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The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, 
in particular in the context of its relationship to insulin resistance and visceral obesity. 
Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in 
mice has resolved some of the related questions. CEACAM1 promotes insulin clearance 
by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a 
negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 
to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, 
global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, 
and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic 
of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a 
significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered 
by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic 
response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links 
NAFLD to insulin resistance and obesity.
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PHYSiOLOGiC ReGULATiON OF CARCiNOeMBRYONiC 
ANTiGeN-ReLATeD CeLL ADHeSiON MOLeCULe 1 (CeACAM1)

The CEACAM1 is a transmembrane glycoprotein that undergoes phosphorylation by the insulin 
receptor tyrosine kinase (1). Among insulin target tissues, CEACAM1 is predominantly expressed 
in the liver (2). This is consistent with its role in promoting insulin clearance, which occurs mostly 
in liver and to a lower extent in kidney. Consistent with the important role of the liver in regulating 
insulin and lipid metabolism, Ceacam1 transcription is coordinately regulated by insulin and fatty 
acids during fasting–refeeding conditions, with fatty acids at fasting repressing it via a mechanism 
depending on the peroxisome proliferator-activated receptor alpha (PPARα) (3, 4) and insulin 
inducing it in the first few hours of refeeding (3, 5).
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CeACAM1 PROMOTeS iNSULiN 
CLeARANCe AND MeDiATeS AN ACUTe 
NeGATive eFFeCT OF iNSULiN ON 
HePATiC DE NOVO LiPOGeNeSiS

Insulin is released from pancreatic β-cells in a pulsatile manner 
(6). The acute rise of insulin in the portal vein causes phospho-
rylation and activation of the insulin receptor tyrosine kinase in 
the hepatocyte (7, 8). This, in turn, leads to phosphorylation of 
substrates, including CEACAM1 (1). Upon its phosphorylation, 
CEACAM1 promotes receptor-mediated insulin uptake into 
clathrin-coated pits/vesicles of the hepatocyte to be eventually 
degraded and cleared from the blood (9, 10). This process medi-
ates the rapid extraction of ~50% of secreted insulin through its 
first pass into the liver.

Internalization of phosphorylated CEACAM1 as part of the 
insulin-receptor complex leads to its binding to fatty acid syn-
thase (FASN) (11), a key enzyme that catalyzes the conversion 
of malonyl-CoA to palmitic acid during de novo lipogenesis. 
CEACAM1 association downregulates FASN enzymatic activity 
and restricts hepatic de novo lipogenesis, likely to protect the liver 
against the potential lipogenic effect of approximately twofold to 
threefold higher level of insulin in the portal than the systemic 
circulation (12). Thus, CEACAM1 phosphorylation by the insu-
lin receptor in response to acute rise of insulin constitutes a key 
mechanism that underlies the maintenance of physiologic insulin 
levels, at the same time as mediating a suppressive acute effect of 
insulin on lipogenesis in liver. Combined, this restricts hepatic 
lipid production under normal physiologic conditions; assign-
ing a major role for CEACAM1 in integrating the regulation of 
insulin and lipid metabolism in the hepatocyte. Under condi-
tions of hyperinsulinemia, the pulsatility of insulin secretion is 
compromised (6), limiting insulin signaling in the hepatocyte, 
including CEACAM1 phosphorylation, and subsequently, the 
acute negative effect of insulin on FASN activity is removed to 
contribute to hyperinsulinemia-driven lipogenesis (11). This 
paradigm emphasizes the contrast between the previously unap-
preciated suppressive effect of acute insulin pulses on fatty acid 
synthesis and the well-recognized positive effect of chronically 
elevated levels of insulin on lipogenic genes’ expression by the 
coordinated action of sterol regulatory element-binding protein 
(SREBP1c) (13) and the upstream stimulatory factor 1 (14). 
Suppression of hepatic FASN activity by pulsatile insulin release 
proposes to include elevation in de novo lipogenesis as a manifest 
of hepatic insulin resistance in addition to increased hepatic glu-
cose production (via glycogenolysis and gluconeogenesis) (8, 15).

MUTATiNG CeACAM1 iN LiveR  
CAUSeS iNSULiN ReSiSTANCe AND 
NON-ALCOHOLiC STeATOHePATiTiS 
(NASH)

Mice with liver-specific inactivation (L-SACC1) or with global 
null mutation of Ceacam1 (Cc1−/−) exhibit impairment in insulin 
clearance leading to chronic hyperinsulinemia and systemic 

insulin resistance (owing to downregulation of insulin receptor 
expression) (16–18). They also exhibit elevated lipid production 
in liver and redistribution to the white adipose tissue to be stored; 
thus, contributing to visceral obesity and increased release of free 
fatty acid (FFA) and adipokines (19).

Mutant Ceacam1 mice also develop inflammation in 
liver, in part due to the loss of the anti-inflammatory effect of 
CEACAM1 (20), apoptosis, and oxidative stress. Additionally, 
they manifest chicken-wire bridging fibrosis, a characteristic 
feature of NASH, even when fed a standard chow diet, making 
them rare mouse models of spontaneous fibrosis on the C57BL/6J 
genetic background. The underlying mechanisms of fibrosis in 
Ceacam1 mutants are the subject of intense investigations in our 
laboratories.

DieTARY FAT ReDUCeS HePATiC 
CeACAM1 eXPReSSiON iN C57BL/6J 
MiCe

In uncomplicated obesity with low-grade insulin resistance, FFA 
are mobilized from white adipose tissue mainly to the liver to be 
removed by β-oxidation (21). This is supported by experimental 
evidence in rodents showing occurrence within few days of the 
initiation of high-fat intake as a result of dysregulated hypotha-
lamic control in the adipose tissue (22). While this early lipolysis 
occurs in the absence of insulin resistance in the adipose tissue, 
the released FFA can rapidly initiate hepatic insulin resistance 
(23), in part by activating PKCδ-mediated pathways (24).  
As the nutritional burden persists, hepatic lipotoxicity develops 
in response to progressively compromised β-oxidation relative 
to re-esterification. Concomitantly, hepatic insulin resistance 
progresses into systemic insulin resistance to be manifested in 
peripheral tissues, including the white adipose tissue with ensu-
ing advancement of a pro-inflammatory state (25).

Recent reports from our laboratories show that high-fat diet 
progressively reduces hepatic CEACAM1 level in C57BL/6J mice 
until it reaches >50% after 3 weeks, at which point, insulin clear-
ance is impaired and hyperinsulinemia develops with attendant 
hepatic insulin resistance and steatohepatitis (26). Consistent 
with the key role for CEACAM1 in diet-induced insulin resist-
ance and hepatosteatosis, adenoviral-mediated redelivery of 
wild-type, but not phosphorylation-defective CEACAM1 to the 
liver, completely reverses these metabolic abnormalities even 
while maintaining mice on a high-fat diet (27), demonstrating 
a causative role for the decrease in hepatic CEACAM1 level in 
sustaining diet-induced systemic insulin resistance and hepatic 
steatosis. That impairment of insulin clearance plays a significant 
role in hepatic insulin resistance in response to high-fat diet has 
recently been demonstrated in Asian men (28). Using a two-step 
hyperinsulinemic-euglycemic clamp, Bakker et  al. (28) showed 
that in contrast to age- and sex-matched Caucasians, young and 
healthy South Asian men develop impairment of insulin clear-
ance as well as hepatic insulin resistance in the absence of other 
metabolic alterations in skeletal muscle and white adipose tissue 
following 5 days of a high-fat Western diet intake. Several other 
studies in humans (28) as well as dogs (29) have supported the 
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FiGURe 1 | A pivotal role for carcinoembryonic antigen-related cell 
adhesion molecule 1 (CeACAM1) reduction in the pathogenesis of 
fatty liver disease and obesity. Reduction or mutation of Ceacam1 in the 
liver results in decreased insulin clearance from the portal circulation. 
Reduced clearance leads to hyperinsulinemia followed by insulin resistance 
(owing to downregulation of the insulin receptor) and increased hepatic 
lipogenesis. Elevation in hepatic lipogenesis leads to lipid redistribution to the 
while adipose depot to increase visceral adiposity. This leads to 
hyperleptinemia, which along with hyperinsulinemia, increases food intake 
and energy imbalance, further exacerbating obesity. Hyperinsulinemia drives 
hepatic lipogenesis and fat accumulation in liver.
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findings that defective hepatic insulin clearance is implicated in 
diet-induced insulin resistance.

The decrease in hepatic CEACAM1 by high-fat diet is attrib-
uted to lipolysis-derived FFA, in agreement with reducing hepatic 
CEACAM1 levels by intralipid–heparin infusion (24) and the 
negative effect of FFA on insulin clearance (30, 31). The underly-
ing mechanism of CEACAM1 repression by FFA is via PPARα 
activation (4). In the presence of normoinsulinemia, this provides 
a positive feedback mechanism on fatty acid β-oxidation as it 
limits the negative effect of CEACAM1 on FASN activity (11) and 
subsequently, reduces malonyl-CoA-mediated inhibition of fatty 
acids translocation to the mitochondria (3). When CEACAM1 
level is reduced by >50%, hepatic insulin clearance fails and 
chronic hyperinsulinemia develops, causing hepatic insulin 
resistance, at least in part by downregulating insulin receptors in 
the hepatocyte (32, 33) and triggering de novo lipogenesis by acti-
vating SREBP1c-mediated transcription of lipogenic genes (13), 
including acetyl-CoA carboxylase (ACC), a limiting enzyme in 
lipid biosynthesis. Elevation in ACC level (and activity) induces 
malonyl-CoA level, which in turn, inhibits fatty acid transport 
to the mitochondria and β-oxidation. Potentially contributing 
to the downregulation of β-oxidation under hyperinsulinemic 
conditions is the maintenance of insulin-stimulated phospho-
rylation and inactivation of Foxa2-mediated suppression of the 
transcription of genes involved in fatty acid β-oxidation (34, 35). 
Collectively, this limits fatty acid β-oxidation while promoting 
de novo lipogenesis, leading to hepatosteatosis. With the loss of 
the potential counter-regulatory anti-inflammatory function of 
CEACAM1, this causes a more robust change in the inflammatory 
milieu of the liver and steatohepatitis develops. Together, the data 
identify reduction in CEACAM1 expression as a novel molecular 
underpinning of the integrated regulation of lipid oxidation and 
hepatic insulin resistance (gluconeogenesis) by FFA mobilization 
from white adipose tissue (36–38).

ReDUCeD HePATiC CeACAM1 LeveLS 
CAUSeS OBeSiTY BY CONTRiBUTiNG  
TO eNeRGY iMBALANCe

High-fat diet represses hepatic CEACAM1 levels to impair 
insulin clearance and cause hyperinsulinemia that in turn, drives 
increased hepatic lipid production and output to the white adipose 
depot for storage (39). This is consistent with the well-accepted 
association of hyperinsulinemia and liver steatosis with high 
plasma Apolipoprotein B levels and visceral obesity in humans 
and rodents (40–45). Together with visceral obesity, sustained 
hyperinsulinemia reduces glucose transporter 4-mediated glu-
cose transport to cause insulin resistance in adipose tissue (46), 
as supported by hyperinsulinemic-euglycemic clamp analysis in 
Ceacam1 mutants (16–18, 47) and in the diet-induced model (26).

Consistent with the finding that reduction of hepatic 
CEACAM1 plays a critical role in diet-induced altered meta-
bolic response, transgenic protection of hepatic CEACAM1 in 
L-CC1 mice prevents hyperinsulinemia, insulin resistance, and 
hepatosteatosis in response to high-fat diet (26). It also limits the 
size of adipocytes and total fat mass by countering the negative 

effect of high-fat diet on energy expenditure and spontaneous 
physical activity (26). Similarly, adenoviral-redelivery of wild-
type CEACAM1 in the liver protects energy balance against 
high-fat intake, thereby reversing the gain in body weight and 
visceral adiposity (27). Given that CEACAM1 is not detected in 
the adipocyte at the protein level (2), it is likely that the gain-
of-function of hepatic CEACAM1 drives this positive effect on 
energy expenditure and adipose tissue biology (limited adipocyte 
size, fibrosis, and inflammation) (27, 39). The beneficial effect of 
hepatic CEACAM1 gain-of-function on insulin response in white 
adipose tissue could be mediated, at least in part, by the rise in 
plasma FGF21 (48, 49) that induces the locomotor activity (50) 
and energy expenditure (51, 52).

Both L-SACC1 and Cc1−/− mutant mice display visceral obesity 
and a higher body mass than their wild-type counterparts (16–18). 
Visceral obesity, which is partly caused by elevated hepatic lipid 
production and redistribution to white adipose tissue (19), leads 
to hyperleptinemia, which could in turn, alter response to leptin 
and cause energy imbalance. Consistently, global Cc1−/− null mice 
develop elevated production and secretion of leptin from their 
expanded while adipose depot in addition to increased total fat 
mass and obesity resulting from hyperphagia and reduced spon-
taneous physical activity (53). In addition to leptin resistance, 
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hyperinsulinemia also contributes to the obesity phenotype in 
these mice, at least in part, by inducing hypothalamic FASN level 
and activity (53), which in turn, causes hyperphagia (54) and 
lower physical activity (55, 56). Together, this demonstrates that 
altered CEACAM1-dependent insulin clearance pathways drive 
hyperinsulinemia-mediated link of hepatic steatosis to visceral 
obesity and increased total fat mass.

CONCLUDiNG ReMARKS

The mechanisms underlying the pathogenesis of non-alcoholic 
fatty liver disease (NAFLD) in humans remain unclear (57) 
and whether insulin resistance plays a role in NAFLD has been 
debated, owing to the lack of appropriate animal models that 
replicate all features of the human disease and its progression to 
NASH (58, 59). As summarized in this review, our laboratory has 
demonstrated in the last couple of decades that loss in hepatic 
CEACAM1 expression and its defective phosphorylation impair 
insulin clearance and subsequently, play a pivotal role in insulin 
resistance, fatty liver disease, and obesity (Figure 1) (9, 10, 16–19, 
25, 27, 39, 53, 60, 61). Demonstration of a role for impaired insu-
lin clearance in insulin resistance in human disease is emerging 
(62–65). In this regard, compromised hepatic insulin extraction 
has been shown to constitute a risk factor for obesity (66, 67), 
type 2 diabetes (68), metabolic syndrome (65, 69), and fatty liver 
disease (70). The study by Lee (71) showing a marked decline in 
hepatic CEACAM1 levels in patients with high-grade fatty liver 
and obesity coupled with our mechanistic studies demonstrating 
that redelivering CEACAM1 to the liver reverses diet-induced 
insulin resistance, fatty liver, and visceral obesity (27) emphasizes 
a critical role for CEACAM1 in metabolic control. Of note, while 

our studies show that reduction of hepatic CEACAM1 causes 
insulin resistance, hepatosteatosis, and visceral obesity, they 
also show that diet-induced visceral obesity represses hepatic 
CEACAM1 to cause fat accumulation in liver and insulin 
resistance (3, 26, 27). Further emphasizing the metabolic role of 
hepatic CEACAM1, liver-specific overexpression of CEACAM1 
curbs the metabolic abnormalities caused by high-fat diet and 
prevents insulin resistance and hepatosteatosis (26). Similarly, 
adenoviral-mediated redelivery of CEACAM1 to the liver reverses 
diet-induced metabolic derangement (27). Collectively, this posi-
tions the loss of hepatic CEACAM1 expression (and its resulting 
hyperinsulinemia and insulin resistance) on the crossroad of the 
pathogenesis of NAFLD and obesity.
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