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Abstract: Smartwatches are being increasingly used in research to monitor heart rate (HR). However,
it is debatable whether the data from smartwatches are of high enough quality to be applied in
assessing the health impacts of air pollutants. The objective of this study was to assess whether
smartwatches are useful complements to certified medical devices for assessing PM2.5 health impacts.
Smartwatches and medical devices were used to measure HR for 7 and 2 days consecutively, respec-
tively, for 49 subjects in 2020 in Taiwan. Their associations with PM2.5 from low-cost sensing devices
were assessed. Good correlations in HR were found between smartwatches and certified medical
devices (rs > 0.6, except for exercise, commuting, and worshipping). The health damage coefficients
obtained from smartwatches (0.282% increase per 10 µg/m3 increase in PM2.5) showed the same
direction, with a difference of only 8.74% in magnitude compared to those obtained from certified
medical devices. Additionally, with large sample sizes, the health impacts during high-intensity ac-
tivities were assessed. Our work demonstrates that smartwatches are useful complements to certified
medical devices in PM2.5 health assessment, which can be replicated in developing countries.

Keywords: wearable smart devices; smartwatches; wearables; personal heart rate monitoring;
photoplethysmography; portable PM sensing devices; particles and health

1. Introduction

Smartwatches have become popular over the past decade due to their real-time health
monitoring functionality, including that for heart rate (HR). Around 68.6 million smart-
watches were sold in 2020, and this figure is expected to reach 157.2 million by 2026 [1].
As the general population is increasingly recognizing smartwatches from advertising,
consumer-grade smartwatches have been used in health research for HR monitor since
2014 [2,3]. Many types of smartwatches have an optical HR sensor that uses photoplethys-
mography (PPG) to measure how much blood the heart is pumping under the surface of
the skin, since PPG is a low-cost, simple, and portable technology [4].

Some studies have examined the accuracy of wearable PPG sensors compared to a
reference method, i.e., electrocardiogram (ECG), during different types of activities [3,5–7].
Although the concordance of HR measurements usually decreases as physical activity inten-
sity increases for most brands of smartwatches [8], it is difficult to assess how smartwatches
function during different activities. Despite these problems, smartwatches may be useful
for longer HR monitoring periods given their low interference with daily activities [6,9].

Particulate matter with an aerodynamic diameter of less than or equal to 2.5 µm
(PM2.5) may affect the balance of the automatic nervous system, which may then cause
an increase in HR and a decrease in heart rate variability (HRV) [10]. A meta-analysis
including studies between 1990 and 2017 indicated that HR is a predictor of cardiovascular
morbidity and mortality in the global population or in patients with cardiovascular and
cerebrovascular diseases, even after adjustment for the most important cardiovascular risk
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factors [11]. In addition, according to a recent review paper, an increase in the resting HR
is associated with increased risk of incident hypertension, especially in individuals with an
HR > 80 bpm [12]. The Gutenberg Health Study (GHS), a population-based prospective
cohort study in Midwestern Germany, also indicated that increased risk is present in
subjects with a HR > 64 bmp, with a hazard ratio of 1.29 per 10 bpm increase in HR [13].
Chen et al. [14] also indicated that every beat increase in HR at baseline was associated
with a 3% higher risk for all-cause death, 1% higher risk for CVD, and 2% higher risk for
CHD in the general male population. Therefore, in addition to the HRV, the HR seems to
be an indicator of adverse impacts of PM2.5.

Some panel studies demonstrated that enhanced HR is associated with increased
PM2.5 as assessed by certified medical devices [15,16]. However, subjects usually wore
these devices only for 1 to 2 day, due to the skin irritation caused by the electrode gel. It
would be convenient if we would be able to apply smartwatches in PM2.5 health studies.
A previous study showed that HR data obtained by smartwatches were not numerically
equal to those obtained by certified medical devices [6]. However, as long as the estimated
health damage coefficients, which are defined as the coefficients of adverse health impacts
caused by PM2.5, indicate the same direction and show similar magnitudes in the regression
models as those obtained via certified medical devices, smartwatches would still be useful
complements for those vulnerable or high-exposure subpopulations who may be unable to
wear traditional HR monitors.

Compared to certified medical devices, wearable smartwatches with a PPG sensor
are more comfortable over a longer monitoring period. HR data collection is benefitted
if it can be achieved under conditions with minimal interference from the monitoring
technology. Until now, no studies have used smartwatches with a PPG sensor to evaluate
the PM2.5–HR relationship. Therefore, we aimed to assess the applicability of smartwatches
in PM2.5 health assessment by evaluating whether smartwatches are good complements to
certified medical devices for PM2.5 health studies, especially for developing countries. If
smartwatches are affordable complements to certified medical devices, they will facilitate
environmental health research in developing countries. Specifically, we wanted to assess
(1) whether the tendency of the estimated PM2.5–HR health damage coefficients (direction
of impacts) are the same when assessed via a certified ECG device versus a commercial
smartwatch, and (2) whether the magnitudes of the estimated damage coefficients are
similar when using certified medical devices versus smartwatches for healthy adults.
In addition, the relationships between PM2.5 and HR were evaluated across different
activity levels to demonstrate the advantages of large sample sizes to enable the assessment
of the health impacts in more subpopulations in different categories of exposures or
demographics.

2. Materials and Methods
2.1. Study Population

A total of 49 subjects living in an urban community within a 1 km radius in South-
ern Taiwan were recruited in 2020. The inclusion criteria were (1) being 40 to 75 years
old, (2) being a non-smoker, and (3) having no history of cardiovascular disease (CVD).
Among these 49 subjects, 55.1% were aged 40–64 years, 59.2% were women, and 61.2%
had a BMI ≥ 24 kg/m2. Of the total number of subjects, 34.7% were housewives or retired,
16.3% were factory workers, 18.4% were office workers, and the rest worked in the ser-
vice industry. The subjects were asked to follow their daily routines. Written informed
consent and answers to a questionnaire regarding their socio-demographic characteristics
and living environment were provided by each subject prior to monitoring. This study
was reviewed and approved by the Institutional Review Board of Academia Sinica (IRB
No.: AS-IRB-BM-18053).
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2.2. PM Monitoring

For 7 consecutive days, each subject was asked to carry a small (135 × 70 × 40 mm)
and lightweight (153 g) low-cost sensing (LCS) device, i.e., AS-LUNG-P (Academia Sinica-
Lung-Portable version, integrated by our team), for personal PM2.5 and temperature
monitoring. A light-scattering-based PM2.5 sensor (PMS3003, Plantower, Beijing, China),
a temperature/humidity senor (SHT31, Sensirion AG, Staefa ZH, Switzerland), and a
3-axis acceleration sensor (ADXL345B, Analog Devices, Inc., Norwood, MA, USA) were
integrated into the AS-LUNG-P. To increase mobility, AS-LUNG-P was connected with a
mobile battery as a power supply. In addition, AS-LUNG-P and the mobile battery were
carried in a customized bag by the subjects. Detailed specifications and the performances
of AS-LUNG-P were published previously [16–18].

Each AS-LUNG-P was evaluated in side-by-side comparisons with the research-grade
instrument, GRIMM Model 1.109 (GRIMM Aerosol Technik Ainring GmbH & Co, Ainring,
German), in a hood or chamber in the laboratory before application in the field according
to the procedures described earlier [18,19]. The correction equations for AS-LUNG-P were
obtained under the conditions of 27.0–31.6 ◦C and 60.9–74.4% relative humidity (RH),
obtaining an R2 of 0.99 [18]. In addition, the converted measurements of AS-LUNG sets
were compared with data from the side-by-side GRIMM instruments in the field under
the conditions of 25.9–40.9 ◦C and 43.4–93.8% RH, obtaining an R2 of 0.86 [19]. These
results indicated the correction equations obtained in the laboratory were applicable in
the field. The ranges of temperature and humidity in the laboratory and in previous
field evaluation are close to the ranges in this study (14.5–42.6 ◦C and 28.3–98.7% RH).
Thus, it was appropriate to convert our AS-LUNG measurements to research-grade data
with correction equations obtained in the laboratory conditions. As the R2 values of
the correction equations (ranging from 0.1 to 200 µg/m3) were high (0.983–0.993), the
feasibility of using the AS-LUNG-P with data correction was indicated. All the AS-LUNG-
P data used in this work were converted to research-grade data using their respective
correction equations.

2.3. HR Monitoring

Each subject was asked to wear a smartwatch (Garmin Forerunner 35, Garmin Ltd.,
Olathe, KS, USA) on their left wrist for HR monitoring for 7 consecutive days. The
Garmin Forerunner 35 is a commercially available smartwatch [20] that employs optical
HR measurement technology, i.e., PPG with green LED lights on the bottom. The sampling
rate increases when an activity is detected, and varies depending on the level of activity [21].
After uploading the recorded HR data to Garmin Connect via the internet, the HR data can
be downloaded from the application program’s interface.

During the same monitoring period, the subjects were asked to wear ECG monitor
devices (RootiRx, Rooti Labs Ltd.,Taipei, Taiwan) for 2 consecutive days. In other words,
there were two days that subjects wore both smartwatches and RootiRx. RootiRx is a novel
ECG patch monitor device with certifications from the EU, the US, and Taiwan [22]. A
previous study demonstrated high correlation (98%) in measured beat per minute between
RootiRx and a standard 12-lead Holter in 33 healthy subjects [23]. When a monitoring
session finished, the recorded ECG data were uploaded via WiFi. After that, data were
automatically analyzed using the empirical proprietary algorithms of Rooti Labs Ltd. to
calculate the HR data. Research scientists in Rooti Labs Ltd. reviewed each batch of data
and discussed abnormal observations with our team immediately. In our previous work,
two subjects were removed from the datasets since we found that this subject had certain
heart conditions. In the current work, no subject was removed due to abnormal conditions.
The sampling rate of the RootiRx was 500 Hz.

A time-activity diary (TAD) was completed in 30 min intervals by each subject dur-
ing the monitoring period concerning microenvironments, ventilations, activities, and
PM-related exposure sources. The activities recorded were essential to this study, and
were categorized as follows: resting (without doing any activity), commuting, working,
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cooking, worshipping, shopping, exercising (jogging, cycling, workouts, etc.), eating,
bathing/showering, sedentary activities (watching television or movies, reading books,
playing sedentary video games, chatting, etc.), and other activities (the participants were
asked to specify). Every subject’s TAD was checked daily by a well-trained interviewer.

2.4. Statistical Analysis

Data analysis was performed using R Version 3.5.2 (The R Foundation, Austria, 2018).
The 5 min means of measurements were used in this study. For each 5 min segment, the
mean HR measurements <40 and >200 beats/min were excluded to reduce the bias caused
by artifacts in HR measurements. The final sample sizes of the 5 min mean measurements
were 63,061 and 15,294 over 7 and 2 days, respectively, after excluding data during sleeping
and raining hours.

Previous works demonstrated that activity is an important factor in PM2.5 health as-
sessments [16,17]. Therefore, the following models incorporate activity intensity, calculated
using Equation (E.1):

Activity intensity =
√

X2 + Y2 + Z2 (E.1)

where X, Y, and Z are the maximum accelerations in the left–right, cranio–caudal, and
dorso–ventral dimensions, respectively, obtained from the motion sensors in the RootiRx
and AS-LUNG-P over 7 and 2 days, respectively. As the Garmin Forerunner 35 does not
have a built-in motion sensor, the activity intensity measurements obtained from the AS-
LUNG-P were used in the model for assessing the impacts of PM2.5 on HR obtained from
Garmin Forerunner 35 as an adjustment term. Notably the AS-LUNG-P was carried in a
bag located near the chest, instead of being attached to the body like the RootiRx. Therefore,
the movements of the AS-LUNG-P may be different to those of the RootiRx, which likely
measured the real activity levels of the subjects. Therefore, a correction equation was
established to convert the activity intensity measurements obtained from AS-LUNG-P to
RootiRx-comparable measurements to examine their correlation. Additionally, the subjects
were allowed to place the AS-LUNG-P on a nearby table when they were engaged in
activities in the same environment, such as reading, watching television, sleeping, etc.
The underestimation of activity intensity with AS-LUNG-P on nearby tables needed to be
removed; the activity intensity measurements during the sleeping period were used as a
proxy to remove these underestimates. We found that the activity intensity measurements
during sleeping periods were mostly below 1100 mG (99.4%) when the AS-LUNG-P was
placed on a table (Figure S1). To avoid these errors, activity intensity measurements
below 1100 mG were excluded from the subsequent correction equations for the RootiRx
and AS-LUNG-P. The correction equation is shown in the Supplementary Information
(Figure S2).

According to the results of our previous work [16,17], demographic factors are impor-
tant in assessing the health impacts of PM2.5. Therefore, the Wilcoxon rank sum test was
used to compare the PM, HR, and activity intensity data from different demographic groups
due to the skewed distributions. In addition, the HR measurements from smartwatches
may differ between activities undertaken [6]. Spearman’s rank correlation coefficients (rs)
were used to examine the correlations between the Garmin Forerunner 35 HR (G-HR) and
the RootiRx HR (R-HR) throughout various daily activities, as obtained from TADs.

Based on our previous work [16], a generalized additive mixed model (GAMM)
was applied to assess the associations between PM2.5 concentration and HR data, as in
Model (M.1):

log(HR) = β0 + β1PM2.5 + β2Age + β3Gender + β4BMI + β5Temperature + f1(AI) + f2(Time) + γsubject + ε (M.1)

where HR refers to G-HR used for 7 day or R-RH used for 2 day monitoring, which
were log10-transformed to improve their normality; β0 is the intercept; βi denotes the re-
gression coefficients of PM2.5, age (40 to 64 years or 65 to 75 years), gender (male or female),
body mass index (BMI; normal-weight and overweight/obese groups), and temperature;



Sensors 2021, 21, 4585 5 of 17

and f j denotes the smooth functions of activity intensity (thin plate spline function) and
time of day (penalized cubic regression spline function). According to the definition of
the Health Promotion Administration in Taiwan, BMI < 24 kg/m2 was defined as the
normal-weight group and BMI ≥ 24 kg/m2 was defined as the overweight/obese group.
In addition, the first-order autocorrelation of time of day was controlled in the model.
γ is the random effect of the subjects, which was controlled in the model to account for
individual difference, and ε is the error term. The effects of PM2.5 on HR are presented as
percentage changes per interquartile range (IQR) increase, and 95% confidence intervals
(CI) are included. Our results were considered to be statistically significant if the p-value
was <0.05.

To further assess the associations between the PM2.5 and G-HR data captured during
activities of different intensities, the activities included in the TAD were categorized into
three groups: (1) resting, (2) low-intensity, and (3) moderate- to high-intensity activities.
For the resting group, the data obtained during sleep were excluded due to the lack
of actual activity intensity data available from the AS-LUNG-P, which was placed on
the bedside during sleep. The low-intensity activities included commuting, working,
cooking, worshipping, shopping, eating, bathing/showering, sedentary activity, and other
activities. Finally, exercising was assigned to the moderate- to high-intensity group. The
activity intensity measurements were 2120 ± 1310, 2090 ± 1080, and 3030 ± 1850 mG
for resting, low-intensity, and moderate- to high-intensity activities, respectively. This
activity evaluation was essential for determining whether PM2.5–HR relationships should
be assessed separately during engagement in activities of different categories. This detailed
evaluation was possible since smartwatches collect larger sample sizes of HR data than the
medical devices used.

3. Results
3.1. PM2.5 Concentration, HR, and Activity Intensities

According to the time-activity diary, the percentage of the time that subjects did
not carry the AS-LUNG-P was very low (2.4%). Among these 49 subjects, there were
10 subjects with complete data during the entire monitoring period (20.4%). For those
subjects who had lost partial data (n = 39), 37 subjects (94.9%) had a loss rate <6%, with the
highest loss rate being 0.43%. The highest loss rate for AS-LUNG-P was found in a female
subject (0.43%) due to the inconvenience of carrying the AS-LUNG-P when working in the
kitchen. In addition, the overall data collection rates were 96.2% and 94.4% for R-HR and
G-HR, respectively.

Table 1 shows the PM2.5 concentration, HR, and activity intensity according to the
subjects’ characteristics. In the 7 day monitoring period, the overall 5 min means of PM2.5
concentration, G-HR, and activity intensity from the AS-LUNG-P were 21.5 ± 11.6 µg/m3,
85.1 ± 16.6 bpm, and 1060 ± 1150 mG, respectively. In the 2 day monitoring period, the over-
all R-HR and activity intensity of the RootiRx were 81.9 ± 12.3 bpm and 1930 ± 440 mG,
respectively. The results indicate that, in general, the personal PM2.5 concentration from
G-HR and R-HR (Table 1a), and the activity intensity from AS-LUNG-P and RootiRx
(Table 1b), were statistically significantly different between the different age, gender, and
BMI groups. Therefore, these factors were included in the subsequent GAMM analysis.

Table 1. (a) PM2.5 concentration, heart rate, and (b) activity intensity according to subjects’ characteristics.

(a) PM2.5 (µg/m3) G-HR (bpm) a R-HR (bpm) b

Characteristics n c Mean ± SD d

(Midian)
n c Mean ± SD d

(Midian)
n c Mean ± SD d

(Midian)

Age (years)

40 to 64 years (27) e 35,846 21.8 ± 12.8 *
(20.3) 35,846 85.7 ± 16.2 *

(83.0) 7731 83.0 ± 12.4 *
(83)

65 to 75 years (22) e 27,215 21.2 ± 9.8 (20.0) 27,215 84.2 ± 16.9
(82.0) 7563 80.9 ± 12.2

(80.0)
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Table 1. Cont.

(a) PM2.5 (µg/m3) G-HR (bpm) a R-HR (bpm) b

Characteristics n c Mean ± SD d

(Midian)
n c Mean ± SD d

(Midian)
n c Mean ± SD d

(Midian)

Gender

Male (20) e 24,844 21.4 ± 12.1 *
(19.5) 24,844 85.0 ± 16.1

(82.0) 6170 83.0 ± 12.9 *
(82.0)

Female (29) e 38,217 21.6 ± 11.3
(20.6) 38,217 85.1 ± 16.8

(83.0) 9124 81.2 ± 11.9
(81.0)

Body mass index (BMI, kg/m2)

<24 (19) e 25,811 21.8 ± 10.0 *
(20.5) 25,811 82.4 ± 15.8 *

(80.0) 5811 78.4 ± 11.5 *
(77.0)

≥24 (30) e 37,250 21.3 ± 12.6
(20.0) 37,250 86.9 ± 16.7

(84.0) 9483 84.1 ± 12.3
(83.0)

(b) Activity intensity (AS-LUNG-P) f (mG g) Activity Intensity (RootiRx) h (mG g)

Characteristics n c Mean ± SD d (Midian) n c Mean ± SD d (Midian)

Age (years)
40 to 64 years (27) e 15,006 i 2140 ± 1160 * (1920) 7731 1970 ± 450 * (1950)
65 to 75 years (22) e 10,963 i 2090 ± 1070 (1900) 7563 1900 ± 430 (1890)

Gender
Male (20) e 12,527 i 1950 ± 1030 * (1950) 6170 1910 ± 440 * (1910)

Female (29) e 1344 i 2280 ± 1180 (2090) 9124 1950 ± 440 (1920)
Body mass index (BMI, kg/m2)

<24 (19) e 11,376 i 2140 ± 1110 * (1960) 5811 1890 ± 410 * (1880)
≥24 (30) e 14,593 i 2100 ± 1130 (1880) 9483 1960 ± 460 (1950)

a Heart rate data derived from Garmin Forerunner 35 through 7 day monitoring. b Heart rate data derived from RootiRx through
2 day monitoring. c Number of 5 min means of observations. d SD, standard deviation. e Numbers in parentheses are the number of
subjects. f Activity intensity data derived from AS-LUNG-P through 7 day monitoring, which were converted to RootiRx-comparable data.
g Milli-gravitational constant, 6.674 × 10−14 m3/kg s2. h Activity intensity data derived from RootiRx for 2 day monitoring. i Excluding
activity intensity measurements below 1100 mG. * p < 0.001.

3.2. Correlations between G-HR and R-HR

Figure 1 shows the correlations between G-HR and R-HR during various daily activi-
ties, including all activities, resting, commuting, working, cooking, worshipping, shopping,
exercising, eating, bath/shower, sedentary activities, and other activities (Figure 1a–l, re-
spectively). Overall, the correlations between G-HR and R-HR were over 0.5 during various
activities. The highest correlation coefficient arose when subjects were resting (rs = 0.816).
Other activities had the second highest correlation coefficient (rs = 0.797), probably because
other activities were mainly included the low-intensity activities, such as waiting to see the
doctor in the clinic and housekeeping. Therefore, the correlation coefficient of the other
activities was similar to that of sedentary activities (rs = 0.741). The correlation between
the G-HR and R-HR was relatively low when the subjects were exercising. This may be
because the smartwatches were too loose during exercise, resulting in underestimation
of HR. The correlation analysis indicated that the data from G-HR were generally highly
correlated to those from R-HR when the subjects were engaged in their daily routines,
except when they were exercising.
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Figure 1. Correlations of heart rates between Garmin Forerunner 35 (G-HR) and RootiRx (R-HR) during various daily
activities: (a) all activities, (b) resting, (c) commuting, (d) working, (e) cooking, (f) worshipping, (g) shopping, (h) exercising,
(i) eating, (j) bath/shower, (k) sedentary activities, and (l) other activities.
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3.3. Evaluation of Impacts of PM2.5 on G-HR and R-HR

Table 2 displays the results from the GAMM analysis of PM2.5 impacts on HR in a 5 min
resolution. Comparing the models of R-HR and G-HR, the coefficients for the impacts of
PM2.5 showed the same tendencies, i.e., positive associations. Additionally, the tendencies
in the adjustment term that had statistical significance, i.e., BMI, were the same. For R-HR,
an increase in personal PM2.5 exposure of one IQR (7.4 µg/m3) was associated with an
increase of 0.229%, so that an increase in PM2.5 exposure of 10 µg/m3 was associated with
an increase of 0.309% in R-HR. G-HR produced similar results. An increase in personal
PM2.5 exposure of one IQR (8.3 µg/m3) was associated with an increase of 0.234%, so
that an increase in PM2.5 exposure of 10 µg/m3 was associated with an increase of 0.282%
in G-HR. In short, the difference in percentage change between G-HR and R-HR was
8.74%, (0.309–0.282%)/0.309% × 100, when the PM2.5 exposure increased by 10 µg/m3.
Likewise, the BMI coefficients were not particularly different between these two models.
The results of the GAMM analysis indicated that the coefficients of the effects of PM2.5
on HR, as assessed by a smartwatch, showed the same (positive) trend as the coefficients
assessed by certified medical devices. In addition, the magnitudes of these coefficients
assessed by a smartwatch were similar to those measured via certified medical devices.
Compared to the certified medical devices, smartwatches cause less disturbance in the
daily routine of the subjects. The subjects were willing to wear them for a longer period of
time (in our case, 7 days), thus providing more data, increasing the sample size, and thus
the subsequent statistical power of the data analysis. Figure 2 displays the relationships
between PM2.5, activity intensity, and G-HR from the models adjusted for temperature,
activity, and time of day. The example shown in Figure 2a is from a subject with exercising
events accounting for approximately 3% of the total time; while Figure 2b is an example of
a subject without exercising events. These two graphs clearly showed different patterns of
the relationships of PM2.5, activity intensity, and HR. The overall relationship of these three
variables for all subjects is shown in Figure 2c; higher G-HR measurements were generally
found when subjects exposed to higher PM2.5 levels with a higher activity intensity. The
underlying physiological mechanisms of this different patterns need to be further explored.
Nevertheless, smartwatches are useful complements to certified medical devices for PM2.5
health evaluations.

Table 2. Associations of 5 min means of PM2.5 concentration with R-HR a for 2 day monitoring (n = 15,294), and G-HR b for
7 day monitoring (n = 25,969).

R-HR G-HR

Coefficient c 95% CI d p-Value Coefficient c 95% CI d p-Value

PM2.5 0.229 0.127, 0.332 <0.001 0.234 0.0801, 0.389 0.003
Age −2.50 −8.23, 3.59 0.412 −1.83 −6.47, 3.04 0.454
BMI 5.78 −0.800, 12.8 0.086 6.50 1.33, 11.9 0.013

Gender 2.03 −4.23, 8.70 0.534 −1.31 −6.12, 3.74 0.604
a Heart rate derived from RootiRx. b Heart rate derived from Garmin Forerunner 35 excluding activity intensity measurements <1100 mG.
c Coefficients calculated as [10(β IQR) − 1] 100%, where β denotes the effect estimate. Coefficients expressed as percent change in HR
associated with each interquartile range (IQR) increase in personal PM2.5 exposures, in models adjusted for subject, age, gender, body mass
index (BMI), temperature, activity, and time of day. d CI, confidence interval.

We further evaluated the associations between personal PM2.5 exposure and G-HR
during activities of various intensity levels (Table 3); this analysis was not conducted with
R-HR due to the limited sample size. Most activities in which the subjects engaged were
low-intensity activities. The results indicated that the elevated PM2.5 concentration was
significantly associated with G-HR for low-intensity activities (n = 23,909), and the elevated
PM2.5 concentration was marginally significantly associated with G-HR for moderate- to
high-intensity activities (n = 764). In addition, a percent increase in G-HR per 10 µg/m3 of
PM2.5 exposure increase for moderate- to high-intensity activities (4.53) was one order of
magnitude larger than that for low-intensity activities (0.219), which is close to the result
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derived without activity stratification. Our results showed that the impact of different
degrees of PM2.5 on HR can be observed depending on the intensity of the activities, except
for resting.
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Table 3. Associations of 5 min means of PM2.5 concentration with G-HR a during activities of various
intensity through 7 day monitoring.

Activity
G-HR

Coefficient b 95% CI d p-Value

Resting (n = 1296) c 0.617 –0.117, 1.36 0.100
Low-intensity (n = 23909) 0.219 0.0606, 0.378 0.007

Moderate- to high-intensity (n = 764) 4.53 1.46, 7.70 0.004
a Heart rate derived from Garmin Forerunner 35 excluding activity intensity measurements <1100 mG. b Coeffi-
cients calculated as [10(β IQR) − 1] 100%, where β denotes the effect estimate. Coefficients expressed as percent
change in HR associated with each interquartile range (IQR) increase in personal PM2.5 exposure, in models
adjusted for subject, age, gender, body mass index (BMI), temperature, activity, and time of day. c Data captured
during sleeping were excluded. d CI, confidence interval.

4. Discussion

Smartwatches are non-invasive and easily accessible consumer-grade devices. They
can continuously monitor HR during daily routines with minimal interference. This study
provided evidence that smartwatches are useful complements to certified medical devices
for PM2.5 health evaluations, showing the same (positive) trend and a similar magnitude
in the damage coefficients for the effects of PM2.5 on HR. The coefficient difference was
within an acceptable range (10%). To the best of our knowledge, this is the first study
demonstrating similar associations between personal PM2.5 levels and HR when assessed
via smartwatches compared with via certified medical devices.

Some studies have evaluated the accuracy of smartwatch HR measurements com-
pared to those from ECG when participating in different types of activities [3,5–7,9,24]. The
activities usually assigned by researchers have varied (such as running on the treadmill
at different speeds ranging from 3.2 to 9.6 km/h [25]) or recorded using a diary for their
daily activities (such as sitting, walking, running, and activities of daily living [6]). The
results showed that smartwatches may under- or overestimate the HR measurements. It
was also found that the accuracy of smartwatches during rest and low-intensity activities
was generally higher than that during high-intensity activities for most brands of smart-
watches [8,9,26]. In addition, these studies indicated that compared to certified medical
devices, smartwatches may generally underestimate HR during vigorous activities. This
was explained by the increased degree of erratic wrist movements during vigorous activi-
ties [6]. This is consistent with the results of the current study. The data collection rate was
98.4% during exercising from 26 subjects (based on 1 min resolution). Almost all subjects
(25 of 28 subjects) collected complete data during exercising in this study, but the lowest
correlation between G-HR and R-HR was observed during exercise. G-HR sometimes
provided underestimation during exercise, probably because the smartwatches were loos-
ened and could not accurately monitor HR. Moreover, the accuracy of HR measurements
depends not only on the type and intensity of the physical activity, but also on the user’s
physical characteristics and fit of the tracker [21]. Nevertheless, the potential problems
did not affect our study. We tested the smartwatches under different activities prior to
the field campaign. Notably, the smartwatches used in this study worked well and we
did not observe any malfunctions during high-intensity activities. Thus, all data collected
regardless the activity levels were used in the PM2.5–health evaluation.

Most of the previous studies assigned scheduled activities to their subjects, and so
could not capture 24 h HR under real-life conditions. Only one study evaluated the accuracy
of HR measurements captured by a smartwatch during a continuous 24 h period [6]. In
that study, the overall accuracy of the HR data obtained from smartwatches was acceptable
(<10% mean absolute percent error relative to the ECG). However, they suggested that
any single measurement in real time cannot be used as an accurate measurement for
medical purposes given the presence of some outliers in smartwatch measurements. This is
consistent with our study. In addition, the overall correlation coefficient in this study was
generally higher than for any specific activity except resting, working, sedentary activities,
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and other activities. This is probably because the correlation coefficients for these four
activity groups were >0.72, accounting for approximately 70% of the data. The overall
G-HR data were moderately to highly correlated with those from R-HR, whereas there were
a number of outliers observed, especially for higher HR periods, which occurred usually
during high-intensity activities. Nevertheless, the HR measurements from smartwatches
showed good correlation with those from certified medical devices under most conditions,
especially the low-intensity activates. Notably, most activities were low-intensity in the
daily routines. For example, subjects spent less than 2% of total time exercising in this
study. Thus, the HR measurements obtained from smartwatches can be used in PM2.5–
health evaluation for the general population who engage in daily routines. Even though
smartwatches may underestimate HR, the impacts of PM2.5 on HR can still be observed
through them, and the estimated PM2.5 damage coefficients showed similar magnitudes,
with differences of only <10%. In addition, compared to R-HR, G-HR had a wider 95% CI
range of estimated PM2.5 damage coefficients.

Another earlier study integrated smartwatches with other low-cost sensors to con-
currently monitor HR and other environmental factors; one study used an LCS device,
a smartphone and a smartwatch to measure ambient CO2, noise levels, and HR, respec-
tively [27]. Some outliers in the HR measurements (5%) were observed, which were then
removed via visual data inspection. The authors did not compare the HR measurements
obtained with the smartwatch to those obtained with certified medical devices to assess
their accuracy. We recorded HR measurements during the same monitoring period with
both smartwatches and certified medical devices, and compared their results concerning
the health impacts of PM2.5. Our work demonstrated that, with a sufficient sample size,
smartwatches not only displayed the same (positive) trend in the coefficients of PM2.5
as the certified medical devices, but also showed similar magnitudes of the impacts of
PM2.5 to those derived from certified medical devices, with a difference of only <10%. In
other words, the large sample size of HR measurements may outweigh the drawbacks of
irregular measurements in assessing the PM2.5–HR relationship. This work demonstrated
that low-cost smartwatches are useful complements to medical devices in environmental
health studies, especially in developing countries where PM2.5 pollution is severe and
resources are limited.

Both HR and HRV are the indicators of autonomic function according to Task Force of
the European Society of Cardiology the North American Society of Pacing Electrophysiol-
ogy [28]. Some studies recently also found that elevated PM2.5 exposure was associated
with both decreased HRV and increased HR, focusing on daily routines or a certain period
such as cycling [15–17,29–31]. Moreover, the associations between exposure to PM2.5 and
increased HR were found in mice [32–34]. Therefore, HR is a useful indicator for autonomic
nervous system, with increased HR indicating the adverse impacts from air pollutants such
as PM2.5.

Moreover, some recent studies assessed the relationship of PM2.5 and HR focusing
on resting HR. In a trial of evaluating the intervention of B vitamin supplementation
to attenuate the acute autonomic effects of PM2.5, 2 h PM2.5 exposure (250 µg/m3) was
associated with 3.8 bpm higher resting HR for the control group [35]. Another cross-
sectional study for 10 million reproductive-age adults in China found that an increase in
3-year average PM2.5 exposure of 10 µg/m3 was associated with an increase of 0.076 bpm
in the resting HR [36]. For other studies assessing the relationships between PM2.5 and HR;
they typically did not differentiate the Resting HR and HR. Nevertheless, these studies
found the similar trends (associations between elevated PM2.5 exposure and increasing
HR) as those from studies focusing on resting HR.

In this study, an increase in PM2.5 exposure of 10 µg/m3 was associated with an
increase of 0.282% in G-HR. Previous studies have demonstrated that short-term exposure
to PM2.5 is associated with increased HR, ranging from 0.43 to 4.8% per 10 µg/m3 increase
PM2.5 exposure [16,30,31]. Zhang et al. [31] indicated that although the impacts of PM2.5
on HR measurements may be small, it still a significant public health issue, especially for
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the susceptible population or patients with cardiovascular diseases. Cardio function may
also be affected by other factors, such as other air or other environmental pollutants [15,30]
and preexisting medical conditions [37]. Further studies should clarify how these factors
modify the impacts of PM2.5 on HR measurements.

With large sample sizes, we further evaluated the impacts of PM2.5 on G-HR during
activities of various intensities. Although G-HR may provide considerable underesti-
mations of HR during moderate- to high-intensity activities, the results still showed the
greater impacts (one order of magnitude) of PM2.5 on G-HR for moderate- to high-intensity
activities compared to low-intensity activities. The higher PM2.5 impacts on subjects during
higher-intensity activities may be expected but few studies have quantified the impacts on
different activity levels due to the limited sample sizes in previous studies [38]. Increased
physical exertion may increase the inhalation and lung deposition of PM2.5, which result
in elevated HR [39]. Smartwatches may have higher variation in HR measurements than
the certified medical devices and these smartwatches may not be state-of-the-art; however,
these smartwatches can collect a large sample size to differentiate the health damage co-
efficients among specific activities. For example, even though smartwatches may have
underestimated HR measurements during moderate- to high-intensity activities in this
study, the sufficient sample size due to the extended monitoring period may reduce the
impacts of uncertainty derived from the smartwatches. In addition to the difference in
the activity intensity measurements, the HR measurements were also different in different
levels of activity groups. The mean HR measurements were 77.2 ± 14.5, 85.8 ± 16.3, and
92.7 ± 19.1 bmp for resting, low-intensity activities, and moderate- to high-intensity activi-
ties, respectively. Therefore, the categories of the level of activity intensity were considered
an additional contribution from daily activities to HR measurements. With smartwatches
collecting sufficient data, the much higher impacts of PM2.5 on HR during high-intensity
activities could be differentiated from the lower impacts during low-intensity activities.
This demonstrates the great advantages of using smartwatches in environmental health
studies. These results have important implications for future PM2.5–HR studies, which
should differentiate their assessment according to different activity levels, and for the
formulation of practical health-promotion tactics, which should emphasize the greater
HR impacts of PM2.5 during exercise to alert athletes and regular runners/cyclists to not
exercise in polluted areas.

The low correlation coefficient of the activity intensity measurements between AS-
LUNG-P and RootiRx (r = 0.409) resulted in higher variability, which may bias the health
damage coefficient of PM2.5 toward null (insignificance). In this study, the Garmin Forerun-
ner 35 smartwatches did not have a motion sensor. Therefore, we used the measurements
recorded by the motion sensor of AS-LUNG-P for activity intensity in the models. The
devices used in this study were carried differently by the subjects. RootiRx was directly
attached to the chest, whereas AS-LUNG-P was carried in a bag near the chest. The move-
ments of these two devices were somewhat different in the different activities. For example,
when subjects were walking, the activity intensity measured by RootiRx in the chest may
represent the actual movement of the subjects, whereas that measured by AS-LUNG-P
in a bag near the chest may measure the subjects’ movement plus the extra movements
due to bag swing, introducing higher variability, shown as higher standard deviations in
Table 1b. Therefore, the activity intensity measured by RootiRx was used in the PM2.5–HR
relationship assessment in this study. However, the RootiRx was carried by the subjects
for only 2 days due to potential skin irritation. In this study, we established a correction
equation to convert the activity intensity measurements obtained from AS-LUNG-P to
RootiRx-comparable measurements. Even though the high variability in the corrected
RootiRx-comparable measurements may have caused the health damage coefficient of
PM2.5 to become insignificant, our results still showed significant associations between
PM2.5 and G-HR, with the same (positive) trend and a similar magnitude in the damage
coefficients of PM2.5 on HR compared with those assessed via certified medical devices.
Therefore, it could be concluded that, even though the activity intensity measurements
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involved higher uncertainty, the large HR sample size collected via smartwatches over-
comes this uncertainty. The combination of a low-cost PM2.5 sensor (AS-LUNG-P) and a
smartwatch provided similar health damage coefficient estimates in this work. This again
demonstrates the feasibility of applying smartwatches in environmental health research.

Due to the aforementioned advantages, we chose to use smartwatches in our study
rather than other smart devices. In addition, compared to other smart devices, smartwatch
technology is more mature. For example, smart clothing also has been used to monitor
HR. Buregeya et al. [30] used a smart T-shirt to monitor cardiac function and evaluate its
association with traffic-related PM2.5 exposure. The smart T-shirt enabled the measurement
of ECG parameters during cycling. Smart clothing can also integrate various physiological
indicators of the human body, including ECG sensors. However, smart clothing still faces
some challenges, including the interference effects of the human body on signals [40].
Conversely, the efficacy of the green-light PPG sensors used in this study was evaluated as
interfering less in the tissue and vein region in different environmental temperatures [41].

The primary objective of this study was to find an affordable complement to the
certified medical devices in environmental health research for developing countries; thus,
we did not select the most state-of-the-art smartwatches, which are much more expensive.
We selected a model of smartwatch with HR measurement, which is a typical function for
health monitoring of almost all types of smartwatches. They are relatively affordable for
scientists in developing countries where resources are limited. In addition, we selected a
model of smartwatch without an accelerometer, since AS-LUNG is already equipped with a
G-sensor. Another consideration is the battery life of smartwatches. Kheirkhahan et al. [42]
indicated that the battery of smartwatches may be depleted due to additional sensors
such as an accelerometer. In order to collect 24 h of continuous data, we did not want
to lose data while the smartwatches were charging. The battery of smartwatches with
other extra sensors such as an accelerometer do not last for more than one day or even
12 h; this would cause inconvenience to the subjects if the research staff needed to visit the
subjects to replace smartwatches frequently for continuous monitoring. After considering
all these factors, we chose the current model of smartwatch. It provides HR monitoring
and a battery that lasts for 14 days. Our results showed that this model of smartwatch
is an affordable complement to certified medical devices; it can be used by scientists in
developing countries for PM2.5–health evaluation.

Some of smartwatches have an ECG HR monitor measuring HRV; these smartwatches
are usually more expensive than those with a PPG sensor. However, to date, few studies
have validated the HRV measurements obtained from the wrist-worn smartwatches with
certified medical devices [43]. Therefore, more studies are needed to validate the HRV
measurements directly obtained from wrist-worn smartwatches with certified medical de-
vices under different activities. HRV can reflect the autonomic nervous system balance [44].
Some other types of smartwatches measure HRV with the aid of an extra chest strap, which
may increase the discomfort of subjects, especially for 24 h continuous monitoring. Future
research may adopt smartwatches with an ECG sensor or an additional chest strap, after
validation, to assess the impacts of PM2.5 on HRV. For example, Apple Watch 6 is capable
of providing HRV data but is about twice as expensive as Garmin Forerunner 35. For
developing countries where resources are limited, low-cost smartwatches with a PPG
sensor are still useful and affordable tools to assess the health impacts of PM2.5.

This study also has some limitations. First, only one brand of smartwatch was used
to monitor the HR in this work. A previous work indicated that the HR monitoring ac-
curacy may be different amongst the different brands of smartwatches [9]. Nevertheless,
this work provides a successful example of the application of smartwatches with a PPG
sensor to assess the PM2.5–HR relationship. Future research may evaluate the applica-
bility of other brands of smartwatches in environmental health research. Next, we used
the activity intensity measurements obtained from AS-LUNG-P, after converting to the
RootiRx-comparable measurements via the correction equation, as an alternative to that
for smartwatches. As mentioned above, the low correlation coefficients (r = 0.409) of the
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activity intensity measurements between AS-LUNG-P and RootiRx may have caused high
variability. Nevertheless, our results still showed the same (positive) trend and a similar
magnitude in the damage coefficients of PM2.5 on G-HR compared to those assessed via
certified medical devices. Thus, the high variability did not affect our main findings. Fi-
nally, the stress may affect HR. We did not evaluate the psychosocial stress of subjects in
this study. However, unless the impacts of psychological stress and PM2.5 exposure always
occurred simultaneously, the psychological stress would not affect the estimated health
damage coefficients of PM2.5 exposure in our models.

5. Conclusions

In this study, we successfully applied commercial smartwatches to evaluate the health
impacts of PM2.5 and demonstrated the applicability of smartwatches in environmental
health research. Compared to certified medical devices, the general population are more
familiar with smartwatches, which minimally interfere with daily activities. Therefore,
subjects can wear smartwatches for a longer monitoring period to increase the sample size
available for health assessment. Although smartwatches may irregularly measure HR, the
same (positive) trend and the magnitude of the health damage coefficients of PM2.5 as
assessed via the smartwatch were similar to those assessed with a certified medical device.
In addition, the findings demonstrated that during high-intensity activity periods, the
impacts of PM2.5 might be stronger. These findings are interesting and important for the
formulation of practical health-promotion tactics for people in exercising in polluted areas.
However, due to higher variability and uncertainty associated with the measurements
from smartwatches, we need more evidence to confirm the stronger impacts of PM2.5 on
HR during exercising. With the advantages of low cost and low interference with daily
activities, by applying smartwatches for HR monitoring, we can obtain larger HR sample
sizes and thus further assess the health impacts of PM2.5 for different subpopulations
in the future, which has been difficult with traditional instruments. Moreover, low-cost
smartwatches together with PM2.5 LCS devices provide an opportunity to conduct PM2.5
health assessments in developing countries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21134585/s1, Figure S1: The activity intensity measurements obtained from AS-LUNG-P
during sleeping periods. The dash line indicates 1100 mG, Figure S2: The correction equation for
converting the activity intensity measurements obtained from AS-LUNG-P to RootiRx-comparable
measurements, after excluding data below 1100 mG.
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