escherichia
coli) whereas a value of 0.750 was recorded for P. syrin-
gae. Specificity (SPC) values were also very good for all

Table 3 Average performance of the algorithms on the four
organisms using unfiltered (U) and filtered (F) attributes. The
PPV (positive predictive value or precision), TPR (True positive
rate or sensitivity), SPC (specificity or true negative rate), and
AUC (area under the curve) values were calculated using the
trained (voting) algorithm (actual values for all algorithms are
given in Additional file 2)

GenSET  Organism/Attributes® PPV TPR SPC AUC
Phase 1 E. coli u 0.068 1.000 0.980 0.998
F 0.082 1.000 0.984 0.993

P. syringae u 0300 0750  0.989 0.988

F 0520 0.542 0.997 0.970

S. dysenteriae u 0.086 1.000 0984  0.999

F 0.106 1000 0987 0997

S. Typhimurium u 0.025 1.000 0.962 0.987

F 0.022 1.000 0.956 0.984

Phase 2 E coli U 0112 0950 0957 0980
F 0132 0800 0970 0979

Y. pestis u 0429 0273 0.999 0.943

F 0000 0000 0999 0882

P. syringae u 0330 0800 0982 0981

F 0337 0711 0.984 0.976

S. fredii U 0364 0444 0998 0967

F 0000 0000 0999 0955

“The voting algorithm used unfiltered (U) attributes (utilize all 21 attributes)
and filtered (F) attributes (utilizing a subset of attributes selected by the
feature selection methods)
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organisms tested in Phase 1 and ranged from 0.962 to
0.989; SPC measures the algorithms ability to correctly
predict non-effector proteins. Precision values (PPV) on
the other hand were low (ranging from 0.025 to 0.300).
Further fine-tuning or optimization of the algorithm pa-
rameters can be done later to increase precision. In gen-
eral, GenSET Phase 1 algorithms performed very well on
all four organisms, as indicated by high TPR, SPC, and
AUC scores. The bigger positive training set (21) in P.
syringae had similar or lower performance values when
compared to those in other organisms where smaller
positive training sets (15) were used (Table 3).

The Phase 2 scores of the four organisms for AUC
(0.943-0.981) and SPC (0.957-0.999) were comparable
to the values observed in Phase 1, but the scores for
TPR (0.273-0.950) were lower than those from Phase 1
(Table 3). On the other hand, the scores for PPV (0.107-
0.429) were mostly higher than those from Phase 1. PPV
and TPR scores of zero were recorded for Yersinia pestis
and Sinorhizobium fredii using the filtered attributes.
These results further suggest that the voting algorithm
performed better on unfiltered attributes than on filtered
attributes. In general, the voting algorithm was able to
give a good indication of the average performance of al-
gorithms for the organisms in both Phase 1 and 2.

GenSET Phase 1 performance and effector predictions
The ability of the algorithms to correctly predict known
effectors from the testing set was evaluated using filtered
and unfiltered attributes (Table 4 and Additional file 3).
Using unfiltered attributes for the four bacteria, GenSET
Phase 1 correctly identified 53.3-88.9% (average: 70.3%)
of the known effectors in the top 40 positive prediction
for each organism: P. syringae (53.3%), S. dysenteriae
(55.6%), E. coli (83.3%), and S. Typhimurium (88.9%).
The overall prediction averaged 78.6% for the unfiltered
attributes (Table 4). The bigger positive training set in P.
syringae had similar or lower effector prediction rates
when compared to those in other organisms where
smaller positive training sets were used (Table 4).

GenSET Phase 2 performance and effector predictions

During optimization of attribute selection, it was ob-
served that S. dysenteriae and S. Typhimurium had only
one overlap (G + C content) in their selected attributes
(Table 2). However, the combined attributes from the
two organisms (training) had a decent overlap in the se-
lected attributes for the testing organisms such as E. coli,
and P syringae. Thus, effectors of S. dysenteriae and S.
Typhimurium were used for Phase 2 machine learning
before applying the trained algorithms to four other or-
ganisms. This approach was successful in ranking 66.7
and 39.2% of effectors in the top 40 prediction in E. coli,
and P. syringae respectively (Table 4). We extended the
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Table 4 GenSET prediction of known effectors that were
included in the testing set. The number of known effector (and
percentage) in the top 40 proteins candidates and the overall
prediction by GenSET are shown (see Additional file 3 for all top
40 proteins predicted to be T3SS effectors)

GenSET Organism Unfiltered set Filtered set
Top 40 Overall® Top 40 Overall
Phase 1 E coli 5/6°  5/6 4/6 5/6
(83.3%) (83.3%) (66.7%) (83.3%)
P. syringae 16/30  16/30 13/30  13/30
(533%) (533%) (433%) (43.3%)
S. dysenteriae 5/9 8/9 5/9 5/9
(55.6%) (889%) (55.6%) (55.6%)
S. Typhimurium  8/9 8/9 6/9 6/9
(SPI-2) (889%) (889%) (66.6%) (66.6%)
Phase 1 All organisms 703% 786%  581%  622%
Average®
Phase 2 E. coli 14/21 19/21 12/21 16/21
(66.7%) (90.5%) (57.1%) (76.2%)
Y. pestis 2/8 2/8 0/8 0/8
(25%)  (25%)  (0%) (0%)
P. syringae 20/51 36/51 20/51 32/51
(392%) (70.6%) (39.2%) (62.7%)
S. fredii 4/9 4/9 0/9 0/9
(444%) (444%) (0%)  (0%)
Phase 2 Average All organisms 438%  576%  241%  347%

?Average scores were calculated by averaging the unfiltered and filtered
percent values of the four organisms

PEffector prediction rates were calculated by the number of effectors in the
top 40 positive prediction over the total number of known effectors in the
testing set

“Overall denotes all confirmed effectors proteins that were predicted to be
effectors with true probabilities > 0.5

prediction to two other less-studied bacteria, namely Y.
pestis and S. fredii, and ranked 25 and 44.4% respect-
ively, in the top 40 positive prediction (Table 4 and
Additional file 3) using unfiltered attributes. Overall, the
prediction rate for GenSET Phase 2 averaged at 43.8%
for the top 40 prediction for all four organisms and
57.6% for the overall prediction using unfiltered attri-
butes. No effectors were ranked in the top 40 positive
predictions for Y. pestis and S. fredii for the filtered attri-
butes (Table 4 and Additional file 3). In general, GenSET
Phase 1 had better top 40 prediction accuracy than
Phase 2 for E. coli and P. syringae (Table 4).

GenSET compared to other programs

The performance of GenSET Phase 1 and Phase 2 was
compared to self-reported performances of six other
existing effector identification programs (Table 5). The
GenSET Phase 1 top 40 positive prediction values on the
four organisms were also compared to those of the dif-
ferent programs on the same four organisms used in this
study (Table 6). GenSET Phase 1 performed better in
sensitivity (TPR), specificity (SPC), and area under the
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Table 5 GenSET performance was compare to six other
machine learning programs using the average TPR (sensitivity),
SPC (specificity), and AUC (area under the curve) values
obtained with unfiltered attributes from the four organisms.
GenSET 1 performed better than the other six programs in all
areas whereas GenSET 2 gave better specificities

Program TPR SPC AUC Reference
EffectiveT3 ~0.710 ~0.850 0.85-0.86 [10]
T3MM ~0.839 ~0.903 N/AC [16]
SIEVE 09 088 0.95-0.96 [11
BPBAac ~0910 ~0.974 0.989 [12]
T3SEpre 0.927 0.945 N/A [13]
Meta-analytic ~0.90 ~0.90 0.993 [14]
GenSET 1° 0.938° 0.979 0.993 This study
GenSET 2 0617 0.984 0.968 This study

2GenSET 1 and GenSET 2 denote average results from Phase 1 and Phase
2 respectively

PBold number denotes the highest value in a given column

“N/A Not applicable or not available

curve (AUC) values when compared to the six published
programs (Table 5). GenSET Phase 2 performed better
than GenSET Phase 1 with respect to SPC values but
had slightly lower TPR and AUC values. More import-
antly, GenSET performed better than other programs in
predicting many more T3SS effectors (Table 6). Among
the six published programs listed in Table 5, only Effecti-
veT3, T3MM, and BPBAac were available or accessible.
Protein sequences of the proteomes of S. dysenteriae, E.
coli, P. syringae, and S. Typhimuirium were keyed into the
above programs separately to obtain the top 40 positive
prediction (Table 6 and Additional file 4). For the scoring
of effector prediction, we only included “true effector” and
did not count other T3SS proteins such as apparatus and
translocon proteins as effectors. GenSET Phase 1 had
higher effector prediction rates than the three established
programs for E. coli (by 26% compared to the closest pro-
gram), P. syringae (by 14%) and S. Typhimurium (by 59%
for SPI-2 effectors). In the case of S. dysenteriae, our re-
sults were better than those from EffectiveT3 and BPBAac
but were lower than those from T3MM (by 7%). Further,
the GenSET method is T3SS family specific in that
GenSET Phase 1 predicted more SPI-2 effectors than SPI-
1 effectors when compared to the other methods (Table 6).
In conclusion, our GenSET Phase 1 method offers an al-
ternative approach for T3SS effector prediction and was
proven to predict more effectors than some other estab-
lished programs. We have included a step by step proced-
ure for researchers to check the accuracy of the method
for their target organisms (Additional file 5).

Discussion
This study served as a proof of concept for the GenSET
method for accurate T3SS effector prediction. We used
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Table 6 GenSET 1 T3SS effector prediction on four organisms were compared to three other available machine learning programs.
GenSET 1 performed better than other programs in three out of the four organisms tested except for S. dysenteriae (see Additional

files 3 and 4 for the actual data)

Top 40 positive prediction out of total confirmed effectors

Program? S. dysenteriae E. coli P. syringae S. Typhimurium
EffectiveT3 7/24 (29.2%) 11/21 (52.4%) 9/51 (17.7%) 2/24 (83%)°
1/8 (12.5%)°
T3MM 15/24 (62.5%)¢ 5/21 (23.8%) 21/51 (41.2%) 4/24 (16.7%)d
5/8 (62.5%)"
BPBAac 13/24 (54.2%) 12/21 (57.1%) 20/51 (39.2%) 7/24 (292%)d
6/8 (75.0%)°
GenSET 1P 5/9 (55.6%) 5/6 (83.3%) 16/30 (53.3%) 8/9 (88.9%)d

4/8 (50%)°

?Other programs namely SIEVE, T3SEpre, and Meta-analytic were not available or accessible at the time of investigation
PFor the GenSET 1 method, 15 or 21 effectors were taken out from the total effectors as the positive data sets. Thus, the totals were less in numbers when

compared to others

“Bold number denotes the highest value in a given column
%Top 40 positive prediction for SPI-2 effectors

“Top 40 positive prediction for SPI-1 effectors

a wide range of effector attributes to build predictive
models through machine learning that could identify dif-
ferences between effector and non-effector data sets. In
GenSET Phase 1, our approach significantly increased ef-
fector prediction accuracy for the majority of species tested
(3 out of 4) (Tables 4 and 6). The method predicted 10 to
80% more effectors in the top 40 proteins than the other
established methods in three out of four test organisms
(Table 6). The method was customized to four specific or-
ganisms and can be applied to other organisms to predict
effectors in individual genomes. The GenSET method can
therefore reduce the number of labor-intensive wet-lab val-
idation experiments for effector prediction.

In GenSET Phase 1, we used 15 effectors for E. coli, S.
dysenteriae, and S. Typhimurium or 21 effectors for P.
syringae for the machine learning; whereas, in GenSET
Phase 2, we used 30 effectors (15 each) from two related
organisms in the family of Enterobacteriaceae. A bigger
positive training set did not improve the performance
values (Table 3) or the prediction rate (Table 4) when
compared smaller positive training sets. Thus, the mini-
mum number for the positive set could be set at 15 ef-
fectors. The strength of our GenSET method is in the
use of a smaller positive sets such as 15 confirmed effec-
tors for Phase 1 and 30 for Phase 2, and the potential to
customize the method for species-specific prediction in
any genome. In contrast, other published programs such
as BPBAac [12], T3MM [16] and EffectiveT3 [10], used a
pool of heterogeneous effectors from many genomes to
construct their positive sets. These genomes were from
phylogenetically diverse organisms with different T3SSs
families that prevented the customization of the pooled
effector data set for species-specific predictions.

Seven different families of T3SSs in gram-negative bac-
teria have been proposed based on the phylogram of
ATPases. The families include SPI-1 and SPI-2 in S

Typhimurium, Ysc in Y. pestis, Hrp 1 in P. syringae, Hrp 2
in Xanthomonas campestris, chlamydiales and rhizobiales
[17, 18]. These T3SS families may have different transloca-
tion signals embedded in their respective effectors. One
problem arising from combining effectors from different
families of T3SSs to create a generic classifier for machine
learning is that different effectors may emphasize different
attributes and this may introduce a strong bias into the
classifier and reduce the performance of generic effector
prediction algorithms when applied to specific organisms.
For example. Sato et al. [14] defined the training set with
effectors from single genomes of two organisms, S. Typhi-
murium and P. syringae. One disadvantage to this
approach was that the SVM machine learning was per-
formed on one organism and then applied to another un-
related organism for effector prediction. Similarly, Yang et
al. [19] based their classifier training on P. syringae and
then applied the method to rhizobial strains. Different ef-
fectors from different families of T3SSs may have different
translocation signals. Therefore, combining effectors from
unrelated organisms in machine learning may reduce pre-
diction rates. The species-specific approach used in Gen-
SET Phase 1 eliminates these biases and improves T3SS
effector prediction in individual species. Indeed, our Gen-
SET Phase 1 had better prediction rates that ranked an
average of 70.3% of effectors in the top 40 positive predic-
tion and 78.6% of the effectors overall (Table 4). These
prediction rates were 10 to 80% better than other estab-
lished methods on three out of the four organisms tested
(Table 6). Although Yang et al. [19] pooled effectors from
three different strains of the same species of P. syringae to
make the positive set homogenous, the trained algorism
was applied to unrelated species or families of T3SSs. In-
deed, a trained algorithm called TREEE based on machine
learning on P. syringae performed poorly when applied to
S. Typhimurium [20].
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Additionally, the mixing of two different types of T3SS
effectors in the training set, such as SPI-1 and SPI-2 of
S. Typhimurium, may have reduced the performance of
the SVM training by Sato et al. [14]. In the GenSET
Phase 1 approach, our machine learning was not only
species- specific but also T3SS family-specific in order
to increase prediction accuracy. For example, our ma-
chine learning on S. Typhimurium was specific to SPI-2
family effectors and predicted 88.9% of known effectors
in the top 40 positive prediction (Table 4). GenSET was
thus successful in predicting effectors in a species-
specific manner as long as the organism had a minimum
size of known effector population, such as 15 effectors.
Our results strongly suggest that GenSET Phase 1 can
be customized to any organisms and we have success-
fully applied it to four organisms in this study.

In order to investigate the universal application of Gen-
SET to less-studied organisms with fewer identified effec-
tors, we combined positive sets from two closely related
organisms (S. Typhimurium and S. dysenteriae) in the Gen-
SET Phase 2 and then applied the algorithm to E. coli, P.
syringae, Y. pestis and S. fredii. It should be noted that E.
coli belongs to the same T3SS family as the Salmonella spe-
cies used to construct the training set whereas P. syringae,
Y. pestis and S. fredii belong to different families of T3SSs
[17, 18]. This may explain why the top 40 positive predic-
tion rates and sensitivity values for the other three organ-
isms were lower than those observed for E. coli (Tables 3
and 4). The lower sensitivity values suggest slightly different
translocation signals in the training and testing data sets.
However, these prediction rates are significant for an initial
screening tool to reduce the down time spent in wet bench
experiments for T3SS effector identification.

The GenSET Phase 1 approach had the highest predic-
tion accuracy, was T3SS family-specific, and has poten-
tial to be universally applicable to any organisms. Some
of the effectors of S. Typhimurium can be translocated
using both SPI-1 and SPI-2 apparatuses [21]. Therefore,
it was not surprising to see SPI-1 effectors identified
using a SPI-2 specific machine learning in S. Typhimur-
ium in GenSET Phase 1. GenSET Phase 1 method pre-
dicted eight out of nine (89%) SPI-2 effectors in the top
40 positive prediction (Table 4). We also picked four out
of eight (50%) SPI-1 effectors in the top 40 positive pre-
diction (Additional files 3 and 4). Furthermore, our
method not only predicted effectors in less-studied or-
ganisms but was able to predict novel effectors in well-
studied organisms. For example, in the top 40 ranked
effector prediction from S. Typhimurium strain LT2 by
GenSET, we were able to pick out about 30 hypothetical
proteins. Some of these hypothetical proteins may be
novel effectors that await further characterization.

GenSET used five different algorithms and a voting
algorithm for machine learning on organisms with

Page 7 of 11

different effector population sizes and compositions of
positive sets. The use of the voting algorithm is advanta-
geous in that this can increase error tolerance. If one al-
gorithm is completely off target in its predictions and
the other four worked well, the averaging process re-
duces the impact of the poorly performing algorithms.
For example, the filtered SVM algorithm on S. Typh-
murium did not pick out any of the known effectors but
because the other algorithms picked out the effectors,
the voting algorithm ended up predicting them to be ef-
fectors (Additional file 3). In comparison, other pro-
grams only used one to three algorithms for the training.
For example, SVM was used for the meta-analytical ap-
proach [14], SIEVE [11] and BPBAac [12]. SVM, general-
ized linear model and RandomForest were used for the
T3MM by Wang et al. [16].

We started with 21 attributes (features) and employed
attribute selection methods to define a subset of attributes
called the filtered sets. Other published methods (i.e.
SIEVE and T3SEpre) concentrate on a few attributes, such
as G+ C content and amino acid composition [11, 13].
However, we prefer to use a comprehensive list of attri-
butes so that we can cover all the possible characteristics.
We looked at peptide property to understand their phy-
sico-chemical nature; this property has been well ex-
amined by other researchers [9-11]. We also examined
molecular weight, charge and pl as effectors are generally
small in size and have a charged residue bias [4]. Other
features used were related to the structures and envi-
ronments, and included stability of the protein using
aliphatic index and N-terminal disorder, solubility
measure (PEPIB), hydropathy values (GRAVY score),
and G + C gene content bias.

In general, the unfiltered sets performed better than the
filtered sets in all organisms. This feature possibly works
well for our species- and T3SS family-specific approach
and can be adaptable to other organisms. Possible future
directions to further improve this project will include
researching and evaluating additional attributes that can
be used in this method. The goal is to develop an exhaust-
ive list of attributes that can characterize translocation sig-
nals embedded in the effector sequences. Additionally, we
can fine-tune the parameters of the machine learning al-
gorithms in order to increase the precision and reduce the
number of false positive predictions. For example, we can
increase the length of N-terminal sequence from N3, to
N5o or longer as suggested by Wang et al. [13], or we can
increase the size of the training sets.

It is not clear to us why the unfiltered attribute sets
performed better than the filtered sets in general. One
possible explanation is that perhaps there are clusters of
effectors that are more related to each other than they
are to other effectors. Indeed effectors could be classified
and grouped under some common families [3]. If the



Hobbs et al. BMC Genomics (2016) 17:1048

majority of the effectors are inside such a relation clus-
ter, this would create a bias in the feature selection algo-
rithms in selecting attributes that pinpoint that relation
cluster. The use of the unfiltered set can cover more
such clusters and thus compensate for effectors that lie
outside that relationship clusters. Perhaps there are sev-
eral such relational clusters of effectors within the same
or in different organisms especially since about 30% of
each genome is still unannotated.

Conclusions

The GenSET Phase 1 approach is user-friendly, performs
efficiently and effectively when compared to other estab-
lished programs, and can be applied to any bacterium.
Third-party programs were used to produce data sets
and attribute analysis to allow biologists with little
computing background to predict effectors in bacteria
genomes. We have included a step by step approach for
setting up GenSET as supplementary information
(Additional file 5). This information can be customized
for other gram-negative organisms. With further refine-
ments, a software framework can be developed that
would turn the GenSET method into a single stand-
alone application for researchers to use. Future work on
GenSET Phase 2 will seek to improve the effector pre-
diction rate for the less studied organisms. Researchers
need to take into account the T3SS family to which the
organisms of interest belongs when developing predic-
tion algorithms. Perhaps we can setup seven different
trained algorithms for seven different families respect-
ively to increase the low prediction rate. Furthermore,
the GenSET approach can extended to predict other ef-
fectors in other secretion systems such as type IV
(T4SS) and type VI (T6SS) as long as there are specific
signals embedded in the effectors for machine learning.

Methods

Selected bacterial species and their effectors

The six gram-negative bacterial genomes chosen in this
study have a large number of well characterized T3SS ef-
fectors that made them ideal candidates for this bio-
informatics project [3, 5, 19-24]. The selected bacteria
have different habitats and included three food- or
water-borne pathogens belonging to the family of Entero-
bacteriaceae, one plant pathogens, one plant symbiont,
and one vector-borne animal pathogen. These bacterial
strains rely on T3SSs to infect host cells [19-24]. Charac-
terized effector sequences from these bacteria were re-
trieved from NCBI databases (http://www.ncbi.nlm.
nih.gov/). The lists of “true” effectors of these genomes
did not include known extracellular apparatus proteins
such as translocons and needle proteins for machine
learning (see Additional file 6 for the lists the effec-
tors used in this study). These true effector lists were
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also compared to recent literature to confirm their
identities [19-24].

E. coli O127:H6 strain E2348/69 is a food-borne
pathogen that infects intestinal walls in humans and
causes watery diarrhoea, vomiting, and fever. The 21
known T3SS effectors in this organism [23] were used
(15 effectors in the positive training set and six in the
testing set, Additional file 6). S. dysenteriae strain Sd197
spreads through contaminated food and water and tar-
gets the small intestines where it causes severe dysentery
and colitis. The 24 known T3SS effectors in this organ-
ism [22] were used (15 in positive training set and 9 in
testing set, Additional file 6). S. Typhimurium strain LT2
spreads through contaminated food and is the main
cause of gastroenteritis in humans and a typhoid-like
disease in mice. The bacterium has two different T3SSs,
namely SPI-1 and SPI-2. Our study focused on the SPI-2
system because it shares similarities with the T3SSs in E.
coli. The 24 known T3SS effectors (15 in positive train-
ing set and 9 in testing set, Additional file 6) that use
the SPI-2 apparatus for translocation were used; eight
other effectors use the SPI-1 apparatus for translocation
[21]. P. syringae pv. tomato strain DC3000 infects to-
mato plants. It forms bacterial specks on infected plants
and can lead to significant economic losses during to-
mato production. The 51 known T3SS effectors in this
organism [20] were used (21 in positive training set and
30 in testing set, Additional file 6). Y. pestis strain CO92
is the causative agent for the bubonic plague. The eight
identified T3SS effectors in Y. pestis [24] were used in
the testing set (Additional file 6). S. fredii strain NGR234
is a plant symbiont that supplies nitrogen in many plant
species. S. fredii uses T3SS for its symbiotic relationship
and the nine known effectors from the organism [19]
were used in the testing set (Additional file 6).

In this study, we took two approached to predicting
T3SS effectors in the genomes of organisms. In GenSET
Phase 1, our approach focused on developing an algorithm
that was species-specific and was applicable to organisms
with a large number of known T3SS effectors. The Gen-
SET Phase 2 approach focused on developing an algorithm
that could be used to predict effectors in less studied or-
ganisms, with a small number of known effectors.

Overview of Phase 1 GenSET
Protein or nucleic acid sequences were divided into three
categories: (I) all confirmed T3SS effectors, (II) all non-
effectors, including all non-T3SS related annotated pro-
teins, and (III) all unannotated hypothetical proteins or
nucleic acids (including all T3SS related proteins) (Fig. 1).
The positive and negative sets were randomly gener-
ated from the above three categories by a pseudo-
random process using the random.org web [25]. The
positive set was generated by randomly selecting 15 or
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21 effectors of the known effectors sequences from cat-
egory (I). The negative set was randomly generated by
selecting a 10-fold larger group than the positive set
from the non-effector and non-T3SS related annotated
sequences from category (II). The positive and negative
sets were called the training set. The testing set con-
tained all sequences not included in training set from
categories (I) and (II), together with all category (III) se-
quences (unannotated hypothetical and T3SS related se-
quences). The training set was used to train the machine
learning algorithms in GenSET. Five machine learning
algorithms were used on the two data sets from each or-
ganism. A trained algorithm (voting) was then applied to
the testing set to identify effectors (known and un-
known) in the testing set. We included known effectors
in the testing set to validate and to evaluate the perform-
ance of the algorithms.

The Waikato Environment for Knowledge Analysis
(WEKA) machine learning program was used to analyze
the data [26]. WEKA is a user friendly graphical work-
bench for machine learning that is targeted towards sci-
entific research. We used the feature selection method
in an attempt to generate more accurate attribute sub-
sets for classification (filtered set). Three main categories
of feature selection methods are available, the filter,
wrapper, and embedded methods [27, 28]. The filter and
wrapper methods were employed in this study. All 21
attributes were used as “unfiltered” set to measure
algorithm performance (Table 1). Feature selection
methods were then used to pick a subset of attributes as
the “filtered” set to measure algorithm performance.

Overview of Phase 2 GenSET

Phase 2 GenSET was similar to Phase 1 except we com-
bined effectors from two related organisms, S. Typhmiur-
ium and S. dysenteriae, for machine learning (Fig. 2) and
then applied the trained algorithm to other organisms not
used in the initial training. The positive set contained 30
known effectors randomly selected from the two organ-
isms (15 effectors each). The negative set was a 10-fold
larger than the positive set of randomly selected sequences
from the non-effectors sequences of the two organisms.
The testing set included all sequences in the testing organ-
ism’s genome, namely E. coli, S. fredii, Y. pestis, or P. syrin-
gae. The same 21 attributes used in Phase 1 were also
used in Phase 2 and the data reorganized to reflect the
new training and testing sets. Algorithm performances on
the “filtered” and “unfiltered” sets were also determined.

Protein and nucleotide attribute gathering

We used third-party applications to generate the gen-
omic and proteomic features (or attributes) data re-
quired for machine learning and classifications (Table 1).
Custom Perl and Bash scripts were created to automate
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Fig. 2 An Overview of GenSET Phase 2 selection of the training and
testing sets for T3SS effector prediction. The positive set comprised 30
known effectors (15 each from S. dysenteriae and S. Typhimurium).

The negative set was a 10-fold larger group of randomly selected
non-effectors from the two organisms. Machine learning was similar to
that in GenSET Phase 1 and used unfiltered and filtered attributes. The
trained algorithm was applied to the genome of a third organism for
T3SS effector prediction. The testing sets comprised all sequences in
the test organism’s genome (i.e. £. coli, Y. pestis, P. syringae, and S. fredii)

the submission and execution of these programs and to
parse the returned results. The BioPerl library was used
in many Perl scripts to handle the sequence operations
and manipulations [29]. We also created a program to
calculate the G + C content of nucleotide sequences.

The EMBOSS-Pepstats tool by the European Molecular
Biology Open Software Suite (http://emboss.sourceforge.
net/) was used to generate protein features. These in-
cluded: (i) peptide properties (molar-percent composition
of tiny, small, aliphatic, aromatic, polar, non-polar,
charged, basic, and acidic amino acids), (ii) molecular
weight, (iii) protein net charge, (iv) molar extinction coef-
ficient at 280 nm, and (v) the probability of protein ex-
pression in inclusion bodies (PEPIB) rather than cytosol.
The EMBOSS-CALI tool was used to generate the codon
adaptation index (CAI). The ProtParam tool from ExPASy
(Swiss Institute of Bioinformatics, http://web.expasy.org/
protparam/) was used to generate the physical and chem-
ical features: (i) isoelectric point, (ii) instability index, (iii)
aliphatic index, and (iv) grand average of hydropathicity
(GRAVY) score. POODLE-S tool developed by the
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Computational Biology Research Center in Japan
(www.cbrc.jp/cbrc-software) was used to calculate the
disorder values of the given protein sequence.

Algorithms used in this study

Five algorithms were used for the machine learning using
WEKA [26, 30]; for general information about the follow-
ing algorithms refer to Larranaga et al. [8] and Witten and
Frank [28]. (i) Bayesian Network, a probabilistic method
directed at acyclic graph models based on random vari-
ables and their conditional dependencies. This algorithm
is focused on attempting to minimize the cost of mis-
classification; (ii) Naive Bayes, a probabilistic model based
on random variables that assumes independence between
the variables and attempts to minimize the cost of mis-
classification; (iii) Logistic Regression, a statistical model
that measures the correlation between a dependent classi-
fier and one or more independent variables or attributes;
(iv) Multilayer Perceptron (MLP), a form of artificial
neural network algorithm that is good for data sets that
are difficult to linearly discriminate between two classes;
(v) Support Vector Machine (SVM), works by identifying
patterns in the classification groups in its vector space and
using these patterns to predict the classifications of un-
known points. The sixth algorism was a trained (or voting)
algorithm that averaged the probability given by the previ-
ous five algorithms for classifications.

Algorithm validation and performance

Two types of algorithm validation methods were used in
this study. The first was the 10-fold validation method
used during the algorithm training stage. In this method,
the training sample is divided into ten equal parts. One
part is reserved while the other nine are used to train the
algorithm. This process is repeated ten times, until each of
the ten parts is used for validation. The results from the
ten iterations are then combined into a single final model.
The second validation method was the holdout method
and was used during the testing stage [31]. In this method
a sub-set of known effectors is left out of the training stage
and is combined with the testing set. This gives perform-
ance feedback on how well the algorithm is able to identify
known positive instances that were not involved in its
training. Algorithm performance was based on calculated
sensitivity (true positive rate; TPR), specificity (true nega-
tive rate; SPC), precision (positive predictive value; PPV),
and area under the curve (AUC).

Additional files

Additional file 1: Statistical analysis of the 21 attributes for the four
organisms used in this studies. SD denotes standard deviation. Attribute
values that have statistically significant differences between the positive
and negative sets are highlighted. (XLSX 25 kb)
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Additional file 2: Algorithm performance of five organisms using the
filtered and unfiltered data sets for GenSET Phase 1 and Phase 2 studies.
(PPV: precision value; TPR: sensitivity; SPC: specificity; AUC: area under the
curve). (XLSX 1150 kb)

Additional file 3: Top 40 predictions of T3SS effectors for Phase 1 and
Phase 2 by GenSET. Each protein in the testing sets were given a value
(true probability) based on the training (voting) algorithm that takes the
average of the probabilities given by the five algorithms. The proteins
were then ranked based on size of the averaged true probability. Only
the top 40 proteins with scores of 0.5 and above are listed. (XLSX 15 kb)

Additional file 4: Comparison of top 40 predictions of T3SS effectors in S.
Typhimurium, E. coli, P. syringae, and S. dysenteriae by EffectiveT3, T3MM,
BPBAac, and GenSET 1. EffectiveT3 program was from Amold et al. 2009 [10];
T3MM program was from Wang et al, 2013 [16]; and BPBAac program was
from Wang et al, 2011 [12]; GenSET data was from this study. (XLSX 47 kb)

Additional file 5: A brief protocol on the setting up GenSET for T3SS
effector prediction customized for other gram-negative genomes.
(DOCX 40 kb)

Additional file 6: Positive (effectors), negative (non-effectors), and
testing sets of the five organisms that we used in the GenSET studies.
(ALL Tags denotes all proteins encoded in the genome; Positive Set
denotes known effector proteins used for training; Negative Set denotes
non-effector proteins used for training; Testing Set denotes all proteins in
the bacteria minus the Positive and Negative Sets; Positives in Testing Set
denotes known effector proteins included in the Testing Set). (XLSX 48 kb)
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AUC: Area under the curve; CAl: Codon adaptation index; GenSET: Genome
Search for Effectors Tool; GRAVY: Score for hydropathy value; MLP: Multilayer
perceptron; Nsq: First 30 amino acid at the N-terminal; PEPIB: Probability of
expression in inclusion bodies; PPV: Positive predictive value or precision; S.
Typhimurium: Salmonella enterica serovar Typhimurium; SD: Standard
deviation; SPC: True negative rate or specificity; SVM: Support vector
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algorithm: Average probability given by 5 algorithms, namely Naive Bayes,
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