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Abstract

Reducing PM2.5 and ozone concentrations is important to protect human health and the 

environment. Chemical transport models, such as the Community Multiscale Air Quality 

(CMAQ) model, are valuable tools for exploring policy options for improving air quality but 

are computationally expensive. Here, we statistically fit an efficient polynomial function in a 

response surface model (pf-RSM) to CMAQ simulations over the eastern U.S. for January and 

July 2016. The pf-RSM predictions were evaluated using out-of-sample CMAQ simulations and 

used to examine the nonlinear response of air quality to emission changes. Predictions of the 

pf-RSM are in good agreement with the out-of-sample CMAQ simulations, with some exceptions 

for cases with anthropogenic emission reductions approaching 100%. NOX emission reductions 
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were more effective for reducing PM2.5 and ozone concentrations than SO2, NH3, or traditional 

VOC emission reductions. NH3 emission reductions effectively reduced nitrate concentrations in 

January but increased secondary organic aerosol (SOA) concentrations in July. More work is 

needed on SOA formation under conditions of low NH3 emissions to verify the responses of 

SOA to NH3 emission changes predicted here. Overall, the pf-RSM performs well in the eastern 

U.S., but next-generation RSMs based on deep learning may be needed to meet the computational 

requirements of typical regulatory applications.
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1. Introduction

PM2.5 and ozone air pollution lead to harmful effects on human health and the environment 

[1,2]. Air quality management plans are developed to reduce these criteria pollutant 

concentrations to meet National Ambient Air Quality Standards (NAAQS) in the U.S. [3–5]. 

Air quality modeling with comprehensive chemical transport models (CTMs) contributes 

key information to air quality planning by providing concentration predictions for baseline 

and policy-relevant emission-control conditions [6].

Air quality modeling is important for effective air quality management because the response 

of PM2.5 and ozone to precursor emission changes is nonlinear and depends on hundreds 

of chemical reactions. For instance, ozone concentrations decrease in response to NOx 

emission reductions when NOx is the limiting precursor for oxidant formation but increase 

under NOx-saturated conditions, where NOx inhibits oxidant production [7]. PM2.5 nitrate 

can also increase or decrease in response to NOx emission reductions depending on oxidant 

levels and other factors, such as aerosol pH, temperature, and relative humidity [8–12]. 

Previous studies have individually reported seasonal variations in the nonlinear response 

of ozone and PM2.5 to NOx emission reductions in the U.S. for retrospective periods 

[13,14]. However, information is limited on the seasonal variation in the simultaneous 

response in ozone and PM2.5 and its components for multiple precursors under recent 

conditions in the U.S. Consideration of relatively recent conditions is important because 

NOx emissions declined by 57% and SO2 emissions by 85% between 2000 and 2017 

(https://gispub.epa.gov/neireport/2017/, accessed on 11 August 2021).

A challenge in using CTMs to explore hypothetical policy options is computational expense. 

The runtime for CTM simulations (days to weeks) typically prevents direct modeling of the 

dozens to hundreds of possible emission scenarios that may be of interest to policymakers 

[15–17]. As a result, researchers have developed computationally efficient approaches that 

approximate CTM capabilities [18–27]. Of these approaches, response surface models 

(RSMs) are unique in their ability to simulate the nonlinear response of ozone and PM2.5 

over wide ranges of precursor emission changes. RSMs are developed by statistically 

modeling the results of multiple CTM simulations with a set of explanatory variables based 

on the emission inputs for each simulation compared to a baseline simulation. After fitting, 
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RSMs can provide predictions of the air quality response to emission changes in near real­

time. RSMs have been developed to provide the air quality response to emission changes 

rather than changes in other variables (e.g., meteorology) because pollutant emissions are 

the key modifiable factors in air quality management applications.

Early-generation RSMs required large numbers of CTM simulations to produce a statistical 

fit to capture the complex pollutant responses simulated by CTMs [21,23,28,29]. To reduce 

the number of simulations for cases with multiple regions and emission control factors, 

the extended RSM (ERSM) technique was developed [20,24]. Next, using prior knowledge 

from ERSM results, a polynomial function-RSM (pf-RSM) approach was developed that 

further reduced the required number of CTM simulations by using polynomial functions to 

capture the nonlinear response of PM2.5 and ozone to emission changes [19]. Recently, the 

DeepRSM method [22] has been developed to efficiently calculate the polynomial function 

coefficients using a convolutional neural network trained with chemical indicators [30]. 

Much of the development of RSM technology has happened through the ABaCAS (Air 

Benefit and Cost and Attainment Assessment System, http://www.abacas-dss.com, accessed 

on 11 August 2021) project, and applications of recent RSMs have been limited to regions 

in Asia. The performance and applicability of recent RSM methods for the U.S. and other 

regions needs to be established for these approaches to gain broader use.

In this study, we fit a one-region pf-RSM [19] to CTM simulations over the eastern U.S. for 

January and July of 2016. We characterize the performance of the pf-RSM using 30 out-of­

sample (OOS) CTM simulations. We also provide insights on the nonlinear response of air 

pollution in the eastern U.S. to anthropogenic emission reductions in winter and summer. We 

focus here on the response of maximum daily 8 h average (MDA8) of ozone, PM2.5, nitrate, 

sulfate, and organic matter (OM) concentrations to emission changes of NOx, SO2, NH3, and 

traditional volatile organic compounds (VOCs). The pf-RSM also simulates the response of 

PM2.5 concentrations to primary PM2.5 emissions and is available for download.

2. Methods

2.1. Base-Case CTM Simulation

CTM simulations were performed for January and July 2016 with version 

5.3.1 of the Community Multiscale Air Quality (CMAQ; https://zenodo.org/record/

3585898#.YRXGeEARWUk, accessed on 11 August 2021) model on a domain covering 

the eastern U.S. with 12 km grid spacing and 35 vertical layers. January and July were 

selected to be representative of winter and summer conditions, respectively. Gas-phase 

chemistry was parameterized according to the Carbon Bond 2006 mechanism (CB6r3) [31], 

the deposition was modeled with the M3DRY parameterization, and aerosol processes were 

parameterized with the AERO7 module using the non-volatile treatment for primary organic 

aerosol [32,33]. Chemical boundary conditions were developed from a CMAQ simulation 

on a larger domain that used boundary conditions from a hemispheric CMAQ simulation 

[34]. The starting point for the modeled anthropogenic emissions was version 2 of the 

2014 National Emissions Inventory (NEI); however, many inventory sectors were updated to 

represent the year 2016 through the incorporation of 2016-specific state and local data along 

with nationally-applied adjustment methods [35]. Emissions of anthropogenic precursors 
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for secondary organic aerosol (SOA) [36] were not added to the simulation beyond what 

was captured in the NEI. Therefore, VOC impacts discussed below are due to traditional 

VOCs alone. Emissions of biogenic compounds were modeled with the Biogenic Emission 

Inventory System (BEIS) [37], and emissions of sea-spray aerosol [38] were simulated 

online within CMAQ using 2016 meteorology. Meteorological fields were developed from 

a simulation with version 3.8 of the Weather Research and Forecasting model as described 

elsewhere [39].

Model performance for the base-case CTM simulation was evaluated by comparison 

with available monitoring data for PM2.5, PM2.5 components, and MDA8 ozone 

(Supplementary Text S1, Supplementary Table S1) (Supplementary Materials, Tables S1—

S4). The model performance statistics are generally within ranges reported in previous 

applications [40,41] and support the modeling here. However, overpredictions of PM2.5 

organic carbon concentrations were evident in January, possibly due to issues with 

emissions or meteorology as well as gas-particle partitioning of primary organic aerosol. 

The performance results in Supplementary Table S1 should therefore be considered 

in interpreting the RSM predictions. Model performance results here are qualitatively 

consistent with Appel et al. [42], although statistics are calculated for different periods 

and are not directly comparable across studies.

2.2. Sensitivity CTM Simulations and pf-RSM Development

In addition to the base-case simulation, 22 simulations were conducted for model fitting 

with domain-wide changes in U.S. anthropogenic emissions of NOx, SO2, VOC, NH3, and 

primary PM2.5 (see Supplementary Table S3). For 19 of these simulations, emission changes 

were specified based on Hammersley sampling [43] of emission control ratios between 0 

and 1.2 (base case = 1.0). Additionally, one simulation was conducted with 100% reductions 

in U.S. anthropogenic emissions of NOx, SO2, NH3, and VOCs, and two simulations 

were conducted with 50% and 100% reductions in primary PM2.5 emissions. Emission­

perturbation simulations were implemented in CMAQ using the Detailed Emissions Scaling, 

Isolation, and Diagnostic (DESID) module [44]. Version 2.5 of the RSM-VAT software was 

used to implement the Hammersley sampling and generate the emission-control interface 

files for DESID.

Polynomial functions were fit in each grid cell to provide the nonlinear response of monthly 

average PM2.5, PM2.5 components, and MDA8 ozone to changes in NOx, SO2, VOC, 

NH3, and primary PM2.5 emissions across the domain. The following optimized polynomial 

functions developed in the previous work [19,45] were fit using results of the emission 

reduction simulations in Supplementary Table S3:

ΔPM2.5, spc = X1 ΔENOX + X2 ΔESO2 + X3 ΔENH3 + X4 ΔEVOC + X5 ΔENOX2
+ X6 ΔESO22 + X7 ΔENH32 + X8 ΔENOX ΔEVOC + X9 ΔENOx3
+ X10 ΔENOx2 ΔEVOC + X11 ΔENOx2 ΔESO2 + X12 ΔENOx2 ΔENH3

(1)

ΔMDA8 O3 = Y1 ΔENOX + Y2 ΔESO2 + Y3 ΔENH3 + Y4 ΔEVOC + Y5 ΔENOX2
+ Y6 ΔENOX ΔENH3 + Y7 ΔENOX2 ΔENH3

(2)
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where ΔPM2.5,spc refers to the change from the base case in the concentration of PM2.5, 

PM2.5 nitrate, PM2.5 sulfate, or PM2.5 organic matter; ΔE refers to the ratio of the difference 

in emissions between the base and emission perturbation cases to the base emissions (i.e., 

ΔEi = (Ei − EBase)/EBase); and X1–12 and Y1–7 are the polynomial coefficients determined by 

least-squares error fitting.

The pf-RSM was evaluated by comparison with 30 OOS CMAQ simulations that were not 

used in model fitting (Table S4). The OOS simulations included 10 simulations based on 

Hammersley sampling and 20 simulations corresponding to 20%, 40%, 60%, 80%, and 

100% reductions in U.S. anthropogenic NOx, SO2, NH3, and VOC emissions.

The strength of the RSM is the ability to conduct interactive exploratory analyses on 

air quality impacts for an unconstrainted number of emission cases using the RSM-VAT 

software. Below, we focus on comparisons of pf-RSM and CMAQ OOS predictions to 

demonstrate the performance of the pf-RSM. We also use the OOS simulations to illustrate 

features of the nonlinear response of ozone and PM2.5 and its components in the eastern 

U.S. in winter and summer. The RSM-VAT software is available with cases preloaded for 

exploration of additional scenarios.

3. Results

Predictions of the pf-RSM are compared with CMAQ results for the 30 OOS runs in this 

section. The comparisons illustrate the performance of the pf-RSM as well as the nonlinear 

response of PM2.5 and MDA8 ozone to reductions in U.S. anthropogenic emissions. Average 

monitored concentrations of PM2.5, PM2.5 components, and MDA8 ozone in the region are 

provided in Supplementary Table S1 and have been discussed in previous studies [14].

3.1. January

The air quality response to emission changes predicted by the pf-RSM and CMAQ are 

compared for the 30 OOS cases for five species in Figure 1. Overall, there is an excellent 

correlation and slight bias between the pf-RSM and CMAQ results. However, some distinct 

features are evident in the scatterplots due to the specific conditions of the individual OOS 

simulations. For instance, most points in the MDA8 ozone panel are close to the one-to-one 

line, but a cluster points above the line indicates some overpredictions by the pf-RSM. These 

points are associated with the case of 100% NOx emission reductions (see Supplementary 

Figure S1 for scatterplots faceted by OOS case) (Supplementary Materials, Figures S1–S10). 

Challenges in simulating pollutant response for cases with extreme emission reductions have 

been reported in the past and suggest a need for including additional CTM simulations in 

pf-RSM fitting for applications where deep emission reductions may be relevant [19].

pf-RSM predictions of the nitrate response to emission changes also agree well with the 

OOS CMAQ results, despite some overpredictions of nitrate concentration increases (i.e., 

disbenefits). These overestimates are associated with cases of SO2 emission reductions, 

where disbenefits are overpredicted by up to ~0.4 μg m−3 for the case of 100% reduction 

in anthropogenic SO2 emissions (Supplementary Figure S2). For pf-RSM predictions of the 

sulfate response, the largest deviations from the one-to-one line in Figure 1 are associated 
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with OOS Run 4 and 5 based on Hammersley sampling of emissions (Supplementary 

Figure S3). These runs included deep reductions in NOx, VOC, NH3, and SO2 emissions 

(Supplementary Table S4).

For the OM concentration response, there is good agreement between the pf-RSM and 

CMAQ predictions in general. However, the pf-RSM predicts some disbenefits for the 

100% NOx emission reduction case (Supplementary Figure S4) that were not predicted by 

CMAQ. For the total PM2.5 concentration response, the scatterplot has a forked shape for 

concentration decreases larger than 4 μg m−3. This pattern results from the combination of 

underpredictions in response to the pf-RSM in the 100% NH3 emission reduction case and 

overpredictions in a case with large NOx reductions (i.e., Run 5 with 97% NOx, 90% SO2, 

24% NH3, and 81% VOC emission reductions) (Supplementary Figure S5). This behavior 

further demonstrates that deviations of the pf-RSM from CMAQ may be relatively large 

in cases with large emission reductions, and model fitting could be improved by including 

additional simulations for marginal emission cases. Since emission reductions approaching 

100% are uncommon in typical regulatory applications, pf-RSM performance issues for 

these marginal cases may be of limited concern in many applications.

In Figure 2, the spatial patterns of concentration responses in January 2016 are compared 

for CMAQ and the pf-RSM for MDA8 ozone, nitrate, sulfate, and OM for 60% reductions 

in NH3, NOx, SO2, and VOC emissions. The response patterns for the pf-RSM and CMAQ 

are in good agreement in all cases. NOx emission reductions in January lead to increases 

in MDA8 ozone over much of the domain (Figure 2a), especially in northern and urban 

areas (e.g., the mean/max concentration increase above 37° N is 0.8/7.1 ppb for CMAQ). 

The ozone disbenefits for NOx emission reductions are consistent with oxidant-limited 

conditions in NOx-rich areas in winter [14,46,47]. By contrast, MDA8 ozone concentrations 

decrease in response to NOx emission reductions along the Gulf Coast (except Houston) and 

over Florida, likely due to the lower NOx emissions and inflow of marine air. For VOC, the 

60% emission reductions reduce MDA8 ozone concentrations broadly over the eastern U.S. 

(CMAQ mean reduction: 1.1 ppb).

The 60% reductions in NH3 and NOx emissions reduce nitrate concentrations in the northern 

part of the domain and demonstrate the sensitivity of nitrate to both precursors there (Figure 

2b). NH3 emission reductions in areas of elevated NH3 concentration [48] can reduce nitrate 

concentrations by increasing particle acidity (due to removal of the key atmospheric base, 

NH3) and thereby reducing the fraction of total nitrate in the particle phase [9,49,50]. NOx 

emission reductions reduce nitrate through direct removal of the nitrate precursor, which 

outweighs the effect of increased NOx-to-nitrate conversion efficiency from increased ozone/

oxidant concentrations. For reducing nitrate in January, NH3 emission reductions (mean 

nitrate reduction: 0.62 μg m−3) are more effective than NOx emission reductions (mean 

nitrate reduction: 0.46 μg m−3). SO2 and VOC emission reductions have relatively small 

influence on nitrate, with some nitrate disbenefits for SO2 reductions in the northern part of 

the domain (likely due to the influence of reduced acidity from lower sulfate on partitioning 

of total nitrate to the particle phase).
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The 60% reductions in NH3 emissions lead to small decreases in sulfate concentrations in 

the northern part of the domain (Figure 2c). Since sulfate is essentially nonvolatile under 

atmospheric conditions, NH3 levels do not affect gas-particle partitioning of sulfate as they 

do for semi-volatile nitrate. However, in-cloud sulfate production is sensitive to cloud pH, 

and the reductions in NH3 concentrations could reduce cloud pH and thereby lower the rate 

of S(IV) to S(VI) conversion (e.g., due to ozone pathways, [51]). Shah et al. [52] reported 

that in-cloud oxidation was responsible for about 65% of the conversion of SO2 to sulfate in 

the eastern U.S. in winter 2015. NOx emission reductions lead to increases in sulfate in the 

northern part of the domain due to the increases in ozone and other oxidants that promote 

the conversion of SO2 to sulfate. SO2 emission reductions reduce sulfate throughout the 

domain by removing the sulfate precursor, and VOC reductions reduce sulfate by a small 

amount by reducing ozone and other oxidants.

The response of OM concentrations to 60% emission reductions is shown in Figure 2d. 

NOx emission reductions reduce OM concentrations throughout the southeast but increase 

concentrations slightly in the northeast. In winter, both monoterpene [53] and aromatic 

[54] oxidation contribute to SOA concentrations. Reductions in NOx emissions lower the 

concentrations of monoterpene nitrate precursors in the southeast [55] and reduce the 

oxidation of monoterpenes in areas where ozone and OH decrease [56]. In the northeast, 

the increases in OM concentrations with NOx emission reductions are consistent with 

more efficient conversion of SOA precursors to OM due to increased oxidant (e.g., ozone) 

concentrations. In addition, reducing NOx shifts aromatic oxidation to higher-yield SOA 

pathways [54].

In Figure 3, the percent change in concentration is shown for a 60% reduction in emissions 

for grid cells in four urban core-based statistical areas (CBSAs). Good agreement exists 

between CMAQ and pf-RSM predictions in the CBSAs. In the CMAQ simulations, 

reductions in anthropogenic NOx emissions increase MDA8 ozone by 9% (about 2.5 ppb) 

in NY and Chicago and a smaller amount in Atlanta (4%, 1.4 ppb) and Houston (2%, 0.4 

ppb). NOx emission reductions reduce nitrate by 29% (0.6 μg m−3) in NY, 39% in Chicago 

(1.2 μg m−3), 52% in Atlanta (0.6 μg m−3), and 47% in Houston (0.3 μg m−3). Decreases 

in NH3 emissions also reduce nitrate in the CBSAs: 51% (1.1 μg m−3) in NY, 46% in 

Chicago (1.4 μg m−3), 57% in Atlanta (0.6 μg m−3), and 44% in Houston (0.3 μg m−3). 

SO2 emission reductions reduce sulfate concentrations by 0.11 to 0.18 μg m−3 but increase 

nitrate concentrations by 0.02 to 0.1 μg m−3 in the CMAQ simulations. In contrast to the 

slight nitrate disbenefits predicted by CMAQ, the pf-RSM predicted small nitrate reductions 

in Atlanta and Houston for the SO2 emission reductions. NH3 emission reductions produce 

the greatest reductions in PM2.5 concentrations in January in all CBSAs except Houston.

Comparisons of mean absolute concentrations predicted by the pf-RSM and CMAQ over all 

CBSAs in the domain for 0% to 100% emission reductions in January 2016 are provided 

in Figure 4. The predictions discussed above for the 60% emission reductions are generally 

reflective of the model response indicated in Figure 4, although the disbenefits in MDA8 

ozone for 60% NOx emission reductions transition to benefits for larger reductions. For 

instance, MDA8 ozone increased over the CBSAs by 0.7 ppb for the 40% NOx emission 

reduction but decreased by 2.8 ppb for the 100% NOx reduction in the CMAQ simulations.

Kelly et al. Page 7

Atmosphere (Basel). Author manuscript; available in PMC 2022 August 14.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



The trend of increasing sulfate with decreasing NOx emissions (Figure 4) is consistent 

with Shah et al. [52], who reported that the SO2-to-sulfate conversion efficiency increased 

from 0.11 to 0.18 in winter in the eastern U.S. due to emission reductions during the 2007–

2015 period. For CMAQ predictions, the trend of increasing sulfate with decreasing NOx 

emissions reverses for NOx reductions greater than about 80% but continues for the pf-RSM. 

pf-RSM performance could be improved for this case by including additional simulations in 

model fitting [19], although there could also be limitations in the polynomial functions 

for representing the entire range of concentration response. Nevertheless, the pf-RSM 

generally captures the CMAQ responses across species and emission changes, including 

the overall response in PM2.5 concentrations. CMAQ predictions of changes in mean PM2.5 

concentrations over the CBSAs for 100% reductions in anthropogenic emissions are −1.72 

μg m−3 (−20%, NH3 emissions); −1.61 μg m−3 (−19%, NOx emissions); and −0.19 μg 

m−3 (−2.2%, SO2 and VOC emissions). The PM2.5 concentration reductions associated with 

100% NOx emission reductions overcome a 0.07 μg m−3 sulfate disbenefit, and the PM2.5 

concentration reductions for 100% SO2 emission reductions overcome a 0.15 μg m−3 nitrate 

disbenefit (about 50% of the sulfate reduction in that case).

3.2. July

The mean concentration responses in July 2016 predicted by the pf-RSM and CMAQ are 

compared for the 30 OOS cases in Figure 5. The pf-RSM predictions for MDA8 ozone agree 

well with CMAQ results across the full set of OOS simulations, even for the case of 100% 

NOx emission reductions with large (>30 ppb) MDA8 ozone decreases (Supplementary 

Figure S6). Nitrate responses are also in general agreement for the pf-RSM and CMAQ, 

although the pf-RSM tends to underestimate the magnitude of the disbenefits predicted 

by CMAQ. These underestimates are associated with the 100% SO2 emission reduction 

simulation (Supplementary Figure S7).

For the sulfate response, a forked pattern exists in the scatterplot for concentration decreases 

larger than 1 μg m−3. This pattern results from pf-RSM underestimates of the CMAQ 

response for the 100% SO2 emission reduction case and overestimates for the Run 5 case. 

The forked pattern for the OM response is due to pf-RSM response overestimates for the 

80% and 100% NOx emission reduction cases and slight underestimates for the Run 5 case. 

Moreover, the OM disbenefits predicted by CMAQ were underestimated by the pf-RSM 

for the 100% NH3 emission reduction case (Supplementary Figure S9). The forked pattern 

in the scatterplot for the PM2.5 response as well as the pf-RSM underestimate of PM2.5 

disbenefits follows the behavior for OM (i.e., PM2.5 responses are overestimated for the 

100% NOx emission reductions and disbenefits are underestimated for 100% NH3 emission 

reductions, Supplementary Figure S10).

In Figure 6, the spatial patterns of concentration responses in July 2016 are compared for 

CMAQ and the pf-RSM for MDA8 ozone, nitrate, sulfate, and OM for 60% reductions 

in NH3, NOx, SO2, and VOC emissions. The pf-RSM and CMAQ response patterns are 

generally in good agreement across cases. For MDA8 ozone, the 60% NOx emission 

reductions lead to large ozone decreases (mean: 7 ppb) throughout the eastern U.S. (Figure 

6a), in contrast to the ozone increases predicted in January in northern and urban areas. 
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Emission reductions for other species have a relatively small effect on MDA8 ozone. 

The 60% reductions in NOx and NH3 emissions reduce nitrate concentrations through 

a band of cells from Iowa to Pennsylvania, and NOx emissions reductions also reduce 

nitrate in parts of Florida (Figure 6b). The SO2 emission reductions cause increases in 

nitrate concentrations in some areas, likely due to chemical feedbacks of acidity on gas­

particle partitioning of total nitrate. NOx and NH3 emission reductions lead to small sulfate 

decreases due to the influence of NOx on oxidant abundance and NH3 on cloud pH. SO2 

reductions reduce sulfate in the Ohio Valley where large SO2 sources are located (Figure 

6c).

The 60% reductions in NH3 emissions increase OM concentrations along a latitude band 

between 32 N and 42 N. This behavior appears to be associated with biogenic SOA 

formation from acid-catalyzed uptake of isoprene epoxydiols (IEPOX) and subsequent 

in-particle reaction involving nucleophile addition to the parent hydrocarbon. This SOA 

formation pathway is enhanced under conditions of greater acidity and increased nucleophile 

(water and sulfate) concentration (i.e., eqn. 4 of Pye et al. [57]). The 60% reduction in NH3 

emissions reduces pH by 0.23 on average (up to 0.84) (Figure 7a), which corresponds to 

a 75% increase in [H+] on average (up to 594%). These increases in acidity rather than 

changes in nucleophile concentrations explain the OM concentration increases, because 

sulfate concentrations decrease with decreasing NH3 emissions (Figure 6c) and aerosol 

water concentrations also generally decrease, except over a region around West Virginia with 

small (<9%) increases (Figure 7b).

The 60% reductions in NOx emissions decrease OM concentrations in the southern U.S. 

where biogenic SOA is relatively high (Figure 6d). Previous work has found that reducing 

NOx in the southeast U.S. in summer leads to substantial reductions in the organic 

nitrate fraction of OM and smaller changes for other OM contributors [55]. SO2 emission 

reductions reduce OM concentrations with a spatial pattern similar to that previously 

reported for the SO2 response of biogenic SOA formed via aerosol water chemistry [58]. 

As described above, SO2 emission reductions can reduce particle acidity and nucleophile 

concentrations and thereby lower biogenic SOA production. Anthropogenic VOC emission 

reductions lead to small OM concentration reductions in the CMAQ simulations, but the pf­

RSM predicts small increases. This behavior did not occur in previous pf-RSM applications 

in China and should be investigated further in future studies.

Good agreement exists between pf-RSM and CMAQ predictions of the percent change in 

concentrations over the four CBSAs in Figure 8 for 60% reductions in precursor emissions 

in July. In response to the SO2 emission reductions, sulfate concentrations decreased by 0.1 

μg m−3 in Houston, 0.25 μg m−3 in Atlanta, 0.28 μg m−3 in NY, and 0.38 μg m−3 in Chicago. 

In contrast, the SO2 emission reductions caused some increases in nitrate concentrations, 

although the effect is small (0.02 μg m−3 in Houston and Atlanta, 0.03 μg m−3 in NY, and 

0.09 μg m−3 in Chicago) due to the low nitrate concentrations in summer. In response to 

60% NOx emission reductions, MDA8 ozone concentrations decreased from 16% (5 ppb in 

Houston) to 28% (12 ppb in Atlanta) in the CMAQ simulations. NOx emission reductions 

also caused decreases in OM concentrations in the CBSAs, with the greatest reduction in 

Atlanta (18%, 1.5 μg m−3), where biogenic SOA is prominent. NOx emission reductions 
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caused large percent reductions in nitrate concentrations (up to 36% in Chicago), but the 

absolute concentration changes are small (i.e., ≤0.12 μg m−3). NH3 emission reductions lead 

to decreases in nitrate concentrations and increases in OM concentrations in July. The OM 

increases are greater than the nitrate decreases in absolute terms (greater by 0.14 μg m−3 

in NY, 0.03 μg m−3 in Chicago, 0.23 μg m−3 in Atlanta, and 0.02 μg m−3 in Houston). 

Anthropogenic VOC reductions have a small effect on concentrations in July due to the high 

levels of biogenic VOC, although this study did not consider intermediate and semi-volatile 

VOC beyond what is included in the NEI.

Comparisons of mean absolute concentrations predicted by the pf-RSM and CMAQ over 

all CBSAs in the domain for 0% to 100% emission reductions in July 2016 are shown in 

Figure 9. SO2 emission reductions reduce sulfate (up to 0.42 μg m−3) and OM (up to 0.16 

μg m−3) concentrations but increase nitrate concentrations (up to 0.13 μg m−3). In contrast 

to January, NOx emission reductions reduce MDA8 ozone and sulfate concentrations for 

all NOx emission reduction levels due to the greater oxidant abundance in July. NOx 

emission reductions also decrease OM concentrations (up to 0.93 μg m−3). NH3 emission 

reductions lead to increases in OM concentrations (up to 0.51 μg m−3), with increases 

growing nonlinearly with a decreasing emission level. As discussed above, the fact that OM 

concentration increases with decreasing NH3 emissions could be related to biogenic SOA 

formation associated with IEPOX uptake. Additional investigation of this SOA formation 

pathway under low NH3 and SO2 (and water content) conditions would be worthwhile. Riva 

et al. [59] reported that IEPOX organosulfates are highly viscous and likely to lead to phase 

separation under acidic conditions with low water content. Phase separation becomes more 

likely as sulfate decreases relative to IEPOX, resulting in increased diffusion barriers to 

further IEPOX uptake and SOA formation. Such behavior, which is not present in the base 

CMAQ model, could affect the sensitivity of OM to SO2 and NH3 emissions.

Predicted changes in PM2.5 concentrations for 100% reductions in anthropogenic emissions 

are −1.09 μg m−3 (−15.4%) (NOx emissions); −0.54 μg m−3 (−7.67%) (SO2 emissions); 

−0.072 μg m−3 (−1.02%) (VOC emissions); and +0.30 μg m−3 (+4.3%) (NH3 emissions). 

The PM2.5 concentration decreases associated with 100% NOx emission reductions include 

a small decrease in sulfate concentration of 0.09 μg m−3 (in contrast to January when sulfate 

concentrations increased with NOx emission reductions). The PM2.5 concentration decreases 

for 100% SO2 emission reductions overcome a 0.13 μg m−3 increase in nitrate concentration 

(about 30% of the sulfate concentration decrease, 0.42 μg m−3). The predicted change in 

MDA8 ozone concentration for 100% reduction in NOx emissions is −15.0 ppb (38%), and 

for 100% reduction in VOC emissions, it is 0.25 ppb.

4. Conclusions

Reducing PM2.5 and ozone concentrations is important to protect human health and the 

environment. CTMs are valuable tools for exploring policy options for improving air quality, 

but CTMs are computationally expensive and statistical models are therefore developed 

to approximate CTMs in some applications. Recent developments in RSM technology 

have reduced the number of CTM simulations needed for model fitting and provide an 

opportunity to evaluate RSM performance in the U.S.
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Predictions of the pf-RSM developed here are in good agreement with OOS CMAQ 

simulations in the eastern U.S., with some exceptions for cases with anthropogenic emission 

reductions approaching 100%. These extreme conditions may have limited relevance in 

typical applications. Furthermore, previous work [19] suggests that performance can be 

improved in these cases by including additional simulations in pf-RSM fitting. Although 

the pf-RSM required fewer simulations for development than previous-generation RSMs, 

the one-region, five-emission factor pf-RSM still required about 20 CTM simulations. 

Therefore, computational expense would present challenges for developing pf-RSMs for 

multiple regions and emission sectors in typical applications. The recently developed 

DeepRSM approach [22], which requires fewer CTM simulations for fitting and improves 

performance compared with the pf-RSM, could facilitate the development of more complex 

RSMs in the future.

NOx emission reductions were more effective for reducing PM2.5 concentrations than 

SO2, NH3, and traditional VOC emission reductions. In January, NOx emission reductions 

decreased nitrate concentrations in the north and OM concentrations in the south. NOx 

emission reductions did cause some disbenefits for sulfate concentrations in January, but 

the decreases in other PM2.5 components overcame the disbenefits. In July, NOx emission 

reductions led to substantial decreases in OM concentrations by reducing biogenic SOA 

formation in the south. NH3 emission reductions were effective for reducing nitrate 

concentrations in January but increased OM concentrations in July. As a result, the 

effectiveness of NH3 emission reductions for reducing PM2.5 concentrations was less than 

for NOx emission reductions overall. More work should be done to understand IEPOX SOA 

formation under conditions of low NH3 emissions to verify the OM responses predicted 

here. VOC emission reductions had a smaller effect on PM2.5 concentrations than NOx and 

NH3 in part due to high levels of biogenic VOC in the eastern U.S. Moreover, our study did 

not include emissions of intermediate and semi-volatile VOC [36] beyond what is included 

in the NEI.

For MDA8 ozone concentrations, large reductions (>80%) in NOx emissions are needed to 

avoid disbenefits in northern and urban areas in January. In July, all levels of NOx emission 

reductions are effective for reducing MDA8 ozone due to the abundance of oxidants in 

summer. VOC emission reductions caused small decreases in MDA8 ozone concentrations 

in January and had little effect in July due to the high levels of biogenic VOC.

Since our study focused on the nonlinear response of pollutant concentrations, we did not 

discuss the influence of primary PM2.5 emissions on PM2.5 concentrations. However, PM2.5 

concentrations are generally more responsive to reductions in primary PM2.5 emissions 

than the precursors for secondary PM2.5 discussed here. Some components of primary 

PM2.5 emissions (e.g., crustal cations) can also influence concentrations of secondary 

PM2.5 [60,61]. Large reductions in NOx and SO2 emissions in the eastern U.S. in recent 

decades have reduced the concentrations of secondary inorganic aerosol and increased the 

importance of primary PM2.5 emissions and organic aerosol. Improved representations of the 

emissions and chemistry of organic aerosol are increasingly important in this context.
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Figure 1. 
Comparison of changes in mean January concentrations predicted by the pf-RSM and 30 

OOS CMAQ simulations. Units: ppb for MDA8 ozone and μg m−3 for PM2.5 and its 

components.
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Figure 2. 
Comparison of the change in average concentration in January 2016 for the pf-RSM and 

CMAQ for a 60% reduction in anthropogenic emissions of NH3, NOx, SO2, and VOC: (a) 

MDA8 ozone, (b) PM2.5 nitrate, (c) PM2.5 sulfate, and (d) PM2.5 OM. Units: ppb for MDA8 

ozone and μg m−3 for PM2.5 components. Statistics for pf-RSM and CMAQ comparison: 

MB: mean bias; 98E: 98th percentile of error; r: Pearson correlation coefficient.
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Figure 3. 
Comparison of the percent change in pollutant concentrations for four urban CBSAs during 

January 2016 as predicted by the pf-RSM and CMAQ. Units: ppb for MDA8 ozone and μg 

m−3 for PM2.5 and its components.
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Figure 4. 
Comparison of the mean absolute concentrations predicted by the pf-RSM and CMAQ over 

all CBSAs in the domain during January 2016 for U.S. anthropogenic emission changes 

from 0 to 100%. Units: ppbv for MDA8 ozone and μg m−3 for PM2.5 and its components.

Kelly et al. Page 20

Atmosphere (Basel). Author manuscript; available in PMC 2022 August 14.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 5. 
Comparison of changes in mean July concentrations predicted by the pf-RSM and 30 OOS 

CMAQ simulations. Units: ppb for MDA8 ozone and μg m−3 for PM2.5 and its components.
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Figure 6. 
Comparison of the change in average concentration in July 2016 for the pf-RSM and CMAQ 

for a 60% reduction in anthropogenic emissions of NH3, NOx, SO2, and VOC: (a) MDA8 

ozone, (b) PM2.5 nitrate, (c) PM2.5 sulfate, and (d) PM2.5 OM. Units: ppb for MDA8 ozone 

and μg m−3 for PM2.5 components. Statistics for pf-RSM and CMAQ comparison: MB: 

mean bias; 98E: 98th percentile of error; r: Pearson correlation coefficient.
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Figure 7. 
Change in (a) pH and (b) fine-particle water concentration for 60% reduction in NH3 

emissions.
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Figure 8. 
Comparison of the percent change in pollutant concentrations for four urban CBSAs during 

July 2016 as predicted by the pf-RSM and CMAQ. Units: ppb for MDA8 ozone and μg m−3 

for PM2.5 and its components.
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Figure 9. 
Comparison of the mean absolute concentrations predicted by the pf-RSM and CMAQ over 

all CBSAs in the domain during July 2016 for U.S. anthropogenic emission changes from 0 

to 100%. Units: ppbv for MDA8 ozone and μg m−3 for PM2.5 and its components.
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