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Anomalous isotope effect in  
iron-based superconductors
Wen-Min Huang1 & Hsiu-Hau Lin  2

The role of electron-phonon interactions in iron-based superconductor is currently under debate with 
conflicting experimental reports on the isotope effect. To address this important issue, we employ 
the renormalization-group method to investigate the competition between electron-electron and 
electron-phonon interactions in these materials. The renormalization-group analysis shows that the 
ground state is a phonon-dressed unconventional superconductor: the dominant electronic interactions 
account for pairing mechanism while electron-phonon interactions are subdominant. Because of the 
phonon dressing, the isotope effect of the critical temperature can be normal or reversed, depending 
on whether the retarded intra- or inter-band interactions are altered upon isotope substitutions. 
The connection between the anomalous isotope effect and the unconventional pairing symmetry is 
discussed at the end.

Superconductivity1–5 is a novel phenomenon of zero electric resistance in some materials when cooled below 
the characteristic critical temperature Tc. The magic arises from electron pairing in superconductors such that 
the low-energy excitations are described by an exotic quantum condensate without any dissipation. In conven-
tional superconductors, such as aluminium, the interactions between electrons and the lattice vibrations generate 
effective attraction and lead to electron pair formation. In quantum language, these vibrations can be treated as 
particle-like excitations named phonons. It is generally believed that the electron-phonon interactions explain the 
pairing mechanism for conventional superconductors.

On the contrary, the pairing mechanism of the unconventional superconductors, such as cuprates, seems to 
stem from the strong electron-electron interactions. Despite of intensive experimental and theoretical studies1,2 
in the past decades, there are still plenty of unsettled controversies about these unconventional superconduc-
tors. One of the most important issues is the interplay between the electron-electron and the electron-phonon 
interactions6–18. The recently discovered iron-based superconductors3–5,19–23 provide a unique testing ground to 
address this issue24–27. Gathered from theoretical and experimental investigations, the interaction strength in the 
iron-based superconductors is only weak to medium, rendering controlled theoretical understanding possible.

One of the checking points is the critical temperature of superconductivity upon isotope substitutions28–31. 
According to the Bardeen-Cooper-Schrieffer theory for the conventional superconductors, the critical tempera-
ture Tc is related to the mass of the isotope element M,

∼ α−T M , (1)c

where α is the exponent for the isotope effect. If the dominant interaction is electron-phonon in nature, theoret-
ical calculations give α = 1/2. In the extreme opposite, if the pairing is completely driven by electron-electron 
interactions, the critical temperature should not change with isotope substitutions and the corresponding expo-
nent is α ≈ 0. In realistic superconductors, we expect the isotope exponent to be in-between. Note that, in uncon-
ventional superconductors, the phonon-mediated interactions are insufficient to explain the pairing mechanism 
and it is of crucial importance to study the interplay between electron-electron and electron-phonon interac-
tions24–27. For instance, even when the pairing mechanism is electronic origin, dispersions observed in 
angle-resolved photoemission spectroscopy manifest distortions upon isotope substitutions13–18,27.

The isotope effect observed in iron-based superconductor28–34 seems to tell a more complicated story. For 
instance, a strong isotope effect by iron substitution28 is found in SmFeAs(O, F) and (Ba, K)Fe2As2, almost as 
large as that in conventional superconductors. On the contrary, inverse isotope effect29 is spotted in (Ba, K)
Fe2As2 with different isotope substitutions. Later, it was proposed that the isotope substitutions may give rise 
to structural change35 and further complicate the story. On the theoretical side, Yanagisawa et al.36 proposed a 
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multi-band and multi-channel model to explain the possibility of observing the inverse isotope effect. However, 
Bussmann-Holder and Keller37 commented that an inversion of the exponent cannot occur upon iron isotope 
substitutions. The controversies about the isotope effect of the iron-based superconductor are still on. And, it is of 
crucial importance to clarify the subtle role of the electron-phonon interactions in iron-based superconductors.

Results
Instantaneous and retarded interactions. Motivated by the controversy, we investigate the competi-
tion between electron-electron and electron-phonon interactions by the unbiased renormalization-group (RG) 
method. Due to the retarded nature of the phonon-mediated interactions, the energy dependence must be 
included. The minimal approach to include both simultaneous and retarded interactions can be accomplished by 
the step-shape approximation38–41 as shown in Fig. 1(a),

ω ω ω= + Θ −g g g( ) ( ), (2)i i i D

where gi and 
gi represent (instantaneous) electronic interactions and (retarded) phonon-mediated ones. The 

energy scale for the retarded interactions is set by the Debye frequency ωD. Our RG analysis reveals that the pair-
ing mechanism is dominated by the electronic interactions gi. But, the retarded interactions 

gi also grow under RG 
transformation and become relevant in low-energy limit. Inclusion of these subdominant interactions leads to 
anomalous isotope effect. The isotope exponent α can be extracted numerically from RG flows in weak coupling. 
It is quite remarkable that the sign of the exponent α sensitively depends on whether the inter- and/or intra-band 
interactions are altered by isotope substitutions.

Multi-band model. To illustrate how the RG scheme works, we start with a five-orbital tight-binding model 
for iron-based superconductors with generalized on-site interactions,
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where = …a b, 1, 2, , 5 label the five d-orbitals of Fe, −d1: Z R3 2 2, d2: XZ, d3: YZ, −d4: X Y2 2, d5: XY , and α = ↑,↓ is 
the spin index. The kinetic matrix Kab in the momentum space has been constructed in previous studies42. The 
generalized on-site interactions consist of three parts: intra-orbital U1, inter-orbital U2 and Hund’s coupling JH. 
Adopted from previous studies, we choose the values, =U 4 eV1 , =U 2 eV2  and = .J 0 7 eVH  for numerical stud-
ies here.

Fermiology is important in the multi-band superconductors. The electron doping x is related to the band fill-
ing = +n x6  ( =n 10 for completely filled bands) here and the Fermi surface at = .x 0 1 is illustrated in Fig. 1(b). 
There are five active bands: two hole pockets centered at (0, 0) and another hole pocket centered at (π, π) while 
two electron pockets located at (π, 0)and (0, π) points43. To simplify the RG analysis, we sample each pocket with 
one pair of Fermi points (required by time-reversal symmetry). This is equivalent to a four-leg ladder geometry 
with quantized momenta as shown in Fig. 1(b). In the low-energy limit, the effective Hamiltonian44–46 is captured 
by five pairs of chiral fermions with different velocities. The RG equations for all couplings can be found in 
Methods.
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Figure 1. (a) Step-like interaction profile for simultaneous and retarded interactions. A sharp step is assumed at 
the Debye frequency ωD. (b) Fermiology of the five-band model = .x 0 1. These Fermi surfaces are well sampled 
by five pairs of Fermi points, equivalent to the four-leg geometry with quantized momenta (dashed lines).
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Pairing mechanism. By integrating the two sets of RG equations numerically, we found all couplings are 
well described the scaling ansatz47,

≈
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where Gi, Gi are non-universal constants and γgi
, γ
gi
 are RG exponents for simultaneous and retarded couplings. 

The divergent length scale ld, associated with the pairing gap, is solely determined by electronic origin. The dom-
inant pairing occur within band 1 and band 2 and the Cooper scatterings c11, c22 c12 have maximum exponent 
γ = 1i . Other Cooper scatterings are subdominant with exponents close to 0.9, as shown in Fig. 2(a). Meanwhile, 
by Abelian bosonization45,46, the signs of cij from numerics lead to sign-revised (between electron and hole pock-
ets) s±-wave pairing, agreeing with the previous functional RG study48. Note that these exponents are rather 
robust within the doping range where the same Fermiology maintains. What about the phonon-mediated inter-
actions? As clearly indicated in Fig. 2(b), the RG exponents for c11, c22 are roughly 0.6, much smaller than the 
dominant electronic interactions, showing the pairing mechanism is electronic origin. However, since the RG 
exponents are positive, the retarded interactions also grow under RG transformation. These subdominant 
phonon-mediated interactions can lead to anomalous isotope effect as explained in the following.

Two-step RG scheme. To achieve quantitative understanding in weak coupling, the rescaled Debye fre-
quency must be taken into account carefully. Under RG transformations, ω ω→ eD D

l as shown in Fig. 3. At the 
(logarithmic) length scale ω≡ Λl log( / )D D0 , the difference between gi and 

gi disappears. The Debye frequency 
ω ∼ 30meVD  in iron-based materials24 and the band width (thus Λ0) is 3–4 eV, giving rise to lD ~ 5. Note that the 
RG is truncated at the cutoff length scale lc where the maximal coupling reaches order one. In weak coupling, it is 
clear that >l lc D and thus the RG scheme must be divided into two steps. For <l lD, both sets of RG equations are 
employed. At =l lD, the functional form for the retarded interactions is the same as the instantaneous one. Thus, 
one should add up both types of couplings + g l g l( ) ( )i D i D  and keep running RG by just the first set of equations. 
In physics terms, this means that the difference between simultaneous and retarded interactions vanishes before 
the pairing gaps open.

Extracting isotope exponent. Numerical results for the two-step RG indicate the same superconducting 
phase as described in previous paragraphs but the isotope exponent α can be extracted numerically. Under RG 
transformation, the critical temperature satisfies the scaling form, ∼ Δ = Δ −k T g e[ (0)]B c c

lc, where Δc is the 
pairing gap at the cutoff length scale. By varying the length scale lD, the critical temperature changes, i.e.

≈
Δ
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Furthermore, from the definition of the isotope exponent, the standard scaling argument under RG transfor-
mation gives rise to the isotope exponent.
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where ω= − =d M d dl(log ) 2 (log ) 2D D, because ω ∼ −MD
1/2. The above formula for the isotope exponent α is 

the central result in this paper. For conventional superconductor, ωΔ ∼c D and the cutoff length scale is not sen-
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Figure 2. RG exponents for (a) the simultaneous and (b) the retarded Cooper scatterings. The dominant 
interactions are pairing hopping between and within band 1 and band 2, with maximal exponent of unity, while 
other relevant couplings are subdominant with RG exponent smaller than one.
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sitive to the Debye frequency (the second term vanishes). Thus, α ≈ 1/2. On the other hand, for unconventional 
superconductors without relevant electron-phonon interactions, Δ ∼ Λc 0 and the cutoff length scale is also not 
sensitive to the Debye frequency. It is clear that α = 0 in this case. But, what happens if the electron-phonon inter-
actions, though not dominant, are actually relevant under RG transformation? We shall elaborate the details in 
Discussion.

Discussion
To extract the isotope exponent, we study how the cutoff length scale lc varies with different Debye frequencies 
due to isotope substitutions. In weak coupling, we found that gi are much larger than 

gi. Thus, Δc has very weak 
dependence on ωD and the first term can be ignored. The contribution from the second term is shown in Fig. 4. 
We tried two different profiles for the retarded interactions. Include only intra-band interactions, = − .c U(0) 0 3ii  
first, where U is the strength of electron-electron interactions. The isotope exponent is positive (reading from the 
slope), α ≈ .0 1, with very smooth variation. On the other hand, with only inter-band interactions, 

= − .c U(0) 0 14ij , the isotope exponent is negative and changes gradually from zero to α ≈ − .0 03.
These anomalous isotope effects are closely related to the unconventional pairing symmetry. For the s±-wave 

pairing, <c 0ii  but >c 0ij  at the cutoff length scale. The phonon-mediated intra-band interactions <c 0ii  help to 
develop the pairing instability and thus lead to a positive isotope exponent. On the other hand, the inter-band 
ones <c 0ij  have opposite sign with their simultaneous counterparts cij. In consequence, the pairing instability is 
suppressed and an inverses isotope effect is in order. The RG analysis presented here provides clear and natural 
connection between the anomalous isotope effect and the unconventional pairing symmetry.

Although the isotope exponent α can be extracted numerically in weak coupling, extending the quantitative 
description to intermediate coupling may not be easy. If the pairing gaps open before hitting the Debye energy 
scale, i.e. <l lc D, our numerical results show that lc solely depend on electronic interactions and thus =dl dl/ 0c D . 
The isotope exponent in this regime mainly arises from the first term. The pairing gap ωΔ = Δ Λ e( , )c c D

l
0 , 

depending on both the bandwidth and the rescaled Debye frequency, is now quite complicated. The RG analysis 
alone is not sufficient to obtain α in a quantitative fashion. However, we recently found that the effective 
Hamiltonian at the cutoff length scale is well captured by mean-field theory (not yet published). In principle, one 
can combine RG and mean-field approaches together to compute the isotope exponent in intermediate coupling 
more accurately.
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Figure 3. (a) Interaction profile of the dominant intra-band C and inter-band C⊥ Cooper scatterings before RG 
transformation. (b) As RG progresses, the step evolves since the Debye energy is rescaled, ω ω=l e( )D D

l. (c) For 
>l lD, the distinction between simultaneous and retarded interactions disappears. (d) Schematic picture for 

phonon-dressed unconventional superconductor.
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In the end, we discuss the recent discovery of superconductivity in FeSe/STO systems49,50. We emphasize that 
our current approach includes fermiology, electron-electron interactions, and electron-phonon interactions within 
only the superconducting(SC) layers. One crucial assumption is the profile of the mediated electron-phonon inter-
actions can be captured by the step function. The RG scheme built upon this approximation works as explained 
in the manuscript. However, according to the recent literatures in FeSe/STO systems49–56, to include the non-SC 
(SrTiO3) layers we need to devise a new theoretical approach which is beyond our model at this point. The profile 
of the electron-phonon interactions arisen from non-SC layers is probably not captured by the simple step function 
anymore. One needs to find out the interaction profile generated by the non-SC layers first so that one can devise the 
RG scheme accordingly. This is going to be an interesting and challenging topic to explore in the future.

Methods
RG equations. The interactions between these chiral fermions fall into two categories39: Cooper scattering cij

l , 
cij

s and forward scattering fij
l , fij

s. The retarded ones share the same classification, denoted with an extra tilde sym-
bol. The RG equations for the simultaneous interactions are,
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where =g dg dl/ , where = Λ Λl ln( / )0  is the logarithm of the ratio between bare energy cutoff Λ0 and the run-
ning cutoff Λ. The tensor α = + + +v v v v v v v( ) ( )/[2 ( )]ij k i k j k k i j,  with vi representing the Fermi velocities.

The second set of equations describes how the retarded interactions are renormalized,
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Figure 4. The cutoff length scale lc versus lD for inclusion of intraband interactions = − .c U(0) 0 3ii  (blue 
circles) and interband ones = − .c U(0) 0 14ij  (red square), where U is the strength of electron-electron 
interactions. For convenience, the axes are rescaled in the unit of le, the cutoff length scale with electronic 
interactions only. The inset shows the isotope exponent by taking numerical derivative.
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Note that we separate the intra-band and inter-band couplings for clarity, i.e. ≠i j in the above RG equations. 
In fact, the separation is necessary because we shall see later that inter-band and intra-band couplings play differ-
ent roles in the low-energy limit. In addition, =f 0ii  and =f 0ii  to avoid double counting.
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