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Background
The three-dimensional structure of protein plays an important role in providing infer-
ence of its molecular function, and is more conserved than sequence during evolution. 
Structure comparison can be used to identify functional and evolutionary relationship 
between proteins, which are very useful for functional annotation, structure-based drug 
design, protein–protein docking, and many other applications [1].

To compare two protein structures, we first need to find the best structural align-
ment between two proteins to initiate residue-level comparison. Many pairwise 
structure alignment (PSA) methods are developed in this aim, like DALI [2], CE [3], 
TM-align [4], etc. PSA can be further generalized to three or more structures, which 
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is noted as multiple structure alignment (MSTA). As a natural extension of PSA, 
MSTA can be built with progressive merging of PSA results [5], or based on iterative 
fragment alignment and assembly [6].

The task of finding alignment without a priori knowledge of equivalent residues is 
in general an NP-hard problem with no exact solution, which usually involves com-
putation intensive procedures such as dynamic programming. With the dramatic 
increase of protein structural data in the Protein Data Bank, computation time 
quickly becomes the bottleneck for large scale structure comparisons. For example, 
it would take several days to compare a newly solved protein structure iteratively 
against all existing ones stored in a large database, and even longer to build MSTA 
with a smaller group of proteins. As a consequence, there is an increasing demand for 
structure alignment tools that can not only provide accurate results, but also com-
plete large-scale requests with reasonable response time.

To tackle this problem, many newly developed structure alignment tools employ 
parallel computing to improve the computation efficiency. These parallel comput-
ing tools differ drastically both in hardware and software architecture, ranging from 
multi-core CPU, GPU to cloud platforms.

GPU is suited for fine-grained parallel tasks executed on parallel threads, for exam-
ple, ppsAlign [7] utilizes a hybrid inter- and intra-task parallel model to divide each 
PSA task into several independent seed alignments on different threads, while each 
block executes one or more PSA tasks. GPU-CASSERT [8] adopts a similar two-phase 
alignment strategy to ppsAlign and implements both the coarse and detailed align-
ment algorithms on the GPU with an extended set of structural features. Another 
GPU-based alignment tool named GPU-DALIX [9] achieves a speedup up to 20× over 
the sequential version of DALIX [10] by using a two-level parallel algorithm for the 
dynamic programming. These GPU-based tools are able to achieve good performance 
gain in alignment tasks, though limited by the capacity of a single GPU. Besides GPU, 
there are also other tools designed for dedicate hardware, e.g. the RckAlign [11] that 
runs on Single-Chip Cloud Computer from Intel. All these methods require a quasi-
full redesign of original alignment tools in order to fit specific architecture.

Cloud computing arises as another efficient computational framework for data 
intensive problems, it offers outstanding performance and scalability for processing 
large amount of data that are difficult to be handled by a single computer. Cloud com-
puting has already been used to solve various biological problems [12, 13], for exam-
ple, the classic Hadoop framework and its MapReduce paradigm have been combined 
with sequencing tools for different types of sequences such as DNA, RNA and pro-
teins [14]. Hadoop has also been applied to solve structural bioinformatic problems, 
and there are already some researches on Hadoop based protein structure alignment 
[15]. For example, Hung and Lin [16] implemented an alignment—refinement scheme 
for protein structure alignment using MapReduce with DALI and VAST [17], Mrozek 
et  al. developed Cloud4PSi [18] and later HDInsight4Psi [19] based on Hadoop/
HBase clusters deployed in Microsoft Azure public cloud. Another MapReduce-based 
computational solution, called H4P [20], was recently developed using Map-only pro-
cessing pattern for efficient mining of similarities in 3D protein structures.
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More recently, Apache Spark has emerged as a promising and more flexible frame-
work for the implementation of highly scalable parallel applications based on in-memory 
cluster computing. To maintain the scalability and high fault tolerance, Spark uses a dis-
tributed memory abstraction called Resilient Distributed Dataset (RDD), which offers a 
performance boost against Hadoop’s MapReduce. For example, SparkSW [21] is a spark-
based sequence alignment tool which directly implements the classic Smith-Waterman 
algorithm with Scala as part of the Spark driver. SparkBWA [22] is designed for DNA 
sequence alignment which uses existing BWA tools as internal libraries and calls them 
with the JNI mechanism. Other parallel computing tools such as SparkBLAST [23] and 
Spark-IDPP [24] employ Spark pipe to call standalone binaries at each worker node to 
achieve their goals. There are also many other Spark-based sequencing tools such as 
PASTASpark [25], MetaSpark [26], SpaRC [27], etc. (a comprehensive review can be 
found in [28]). However, to the best of our knowledge, no protein structure comparison 
tools have so far been implemented with Spark.

In this paper, we propose pmTM-align, a parallel protein structure alignment approach 
based on mTM-align/TM-align. We optimized two major steps in mTM-align with par-
allel computing tools: Spark-based PSA computation and OpenMP-based incremental 
alignment. pmTM-align is built on a hybrid architecture to take advantage of data-level 
parallelism by cloud computing, and fine-grained parallelism of multi-core CPU. The 
goal is to provide near real-time responses for pairwise and multiple structure alignment 
requests with large-scale input.

Implementation
Design overview

mTM-align is built with progressive merging of PSA results provided by TM-align. It 
has three main steps: (1) generation of PSAs and a distance matrix by TM-align, (2) con-
struction of a structure-based phylogenetic tree by UPGMA [29], and (3) progressive 
build of a MSTA by NWDP [30]. We focus on step 1 and 3 for efficiency optimization 
since they are the most time-consuming steps.

In this aim, we took a closer look on the computations involved in these steps. The PSA 
generation step mainly concerns grouping protein structures into pairs, then each pair 
is processed by TM-align in a sequential order. Since there is no dependency between 
protein pairs, these pairwise computations can be deployed on a distributed system to 
improve data efficiency.

Once the PSAs and phylogenetic tree is ready, the final multiple alignment is built 
by progressive merging of intermediate alignment results from leaf nodes to the root. 
Aligning an already constructed alignment with another alignment/structure is per-
formed using the NWDP algorithm. This task is essentially recursive as alignments at a 
given non-leaf node will be feasible only when its children nodes have been parsed. This 
process can be parallelized if the tree is not entirely skewed so nodes at the same depth 
can be processed simultaneously.

Based on the above analyses, we divide the algorithm into two computational stages 
depending on their type of dominant task: the iterative PSA stage and the incremen-
tal alignment stage. The whole application thus utilizes a hybrid architecture to solve 
the task in each stage (see Fig. 1). For the PSA stage, we decide to deploy the task on 
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a distributed system and choose Spark as the computing framework for its efficiency 
and scalability against other frameworks when dealing with large dataset. However, the 
incremental alignment stage is not suitable for distributed systems because the inter-
dependence of subtasks would induce lots of transmission of alignment results among 
worker nodes. For the incremental alignment stage, PSA results are downloaded auto-
matically from HDFS to a multi-cores computer, then a program is started to proceed 
multiple structure alignments with OpenMP.

Spark‑based pairwise structure alignment

Apache Spark outperforms Hadoop’s MapReduce scheme for iterative data process-
ing with its in-memory calculations by introducing an elastic distributed data structure 
abstraction (i.e. Spark RDD). Although Spark can be run in standalone mode and read 
data from the local file system, we choose to use Hadoop’s task scheduling and data 
management systems, i.e. YARN and HDFS, to have a more integrated distributed com-
puting environment.

A driver application receives user commands and manage the whole application exe-
cution, including data distribution, task execution, and the gathering of results from all 
worker nodes. The workflow of the PSA stage is as follows: protein structures are first 
uploaded to HDFS, then are read by the Spark program and transformed to RDDs. 
HDFS allows data sharing without per site data replication and ensures high throughput 
when Spark fetches data from it. The RDD collection is then divided into partitions and 
distributed to each worker node for PSA computation. The final result is collected and 
saved on HDFS, then downloaded as a single file as input to form the distance matrix. 
The detailed workflow is shown in Fig. 2. It should be noted that protein structures are 
grouped into pairs before sending for alignment tasks.

To integrate TM-align into the Spark platform, we chose a pipe-based architecture 
to call the TM-align program written in C++ as an external library. The procedure is 
shown in Algorithm  1: first, the wholeTextFiles function on line 2 reads all protein 
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Fig. 1  The two-stage design of pmTM-align. In stage 1, pairwise structure alignments (PSAs) are achieved on 
a Spark cluster. Next, another script was used to collect results from HDFS and then send to a local program 
for multiple structure alignment
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structures from files on HDFS, and then the cartesian function on line 7 creates protein 
pairs in a Spark RDD, which are transferred to the local TM-align with a pipe operator 
on line 13, and all comparison results of TM-align are finally collected from standard 
output to form a new RDD. The input and output of the original TM-align is redesigned 
to fit the IO requirements of Spark.

Fig. 2  The data workflow of the Spark-based PSA program. RDDs are formed by protein structures loaded 
from HDFS, and then send to Spark worker nodes for alignment computing
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This pipe operation has three advantages over other binding options. First, it requires 
minimum adaption of the original TM-align program, instead of writing wrapper code 
like JNI calls. Second, the Spark driver and the command line alignment tool is loosely 
coupled, so it is highly flexible and open to other alignment algorithms. Finally and more 
importantly, TM-align is computation intensive with heuristic search and dynamic pro-
gramming, it is more efficient to stay with C/C++ implementation than having a Scala 
replicate.

This Spark-based PSA implementation with TM-align can be easily deployed on a local 
cluster or public cloud with Spark’s default parameter settings. However, several param-
eters are to be fine-tuned if we want to further optimize the computation efficiency.

Multi‑thread computing with OpenMP

Data structure optimization

The phylogenetic tree used in the original mTM-align is based on an array-type 
data structure without direct link from a node to its direct children, each node can 
be accessed using its index and a string storing the name of the protein structure or 
a concatenation of names for non-leaf nodes. Although this representation is more 
compact in memory and allows quick sequential access to all nodes, it is neither effi-
cient for node searching, nor an ideal data structure for tree traversal.

So here a binary tree is used instead to store the generated phylogenetic tree, and 
the index of each node is kept to indicate whether it’s a leaf node or not (non-leaf 
nodes have an index larger than the number of input protein structures). With the 
binary tree data structure, the incremental alignment order of structures can be gen-
erated with standard post-order tree traversal (see Fig. 3).

Parallel tree traversal

The post-order traversal of the phylogenetic tree can be parallelized by OpenMP 
Tasks or Tasking which was introduced in OpenMP 3.0 [31]. OpenMP requires to 
insert some pragmas into the code to mark the section that should be executed by 
multiple threads, then tasks will get spread (approximately) evenly among all threads. 

Fig. 3  Data structure optimization. The nodes of phylogenetic tree are stored with a binary tree structure 
instead of an array
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The running process is managed by a task scheduler in a dynamic manner and trans-
parent to the programmer: if one thread has a backlog of tasks to do, its tasks can be 
reassigned to other idle threads; tasks can be executed immediately or be deferred, 
the execution order is only ensured by task synchronization.

In the case of post-order tree traversal, the pseudo code is shown in Algorithm 2. 
Starting from the root of the phylogenetic tree, each time the function Traversal is 
called, two new threads will be created respectively (by using “omp task” in front of 
the parallel region) for the processing of children nodes (except for the leaf nodes 
who have no children), the alignment computation on the current node starts only 
when its children finish their job on new threads (assured by the keyword taskwait). 
The pragma single prevents each thread to do a full traversal and taskwait assures the 
tree traversal order. A global cutoff parameter can be defined to limit excessive task 
subdivision, for example, cutoff = 3 means all nodes that have a distance to the root 
node larger than 3 will not create new threads for their children nodes.

Loop schedules

The incremental alignment and metrics computation steps have more than 20 for loops 
to compute the final alignment and various scores like the average RMSD and TM-
score, so they can be easily accelerated by using OpenMP’s for pragma, the pseudo code 
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is shown in Algorithm 3. The schedule clause can be used to control the assignment of 
loop iterations to the threads. The scheduling method can either be static or dynamic, 
we choose the latter for load balancing since protein structures usually have different 
lengths.

Results
In order to evaluate the benefits brought by pmTM-align, we conducted a series of 
experiments to quantify the performance gain in term of computation efficiency. 
Since pmTM-align contains two stages that are run with different tools, i.e. Spark and 
OpenMP, we designed the experiment accordingly in a two-stage manner. First, we 
assessed the speedup ratio for the Spark-based PSA at each input data scale under differ-
ent Spark settings. Second, with the best Spark configuration identified in previous step, 
pmTM-align was compared against mTM-align to observe the overall speedup.

Dataset

We chose the SABmark dataset (version 1.65) [32] for benchmark tests, which is a 
resource for alignments of sequences with very low to medium sequence similarity. 
SABmark contains two subsets: superfamily and twilight zone, each having groups of 
structures with pairwise sequence identity < 50% and < 25% respectively. SABmark is fre-
quently used as a standard benchmark for MSTA algorithms.

To test the scalability of pmTM-align for PSA tasks, we merged all groups of structures 
in SABmark and created randomly formed groups with different sizes. Start from 25, the 
size of the test set doubles until reaching 1600 structures. To test the full MSTA process, 
we also created more fined subsets from 20 to 100 with an interval of 20.
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Hardware and software setup

Experiments were carried out on China Telecom’s e-Cloud. Each server instance had an 
Intel(R) Xeon(R) Gold 6151 CPU@3.00 GHz with 32 cores, 128 GB RAM. Given three 
server instances, we created a master node and three worker nodes containing 32 Spark 
executors. Each executor had two cores and 4 GB memory distributed over the worker 
nodes.

We tested pmTM-align on Centos 7.6 using Spark 2.3.3 along with Hadoop 2.8.5 for 
its HDFS and YARN components. OpenMP was directly included in the GNU compiler 
and the version of G++ was 4.8.5.

Test on spark‑based PSA

Given a database of protein structures, there are usually two types of pairwise com-
parison scenarios: (1) 1-to-all comparison: a query structure is compared against all the 
rest to find similar structures to the query protein; (2) all-to-all comparison: exhaustive 
comparisons are performed on the whole database to find potential connections among 
sequence divergent proteins. The computation tasks involved in these two scenarios are 
indeed of the same nature, but the second one has a time complexity of O(n2) while the 
first one is O(n). In this study, we mainly focus on all-to-all comparison as a main com-
ponent of MSTA.

Our preliminary tests show that computing time can not only be influenced by the 
number of cores in the cluster, but also the number of partitions of Spark RDDs. So in 
this section we first present performance tests with different number of RDD partitions, 
then with a chosen partition configuration, we progressively add executors to conduct 
the scalability test.

Number of partitions

Spark manages data using partitions that help parallelize distributed data processing 
with minimal network traffic for sending data between executors. A partition represents 
a logical chunk of a Spark RDD. We used wholeTextFiles instead of textFile to read data 
from HDFS to preserve the relation between file name and content inside by loading 
the data into a PairRDD. The default configuration of wholeTextFiles creates only two 
partitions, which could be suboptimal as it leaves many cores unused. Here we tested 
the impact of number of input partitions with 1-to-all PSA tasks because the cartesian 
transformation in all-to-all tasks would change the number of partitions.

We launched a series of 1-to-all PSA tasks with subsets of 100, 400 and 1600 struc-
tures on all 32 executors. As we assumed, the default setting created only two partitions 
with up to 1600 structures. As shown in Table 1, the default setting is largely outper-
formed by user-specified number of partitions no matter the size of input data. Since 
there are totally 64 cores in the cluster, adding more partitions than the number of cores 
does not further improve the computation efficiency, on the contrary, will generate more 
overheads for task scheduling. As long as there are fewer partitions than the number of 
cores, Spark is not able to automatically repartition the RDD to make use of free cores.
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As mentioned above, the number of partition is not fixed in an all-to-all PSA task, the 
cartesian product transformation that generates structure pairs can potentially create 
lots of partitions, for example, an input dataset of 100 structures can lead to more than 
2000 partitions during execution, which is over subdivided as each partition will con-
tain less than five structure pairs. To deal with over subdivision, we can apply coalesce 
operation to force the fusion of partitions to a given number. So here we test the impact 
of partition fusion by all-to-all PSA tasks with subsets of 100, 400 and 1600 structures 
on all 32 executors. The initial partition number is set to 64 with or without partition 
fusion.

The results in Table  2 show that partition fusion with the coalesce operation can to 
some extent improve the computation efficiency against the default Spark behavior. 
However, the number of partitions after fusion should not be too small with respect to 
the scale of input computational tasks, otherwise the computation time will grow dra-
matically (e.g. 128 partitions with subset 400 and 1600).

Scalability test

Scalability test is performed by varying both the number of executors and the scale of 
input data to see how the Spark-based PSA implementation performs with different size 
of workload and how the performance evolves with increasing computing resources.

We conducted a series of tests with fixed number of input partitions (64) and increas-
ing number of executors (from 2 to 64) to plot the speedup ratio and parallel efficiency 
for all-to-all PSA tasks.

Table 1  The impact of input partitions

Total execution time (in s) and average execution time per pair (in s) are computed for 1-to-all PSA tests

Number 
of input 
partitions

Total execution time Average execution time per pair

Subset100 Subset400 Subset1600 Subset100 Subset400 Subset1600

Default (2) 25.54 42.29 97.28 0.25 0.11 0.06

64 22.61 22.12 26.41 0.22 0.06 0.02

128 21.57 23.95 25.69 0.22 0.06 0.02

256 22.93 23.69 25.6 0.23 0.06 0.02

Table 2  The impact of partition fusion

Total execution time (in s) and average execution time per pair (in s) are computed for all-to-all PSA tests
a  The default number of partitions are 2025, 3364 and 3969 for subset 100, 400 and 1600 respectively

Number 
of partitions 
after fusion

Total execution time Average execution time per pair

Subset100 Subset400 Subset1600 Subset100 Subset400 Subset1600

64 93.69 936.09 14,128.78 0.02 0.01 0.01

128 35.60 234.91 13,136.66 0.01 0.003 0.01

320 35.02 145.92 1702.24 0.01 0.002 0.001

640 36.71 135.97 1666.90 0.01 0.002 0.001

960 39.89 140.88 1696.40 0.01 0.002 0.001

1280 37.89 140.74 1652.48 0.01 0.002 0.001

Defaulta 42.46 144.38 1728.53 0.01 0.002 0.001
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As shown in Fig.  4a, the speedup ratio of PSA tasks scales almost linearly with the 
number of executors when the input data reaches about 400, and comes close to ideal 
speedup ratio with an input of 1600 structures. However, when there are very few struc-
tures to be aligned (around 20), it is not useful, even less efficient to deploy the task to 
more Spark executors. Regarding the parallel efficiency, or the speedup per processor, it 
drops with increasing number of executors as more overheads like communication cost 
are involved, although we observe some non-linearity at 16 executors for subset 400 (see 
Fig. 4b).

From the above results, we can see that except for very small input data, the Spark-
based PSA program is able to have good computing efficiency and scales well with differ-
ent size of datasets. However, it’s not trivial to choose an “optimal” number of executors 
for all tasks. Since parallel efficiency is not a prioritized concern, a good choice would be 
using all available computing cores to gain as much speedup as possible.

Test on end‑to‑end MSTA

With the best Spark configuration identified in previous section, we proceed the com-
parison between pmTM-align and the original mTM-align to see the actual benefits of 
parallel computing for end-to-end MSTA tasks. Here end-to-end means taking a group 
of structures as input, and giving the final alignment and associated scoring metrics as 
output. pmTM-align was benchmarked with and without OpenMP so we can see the 
contribution of Spark and OpenMP separately. pmTM-align without OpenMP (i.e. sin-
gle-threaded) is referred as pmTM-align-single hereafter for simplicity.

Fig. 4  Results of scalability tests by running all-to-all PSA tasks on 2 to 32 executors. a The speedup ratio; b 
parallel efficiency

Table 3  The benchmark on execution time (in s) for MSTA tasks

Dataset mTM-align pmTM-align-single pmTM-align

Subset20 17.66 25.81 25.73

Subset40 123.54 30.36 29.82

Subset60 361.87 33.41 32.22

Subset80 1335.21 41.59 39.04

Subset100 3531.87 55.79 49.02
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The three methods were compared using randomly sampled structures from the SAB-
mark dataset. As the computation load for all-to-all PSA grows quadratically with the 
number of structures and mTM-align may provide invalid results for large number of 
randomly selected proteins if their structures are too divergent to find common core 
regions, here we mainly used small subsets to illustrate the performance gain of our 
modified versions.

The results for subsets containing 20–100 structures are presented in Table  3. We 
can see that the total execution time was largely reduced with pmTM-align-single 
and pmTM-align for subsets with more than 40 structures. pmTM-align is the fastest 
method in most cases, though it got very similar performance with pmTM-align-single. 
The difference between these methods grows as the dataset becomes larger. In the best 
case of all tests, a 72-fold gain in performance can be achieved with subset 100. How-
ever, the modified versions were not as good as mTM-align when dealing with very small 
input data, e.g. subset 20. To better understand the exact source of performance gain or 
loss with different input data, we further analyzed the execution time of each method’s 
major steps and the result is plotted in Fig. 5.

Regarding mTM-align, the most time-consuming steps are all-to-all PSA and incre-
mental alignment, the latter can take up to 90% of total running time (see Fig. 5a). These 
two steps are both accelerated, as a result of parallel adaptation and data structure 
optimization.

To further understand the benefits of each modification that we apply to the original 
mTM-align, we first compared mTM-align with pmTM-align-single to see the influence 
of Spark and altered data structure. We can see in Fig. 5b, c that, Spark has indeed helped 
to largely improve the computation efficiency for all-to-all PSAs. While mTM-align 
needs more than 300 s to process a small dataset with 100 structures which generates 

a b c

Fig. 5  Total execution time for MSTA tasks. The performance benchmark on total execution time running 
MSTA tasks with a mTM-align, b single-thread pmTM-align, c pmTM-align
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4950 pairs, pmTM-align-single only needs around 40 s (about sevenfold boost). Figure 6 
also shows it’s not worth launching Spark when there are very few data to be processed. 
Besides the acceleration provided by Spark, optimization for phylogenetic tree with 
binary tree and ID-based indexing methods also had a great impact on the computing 
efficiency.

Then to assess the benefits of OpenMP, we compared pmTM-align-single and pmTM-
align by their execution time on incremental alignment (Fig. 7a) and metrics computa-
tion (Fig. 7b). Results show that both steps can be further accelerated despite the huge 
improvements that we already got from data optimization in pmTM-align-single. Here 
all 32 cores on a single server were allocated by OpenMP and the best speedup ratio was 
about 2 and 5.5 for incremental alignment and metrics computation respectively.

Discussion
From the results presented in previous section, we confirmed the benefits of using 
Spark and OpenMP for MSTA tasks. The final program named pmTM-align now allows 
datasets of medium or large sizes to be processed in a reasonable time. pmTM-align 
is divided into two computational stages and each stage is accomplished by the corre-
sponding computing environment forming a hybrid architecture.

The Spark-based PSA part yields significant improvements for TM-align based align-
ment tasks compared to the original serial version. The results of scalability tests (see 
Fig. 4) show that the Spark-based all-to-all PSA program can have both good speedup 
ratio and parallel efficiency when the size of input data exceeds a certain limit (e.g. over 
400 structures). We observed some irregularities with subset 400: the parallel efficiency 
had a peak at 16 executors. The exact cause is unclear, a possible source could be the dis-
tribution of executors on our specific hardware setup.
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As Spark is essentially designed to handle large datasets, when dealing with smaller 
datasets, we can still have acceptable speedup ratio, but the parallel efficiency drops 
quickly. From the scalability analyses, we recommend a configuration of no more than 
16 executors (each has 2 cores) when dealing with less than 100 input structures.

A specialty about this Spark-based PSA tool that has been previously discussed is the 
input partition issue. Since each structure file in the SABmark dataset is about 20 KB, 
Spark will only create two partitions if there are less than 12,000 structures to be loaded 
from HDFS. This default behavior leads to unbalanced workloads among executors, and 
thus impede efficient task execution. As shown in Table  1, the default setting can get 
similar results with user-specified conditions for about 100 structures, but this ineffi-
ciency quickly grows for more input data. So normally the number of input partitions 
can be left to its default value, but should be set to the number of cores available in the 
cluster for large input dataset.

It should be noted that, many Hadoop-based PSA tools exist, but were not com-
pared in this study for the lack of support for TM-align. It is thus impossible to draw 
conclusions on the comparison between Hadoop and Spark for PSA tasks based on the 
reported results in this study. Further comparisons are needed to run PSA on the same 
hardware, with the same alignment algorithm and datasets.

Regarding OpenMP, the loop parallelism with for pragma worked well and is the main 
source of performance gain shown in Fig. 7. Although the incremental alignment and 
metrics computation are no longer bottleneck steps for MSTA tasks after data struc-
ture optimization, the involvement of OpenMP is still useful when dealing with large 
datasets. However, the Task-based parallel tree traversal didn’t provide any visible accel-
eration, it’s sometimes even longer than the serial version. We believe there are two 
main reasons for this result: first, the computation complexity increases from leaf to 
root nodes as more structures need to be aligned together when “climbing” the tree, but 

ba

Fig. 7  The benefit of multi-thread computing with OpenMP. Comparison between pmTM-align-single and 
pmTM-align on execution time for a incremental alignment, b metrics computing
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parallelism appears mostly at leaf nodes. Second, the actual speedup ratio depends also 
on the shape and size of the binary tree, which is determined by the scale and structural 
similarity among the input proteins. In the best case, the tree is fully balanced, a theoret-
ical speedup ratio of (n − 1)/(2*h) can be reached, where n is the number of nodes and 
h = log2 (n + 1)—1 is the tree’s height. In the worst case, the tree is skewed in a way that 
alignment can only be built one after another. We observed the shape of phylogenetic 
trees built from our randomly sampled subsets and some groups in SABmark superfami-
lies set who share a common evolutionary origin, but no apparent rules can be find for 
the shapes of phylogenetic trees from these two different sources. So it’s recommended 
to keep the loop parallelism and remove the Task-based parallel tree traversal.

Finally, the optimal combination of design choices led us to Spark-based PSA plus par-
allel loops with OpenMP for doing MSTA tasks.

Conclusion
In this paper, we propose pmTM-align, which largely improves the computing efficiency 
of mTM-align by applying data structure optimization and integration of parallel com-
puting tools including Apache Spark and OpenMP. pmTM-align enables scalable pair-
wise and multiple structure alignment computing and offers more timely responses than 
mTM-align, it can not only process small to medium-sized data, but also has the poten-
tial to handle very large datasets if not limited by physical memory.

Currently pmTM-align employs a hybrid two-stage architecture as Spark can only 
handle the all-to-all PSA part, while the rest is computed locally with OpenMP support. 
In the future, efforts will be made to find ways to build phylogenetic tree and achieve 
incremental alignment in a distributed environment, or to combine Spark and GPU to 
further improve the computing efficiency for PSA tasks.

Availability and requirements

Project name: pmTM-align.
Operating system(s): Centos 7.6 or other Linux distributions.
Programming language: Scala, Shell and C++.
Other requirements:Spark 2.3.3 or higher, Hadoop 2.8.5 or higher, G++ 4.8.5 or 
higher, OpenMP 3.0.
License: BSD 3-clause Clear License.
Any restrictions to use by non-academics: No extra restrictions except BSD 3-clause 
Clear License.
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distributed file system.
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