Journal of Neurology (2019) 266:1-26
https://doi.org/10.1007/s00415-018-8892-x

REVIEW

@ CrossMark

Neuroimaging in Lewy body dementia
Tayyabah Yousaf' - George Dervenoulas’ - Polytimi-Eleni Valkimadi' - Marios Politis’

Received: 17 January 2018 / Revised: 30 April 2018 / Accepted: 2 May 2018 / Published online: 14 May 2018
© The Author(s) 2018

Abstract

Lewy body dementia (DLB) is a common form of cognitive impairment, accounting for 30% of dementia cases in ages
over 65 years. Early diagnosis of DLB has been challenging; particularly in the context of differentiation with Parkinson’s
disease dementia and other forms of dementias, such as Alzheimer’s disease and rapidly progressive dementias. Current
practice involves the use of [ I]JFP-CIT-SPECT, ['®F]FDG PET and ['*I|/MIBG molecular imaging to support diagnostic
procedures. Structural imaging techniques have an essential role for excluding structural causes, which could lead to a DLB-
like phenotype, as well as aiding differential diagnosis through illustrating disease-specific patterns of atrophy. Novel PET
molecular imaging modalities, such as amyloid and tau imaging, may provide further insights into DLB pathophysiology and
may aid in early diagnosis. A multimodal approach, through combining various established techniques and possibly using
novel radioligands, might further aid towards an in-depth understanding of this highly disabling disease. In this review, we

will provide an overview of neuroimaging applications in patients with DLB.
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Introduction

Dementia with Lewy bodies (DLB) is a common form of
cognitive impairment, accounting for substantial clinical
deterioration and a significant burden in patients and car-
egivers [1]. The classic presentation of DLB encompasses
tandem features of fluctuating cognitive decline, parkinson-
ism and visual hallucinations [1]. Conjointly with Parkin-
son’s disease dementia (PDD), they comprise a spectrum of
neurodegenerative dementias that share the common hall-
mark of a-synuclein pathology [2]. Thus, the term Lewy
body disease is currently used to describe neurodegenera-
tive conditions with similar clinical phenotype (dementia
combined with parkinsonism) and underlying pathophysiol-
ogy [3]. Aggregation of a-synuclein (SNCA) in Lewy bod-
ies and neurites often coexists with amyloid-f plaques and
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tau neurofibrillary tangles [4]. An integrated approach in
these conditions that have a consecutive clinical outcome is
ideal for elucidating underlying mechanisms and therefore
improving diagnostic tools and therapeutic interventions.

Diagnostic criteria for DLB harbor an acceptable sensitiv-
ity [1]. However, specificity and diagnostic accuracy in the
clinical setting remain as challenges to be further addressed.
In the clinical setting, DLB is often misdiagnosed [5]. Con-
sequently, patients are prone to non-beneficial or even harm-
ful treatment options and incomplete disease management
[6]. Clinically relevant biomarkers could potentially con-
tribute to an enhanced diagnostic accuracy [7]. Detecting
lower levels of a-synuclein in the CSF of patients with sus-
pected DLB has been proven of potential utility, especially
in discriminating from Alzheimer’s disease (AD) [8]. Alas,
reliability of CSF or serum biomarkers to serve as positive
diagnostic tools is not yet consistent.

In respect of the former and considering that DLB diag-
nosis relies predominately on clinical features, neuroimaging
biomarkers could aid towards an increased diagnostic cer-
tainty [9]. Besides excluding secondary causes of dementia
using structural imaging, neuroimaging modalities can also
be implemented in aiding differential diagnosis and investi-
gating underlying pathophysiological mechanisms (Table 1).
However, the application of advanced techniques in the
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Table 1 Neuroimaging modalities assessing DLB in the clinical setting

Imaging modality Application

Main findings

FP-CIT SPECT Differentiating from AD and HC

FDG-PET Supportive of diagnosis
CT Excluding secondary causes of dementia
MRI Differentiating from AD
MIBG Differentiating from AD

Decreased dopamine transporter uptake in the basal ganglia
Reduced glucose metabolism in occipital lobes

Intact brain structure

Relative preservation of medial temporal lobe structures

Low uptake

clinical setting requires additional validation. In this review,
we will provide an overview of neuroimaging modalities
currently used to assess patients with DLB.

Diagnosis of DLB

Diagnosis of DLB continues to heavily rely on clinical mani-
festations of the disease, as structural neuroimaging lacks
definitive characteristics with significant diagnostic value
[10]. In DLB, cognitive decline either antedates or occurs
simultaneously with parkinsonism, whereas in PDD it fol-
lows the constellation of parkinsonism. Key characteristics
of DLB, which are less common in PDD, include fluctuating
cognition and sensitivity to neuroleptics [6]. Supportive fea-
tures in DLB diagnosis includes relatively preserved medial
temporal lobe structures as seen on CT or MRI [10]. Though
this feature is commonly present, it has not been proven
to have adequate diagnostic specificity. Current diagnostic
criteria have included the use of ['**I]FP-CIT-SPECT, ['*F]
FDG PET and ['**I]MIBG as supportive or indicative diag-
nostic features. Recently, besides imaging biomarkers, other
clinical measures (polysomnography, electroencephalogra-
phy) have been incorporated in the diagnostic criteria [9].

Structural imaging

Structural brain changes can be visualized and assessed
using MRI and CT, providing a measure of cerebral atrophy,
as well as white matter integrity in DLB. Structural neuroim-
aging is often utilized in the clinical setting for differential
diagnosis of various types of dementia [11]. These imag-
ing techniques are primarily used to detect cerebrovascular
diseases and space-occupying lesions such as brain tumor
or hematoma [12, 13]. Though CT is most often used clini-
cally due to its relatively low cost and widespread availabil-
ity, MRI offers superior contrast, as well as specific tissue
characterisation (Table 2). An array of analyses have been
developed and performed, including whole brain analyses
(voxel-based morphometry, cortical thickness), region of
interest (ROI) analyses and visual inspection, to compare
regional structural changes in patients with DLB to those
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with Alzheimer’s disease, Parkinson’s disease dementia and
healthy controls.

Comparison between DLB and AD

MRI has been widely used to investigate patterns of gray
matter (GM) atrophy. Advances in image processing have
enabled automatic extraction of whole brain cortical thick-
ness, which is retrieved from structural MRI. Although DLB
has demonstrated some overlap with the cortical atrophy
patterns seen in AD, atrophy is generally less diffuse in DLB
with moderate preservation of the medial temporal lobe
structures [14-16].

Cortical thickness assessment has also been shown to
have high precision and sensitivity in identifying mor-
phological changes, which arise from neuropathological
changes. This method has, therefore, been employed in sev-
eral studies as a way to differentiate DLB from AD, PDD
and healthy controls. Investigations into cortical thickness
alterations in DLB revealed relatively small GM change,
primarily affecting the posterior parietal areas, as opposed
to the patterns of GM change affecting the temporoparietal
association cortices in AD [17]. These findings are in cor-
roboration with the notion that DLB is a result of neuronal
synaptic dysfunction, not neuronal loss. Through carrying
out a multivariate classification study of cortical thickness,
Lebedev and colleagues demonstrated that this method has
the ability to differentiate DLB from AD with 82.1% sensi-
tivity and 85.7% specificity [18]. Specifically, AD was char-
acterized by patterns of cortical thinning within the temporal
pole, subgenual cingulate regions and the parahippocampus,
whereas regional thinning was localized to the superior tem-
poro-occipital and lateral orbito-frontal regions, as well as
the middle and posterior cingulate in DLB [18]. The finding
of AD exhibiting greater temporal involvement compared to
DLB has been a homogenous result across several structural
imaging studies [19, 20].

Although investigations into hippocampal atrophy have
revealed that DLB patients have less severe atrophy com-
pared to AD patients [21, 22], with the entorhinal cortex,
CA1 and subiculum areas of the hippocampus being most
affected in AD [23], recently, Delli Pizzi et al. explored
the differential contribution of hippocampal subfields and
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B eE adjacent extrahippocampal structures to the pathophysiology
o B 7 of AD and DLB [24]. They reported that the cornu ammonis
e %ﬁ = . . C .
= 38 and subiculum were preserved in DLB, but the perirhinal
&S o £ . . . .
75 = & cortex and parahippocampus were damaged, highlighting the
v | = o . . . . .
HE S" QST differential alteration of hippocampal subfields and adjacent
é E A a E CL°)>’3 extrahippocampal structures in DLB and AD [24].
m ‘E‘ E 2| €38 Studies have also demonstrated greater atrophy in the
= |2 &= 5o .. . cy - .
SlZES| ES substantia innominate, with increased dorsal mesopontine
g g = T . . . .
o EEZ| 383 GM atrophy distinguishing patients with clinically diag-
w2 S S| 59 .
SEleg2o| §X nosed DLB from AD [25]. These findings may suggest a
TlSgz| & o .
£ | £ RS = greater cholinergic dysfunction in DLB, perhaps related to
= > . . .
g 5 the presence of midbrain synuclein pathology.
] £ é Using diffusion tensor MRI, Watson et al. revealed that
= RS the parieto-occipital white matter tracts were preferentially
; : g affected in DLB, though this appears to be an early phenom-
E ‘:E) g enon, as AD demonstrated a greater longitudinal increase in
S ES mean diffusivity in parietal and temporal regions compared
A ; § to DLB, with no evidence of longitudinal changes in mean
g bRS diffusivity or fractional anisotropy in DLB relative to con-
. ;]» O ©E trols [26]. However, DLB was differentiable from AD given
%‘ a = h§ E that it was associated with reduced fractional anisotropy in
AR £ 2 the pons and left thalamus, highlighting that, despite similar
g E levels of dementia severity, patterns of DTI changes in DLB
2E and AD varied [26].
~ 2 A recent study by Shams et al. demonstrated that MRI
o . . . . . .
g % of the swallow tail sign may have diagnostic potential in
8 é DLB [27], given that the largest dopamine-containing cluster
23 within caudal and posterolateral part of the substantia nigra
o= . . . . . .
= E g (nigrosome 1) is highly affected in parkinsonian syndromes.
8 s More specifically, Shams et al. reported that a hypointense
= a5 . . . . .- o
2 Qs nigrosome 1, as visualized on iron-sensitive susceptibility-
ﬁ é c:, s weighted imaging (SWI), was more common in DLB com-
- pared to AD, frontotemporal dementia and controls. This
§ i was in corroboration with Kamagata et al. who reported that
28 measuring nigrosome 1 hypointensity with SWI achieved
E g 90% diagnostic accuracy (93% sensitivity and 87% specific-
0 ‘; ity) in DLB [28].
T
g @ )
5 g2 Comparison between DLB and PDD
z |2 g = Attempts to compare GM loss between DLB and PDD have
o =] .
E|° % % revealed a pattern of more pronounced GM loss in DLB
% E S ; compared to PDD, which is in line with the fact that DLB
g % encompasses greater amyloid burden [29]. It is important to
< £ _%‘) note, however, that localisations of GM reductions in DLB
= ; éb relative to PDD vary amongst different studies. For example,
23 -q;) Burton et al. were unable to identify distinct cortical atrophy
> 2 8
= 225 profiles of DLB and PDD [30], but Beyer et al. reported GM
Q o N - . . . .
E 5 ﬂ § 2 reductions in the temporal, parietal and occipital lobes in
g ; g = 2 DLB using a voxel-based morphometry (VBM) approach
= 3 § 25 [31]. Alongside the temporal and parietal atrophy, Lee et al.
(o] %) = .. . . .
2 Z|E Qg g also reported occipital and striatal GM reductions in DLB
c 315 REZ [32]. Studies investigating correlation patterns between brain
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structure and clinical and neuropsychiatric manifestations
of the disease, revealed that decreased GM volume of the
anterior cingulate, right hippocampus and amygdala were
associated with cognitive performance [33], whilst reduced
GM volume in the left precuneus and inferior frontal lobe
correlated with visual hallucinations in DLB, but not in PDD
[34].

Functional imaging

Active task and resting state functional MRI (fMRI) are
the primary tools employed to investigate cerebral function
associated to cognitive tasks or during rest, respectively,
by measuring changes in blood-oxygen level-dependent
(BOLD) signal.

Comparison between DLB and AD

Although only a few fMRI studies have examined BOLD
signal in DLB, differential patterns of functional connectiv-
ity in DLB compared to AD have been reported (Table 2).
Using the precuneus as the seed region, Galvin et al.
reported that DLB patients exhibit increased connectivity
in the inferior parietal cortex and putamen, and decreased
connectivity in the fronto-parietal operculum, medial pre-
frontal cortex and the primary visual cortex compared to
AD, whilst a reversal of connectivity was observed in the
right hippocampus [35]. Independent component analysis
(ICA) has demonstrated that DLB display greater connectiv-
ity in the default mode network compared to AD [36], which
contrasts with previously reported connectivity dysfunctions
between anterior and posterior segments of the default mode
network in AD, when compared to healthy controls [37].
Furthermore, increased connectivity between the putamen
and frontal, temporal and parietal regions has been illus-
trated by DLB patients in comparison to AD patients, with
the authors suggesting that this may be related to the promi-
nent parkinsonian features in DLB [38]. Consistent with
the moderate preservation of memory function observed in
DLB as opposed to AD, hippocampal connectivity has not
been shown to differ in DLB compared to healthy controls,
though the left hippocampal connectivity was identified to
be higher in AD compared to controls, potentially reflecting
a compensatory mechanism [38].

A recent study by Schumacher et al. aimed to explore
within- and between-network connectivity in a range of
resting state networks, being the first to investigate how
DLB affects connectivity between these resting state net-
works [39]. DLB patients displayed more decreases in
within-network connectivity compared to controls, primar-
ily in temporal, motor and frontal networks. In contrast,
long-range functional connectivity appeared to be intact in
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DLB, with increased connectivity only identified between
a frontal and a temporal network [39]. Only subtle differ-
ences were observed when AD and DLB were compared,
suggesting a potential overlap in their resting state functional
connectivity.

Given the prominent prevalence of visuoperceptual
impairments in DLB, a task-based fMRI study employed
visual presentations of motion, color and face paradigms to
explore the functional integrity of the visual system in DLB.
They discovered that DLB patients exhibited greater activa-
tion in the superior temporal sulcus compared to AD, specif-
ically during the motion task [40]. However, these findings
were not replicated by Taylor et al., who reported that DLB
patients did not exhibit any significant differences in func-
tional response to objects, motion stimuli or checkerboard
in V1 and V2/V3 compared to controls [41], proposing that
function in the lower visual areas is relatively preserved.
Interestingly, however, ROI analysis demonstrated that the
DLB group had a reduction in V5/MT (middle temporal)
activation when responding to motion stimuli [41]. Taken
together, these results imply that, in DLB, functional abnor-
malities affect the visual association areas, as opposed to
the primary visual cortex, though it is difficult to decipher
whether deviations at higher levels of the visual system con-
tribute to the hallmark visuoperceptual impairments and
visual hallucinations seen in DLB.

Comparison between DLB and PDD

Although studies have demonstrated alterations in functional
connectivity in PDD [42-45] and DLB [35, 38, 46-48],
these were reported when comparing these disease groups
against healthy controls. One study has, however, compared
DLB and PDD directly with the aim of identifying disease-
specific functional connectivity patterns (Table 2). Peraza
et al. reported that, for seeds situated within the fronto-pari-
etal network, DLB patients exhibited greater alterations in
functional connectivity than PDD when compared to healthy
controls, predominately at the precentral and postcentral
gyri, cerebellar, occipital and temporal regions, whilst in
PDD, changes in functional connectivity were limited to the
frontal cortices and precuneal [49]. Interestingly, although
the supplementary motor area seed revealed similar regional
functional connectivity alterations in the pre- and postcentral
gyri, cerebellar, temporal, precuneal and occipital regions,
these alterations were more apparent in PDD than in DLB,
potentially reflecting the prominent parkinsonism and motor
dysfunction in PDD compared to DLB [49]. However, Per-
aza et al. reported that no significant differences were found
when DLB and PDD groups were compared to each other.
Taken together, these results suggest that there are subtle
functional differences between both diseases, which may
be driven by their distinct pathological trajectories, thus
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potentially reflecting the chronological manifestation of
cardinal symptoms in the Lewy body dementias.

Cortical and subcortical involvement in DLB

Serial MRI is an appealing biomarker of neurodegeneration
and can assist in monitoring disease progression. Although
longitudinal cerebral atrophy rates in AD are well-estab-
lished and employed as outcome measures in clinical tri-
als of potential disease-modifying agents, the atrophy rate
in DLB has been reported to be analogous to or margin-
ally greater than healthy controls [50]. While longitudinal
studies of DLB are challenging given the higher mortality
rates compared to AD [51], further investigations into DLB
patients with a more rapidly progressive disease would be
valuable in elucidating the neurobiological underpinnings
of disease heterogeneity in DLB.

Evidence of subcortical involvement in DLB has revealed
the vulnerability of the thalamus, striatum and brainstem
to Lewy-related pathology. Studies have demonstrated that
thalamic diffusion and perfusion deficits are associated with
DLB [52], and striatal volumetric loss appears to be more
affected in DLB than AD [53], with prominent nigrostri-
atal dysfunction [54]. Significant reductions in brainstem
volume in DLB have also been reported [53], with Seidel
et al. showing marked to severe neuronal loss in the ventral
tegmental, pedunculopontine nucleus and locus coeruleus
regions in DLB [54].

Cerebrovascular pathology

Although cerebrovascular pathology is common in older
people, the contribution of vascular lesions to dementia
remains to be elucidated. White matter damage can be visu-
alized as focal punctate areas of high intensity signal using
T2-weighted MRI. White matter hyperintensities (WMH)
burden has been reported to be similar in DLB and AD [55],
with DLB displaying no longitudinal change overtime rela-
tive to controls and baseline WMH burden predicting pro-
gression [56]. Interestingly, a study carried out by De Reuck
et al. using a 7-Tesla scanner revealed that DLB patients
had more cerebral microinfarcts compared to controls, with
a higher abundance of the smallest lesions than vascular
dementia and AD [57].

Cerebral microbleeds can be visualized using gradient-
echo T2*-weighted MRI. A higher number of microbleeds
has been reported in DLB than in AD, aside from the occipi-
tal lobes in one study [58]. DLB subjects with microbleeds
have less abnormal MIBG scans, indicating that there is an
inverse association between vascular lesions and Lewy body
pathology [58]. Although Ballard et al. revealed that WMH

in the basal ganglia and deep white matter appear to be asso-
ciated with orthostatic hypotension in DLB [59], more work
is required to evaluate the influence of vascular pathologies
to the dementia syndrome, clinical features of DLB and its
rate of progression.

Sensitivity and specificity of structural
imaging modalities in pathologically proven
DLB cases

Though scarce, studies have investigated the diagnostic
accuracy of MRI for discriminating DLB from other demen-
tias in autopsy-confirmed cases (Table 4). Both longitudinal
and cross-sectional studies have illustrated that DLB is asso-
ciated with less conspicuous global atrophy, compared to
AD, with relative preservation of the medial temporal lobe
[22]. Burton et al. aimed to determine the clinical relevance
of visually rating the medial temporal lobe on MRI, and
whether this technique could serve as an accurate diagnostic
tool to distinguish AD from DLB and vascular cognitive
impairment (VCI) [16]. In pathologically confirmed cases,
medial temporal lobe atrophy served as a highly accurate
diagnostic marker, with a sensitivity of 91% and specificity
of 94%, in AD compared with DLB and VCI [16]. Medial
temporal lobe atrophy scores did not differ between DLB
and VCI. These results highlight that medial temporal
lobe atrophy on MRI has robust discriminatory power for
distinguishing AD from DLB. Furthermore, Burton et al.
reported that medial temporal lobe atrophy is pathologically
more strongly associated with neurofibrillary tangles and
B-amyloid plaques, as opposed to Lewy body-like neuronal
inclusions. These results are suggestive of gray matter atro-
phy, in DLB, arising as a result of concomitant AD-specific
pathology. On the contrary, another postmortem MRI study
assessing medial temporal lobe atrophy reported that this
technique lacked discriminative potential, possessing an
inability to exclude DLB diagnosis, particularly amongst
patients who were over 85 years of age [60]. Although a
strong relationship was found between medial temporal lobe
atrophy and Alzheimer’s disease pathology, the sensitiv-
ity and specificity were 63 and 69%, respectively, for AD.
Medial temporal lobe atrophy was also identified in subjects
presenting with alternative primary hippocampal pathology,
including Lewy-related pathology, highlighting the lack of
specificity for AD-type pathology [60].

Recently, Harper et al. employed structural MRI and 184
post-mortem confirmed dementia cases to evaluate the reli-
ability of six visual rating scales, including the medial tem-
poral lobe atrophy scale, posterior atrophy scale, the ante-
rior temporal scale, orbito-frontal, fronto-insula and anterior
cingulate [61]. Using automated classification based on all
six visual rating scales, the authors were able to distinguish
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pathological groups with an accuracy ranging from 86-97%
from healthy controls, with DLB being distinguishable with
sensitivity of 64% and specificity of 92%, leading to a bal-
anced accuracy of 78% (Table 4). DLB was also differenti-
ated from AD with a sensitivity of 64%, specificity of 82%
and balanced accuracy of 73%, as well as from frontotem-
poral lobar degeneration (FTLD) with a sensitivity of 93%,
specificity of 89% and balanced accuracy of 91%. The low
sensitivity in distinguishing DLB from controls or AD ulti-
mately emphasizes the elevated number of false negatives
attached to DLB diagnosis, which is likely due to the large
degree of overlap which exists between DLB and AD, as
demonstrated by the fact that ~50% of DLB cases exhibit
significant amyloid burden [62]. This was also demonstrated
by Nedelska et al., who, in histopathologically confirmed
cases, demonstrated that mixed DLB/AD cases exhibited
markedly higher rates of brain atrophy, with the topography
of changes corroborating with that seen in AD, predomi-
nantly affecting temporoparietal cortices, amygdala and hip-
pocampi [63]. However, DLB patients exhibited minimal
global atrophy compared to controls, with no region-specific
atrophy that enabled distinguishability from controls [63].
The issue of false negative diagnoses has critical treatment
implications, as failure to properly diagnose DLB clinically
will likely result in limited use of existing symptomatic
treatments, as well as exposure to non-beneficial or even
harmful treatment options.

Molecular imaging

Molecular imaging has provided further insights into the
pathophysiology of a complex disease such as DLB. Modali-
ties such as single photon emission tomography (SPECT)
and positron emission imaging (PET) are valuable methods
of assessing neurobiology in vivo. Radionucleosides tracing
neurotransmitters, synaptic pathology and misfolded protein
aggregation provide elusive tools in investigating underlying
disease mechanisms (Table 3).

Metabolicimaging

["®F]FDG PET is used in detecting cerebral glucose metabo-
lism, which is impaired in cases of neuronal degeneration
and synaptic pathology. It has been widely used in assessing
dementias, and has been proven to be an effective tool in
aiding the diagnosis of AD and monitoring its progression
[64-66].

In DLB, the topographical pattern of hypometabolism
includes mainly the occipital areas, visual association corti-
ces and the posterior parietotemporal areas [67—69], though
in AD, decreased cerebral metabolism tends to involve
other areas as well [70]. In a recent multimodal PET study

@ Springer

assessing amyloid-f} deposition and cerebral glucose metab-
olism, with ['!C]PiB and ['®F]FDG, respectively, Chinese
patients with probable DLB exhibited cortical amyloid-f
deposition, as well as hypometabolism in the temporo-pari-
eto-occipital region, insular, precuneus, frontal lobe, poste-
rior cingulate and caudate nuclei [71].

Another characteristic feature of DLB is preserved
metabolism in the posterior cingulate area when compared
to the precuneus and cuneus [72]. This is called the cingulate
island sign and can be related to the common visual hal-
lucinations in patients with DLB. Furthermore, it harbors
a notable sensitivity and specificity [66, 73]. The cingulate
island sign has been inversely correlated with neurofibrillary
tangle pathology in autopsy studies [73]. A recent study has
also reported association of cingulate island sign, not only
with medial temporal lobe atrophy, but with clinical symp-
toms (cognitive impairment, visual hallucinations) of DLB
patients as well [73].

Imaging dopaminergic dysfunction

Dopamine transporter (DAT) imaging with SPECT using as
a radiotracer [123I]FP-CIT-SPECT has been a valuable tool
in assessing dopaminergic function in vivo. Decreased DAT
uptake in basal ganglia is considered a supportive diagnos-
tic feature according to current consensus diagnostic crite-
ria [74, 75]. The diagnostic accuracy is even higher when
applied in autopsy-proven cases of DLB [76-78]. Yielding
a sensitivity of 88% and a specificity of 100% over non-
DLB cases, ['ZI]FP-CIT-SPECT is a highly useful diag-
nostic tool [74]. A meta-analysis referring to 419 patients
enrolled in 4 studies, showed a remarkable diagnostic accu-
racy, with a mean sensitivity of 86.5% and a mean specific-
ity of 93.6% [79]. When comparing pathologically proven
cases to clinical diagnosis, ['**I]FP-CIT-SPECT has demon-
strated increased accuracy in differentiating DLB from AD
[80, 81]. In DLB, there is a decreased level of DAT, which is
helpful in differentiating from AD where DAT is preserved
[82, 83]. On the other hand, DAT imaging is not useful in
discriminating DLB from PD-MCI and PDD, where there
is a profound loss of DAT in the striatum [84]. Although
DAT imaging possesses an inability to distinguish between
parkinsonian syndromes, a recent study by Takaya et al.
revealed that a combination of disease-specific perfusion
patterns and striatal DAT activity accurately differentiates
between atypical parkinsonian syndromes and Lewy body
dementia [85]. However, in the rare cases of DLB where
nigrostriatal degeneration is minimal and cortical pathol-
ogy is the prominent feature, false negative results might
occur. As for discriminating DLB patients from frontotem-
poral dementia or atypical parkinsonian syndromes (i.e. pro-
gressive supranuclear palsy (PSP), corticobasal degen-
eration (CBD)), ['*I]FP-CIT-SPECT should not solely be
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accounted for as a reliable method of investigation [86]. The
clinical phenotype should always be considered when inter-
preting findings regarding the above-mentioned conditions.

Imaging cardiac sympathetic innervation

['1]MIBG cardiac scintigraphy is widely used to assess
cardiac postganglionic sympathetic degeneration, which is
a common feature in neurodegenerative diseases with Lewy
Bodies pathology. ['**IIMIBG is a promising biomarker with
the ability of excluding AD and predicting conversion of
possible to probable DLB [87-89]. A large multicenter study
including 133 patients, diagnosed according to the consen-
sus criteria, highlighted similar sensitivity and specificity
to ['ZI]FP-CIT-SPECT [90, 91]. Although the ['*I]MIBG
is a credible modality, certain pitfalls should be considered.
The presence of diabetes mellitus or cardiac disease might
provide false positive results [92]. Thus, such patients should
be excluded from undergoing cardiac scintigraphy for diag-
nostic purposes. When comorbidities are taken into account,
[ [JFP-CIT-SPECT may have a distinguishable diagnostic
significance in the clinical setting [93].

Amyloid imaging

Positive amyloid imaging is a classic feature of AD, with
plaque deposition becoming apparent years after clinical
symptomatology. Incorporation of amyloid imaging in AD
consensus diagnostic criteria highlight the importance of
such findings [94]. Furthermore, it may be proven elusive
in early detection of disease pathology, disease monitoring
and as a biomarker in disease-modifying trials with treat-
ment targeting amyloid deposition. In DLB apart from
a-synuclein aggregation, in some cases, pathology is also
characterized by amyloid-f and tau deposition [95, 96]. The
concurrence of the above-mentioned events leads to greater
cognitive impairment [97].

Subsequently, imaging amyloid-f and tau deposi-
tion could potentially elucidate the association between
AD-related pathology and a-synuclein aggregation.
[“C]-Pittsburgh compound B ([1 1C]PiB) has been the most
used radioligand to assess amyloid-p deposition in patients
with DLB. Patients with DLB have shown increased ['!C]
PiB retention when compared to patients with PD or PDD
and reduced retention when compared to patients with AD
[67]. However, although the load of amyloid-p deposition
cannot distinguish DLB from AD, it can be associated with
the pace of cognitive decline in DLB patients [98, 99]. Other
studies have associated amyloid pathology to the time-onset
of cognitive features when related to parkinsonism [62].
Meta-analyses highlighted that 68% of patients with a diag-
nosis of probable DLB harbor abnormal [''C]PiB retention
[67, 100]. Regarding differences between DLB and PDD,
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it has been demonstrated that cortical amyloid-f burden is
significantly high in DLB patients, which is comparable to
amyloid-p retention in AD, but conversely to PDD patients
where amyloid-f pathology is scarce [62]. Dementia sever-
ity has been to shown to be trivial in the differential load of
amyloid-f between DLB and PDD, with amyloid deposition
possessing the ability to differentiate DLB and PDD, despite
their overwhelming overlap in clinical, neuropathologic and
neuropsychologic features [94]. Gomperts et al., through
measuring ['!C]PiB retention in Lewy body diseases such as
DLB, PDD, PD and PD-MCI, found that amyloid-f burden
was higher in DLB subjects compared to the other groups,
with amyloid deposits being associated to cognitive impair-
ment exclusively in DLB [97]. The early amyloid burden in
DLB, comparative to PDD, may account for the variability
in onset of dementia and parkinsonism between the two con-
ditions. However, it is important to note that ['C]PiB binds
to amyloid fibrils, but not soluble amyloid oligomers, thus
the possibility remains that both DLB and PDD have high
levels of toxic amyloid oligomers, which could potentially
underlie cognitive impairment in both conditions. Notably,
['!C]PiB retention patients with probable DLB or PDD,
tend to have a similar pattern of cortical atrophy in MRI to
patients with AD [101]. A recent study comparing [!'C]PiB
binding to GM atrophy rates concluded that higher retention
at baseline was correlated to increase loss of GM, greater
ventricular expansion and cognitive impairment [101]. In
concordance with novel therapeutic strategies in AD, where
amyloid pathology is targeted, amyloid imaging will have an
upgraded role when anti-amyloid treatments are available for
DLB patients as well.

Tau imaging

The in vivo evaluation of tau pathology in DLB has been
lacking until recently. The radioligand fluorine 18-labeled
AV-1451 (['®F]AV-1451), also known as ['*F]T807, has
been proven suitable to assess tau deposition. Pathological
studies have confirmed the predisposition of ['*F]T807 for
tau protein in neurofibrillary tangles instead of amyloid-f
plaques or a-synuclein in Lewy bodies [102]. A recent study
highlighted that cortical ['®F]AV-1451 uptake was highly
variable and greater than in the controls, especially in the
inferior temporal gyrus and precuneus [102]. Furthermore,
increased binding in these regions was found to be associ-
ated with cognitive impairment, as measured by the mini-
mental state examination (MMSE) and the Clinical Demen-
tia Rating scale [102]. These finding indicate a role for tau
pathology in DLB pathogenesis. A subsequent larger ['°F]
AV-1451 PET imaging study reported that ['*F]AV-1451
uptake was substantively more extensive and severe in AD
compared to DLB patients [103]. [8F]AV-1451 uptake
within the medial temporal lobe completely discriminated
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AD dementia from probable DLB, with AD exhibiting high-
est medial temporal uptake and DLB exhibiting the lowest.
Probable DLB subjects had higher ['®F]AV-1451 uptake
in the posterior temporoparietal and occipital cortex com-
pared to healthy controls, though no correlations were found
between uptake in these regions and clinical measures such
as motor parkinsonism, visual hallucinations, cognition or
the presence of REM sleep behavior disorder (RBD). Global
cortical [''C]PiB uptake, a marker of amyloid-f, was associ-
ated with elevated posterior temporoparietal and occipital
['®F]AV-1451 uptake, indicating an atypical pattern of tau
deposition in probable DLB [103]. Generally, there appears
to be a gradient of increasing tau binding: from absent to
minimal tau binding in cognitively normal PD, to low tau
binding in PD patients with cognitive impairment, to inter-
mediate tau binding in DLB and very high tau binding in
AD [102, 104].

Alpha-synuclein imaging

Pathological SNCA is detected in various forms, such as
fibrils, Lewy bodies and oligomers. Moreover, SNCA depos-
its are abundant in other misfolded proteins, including tau
and amyloid [105]. Thus, a radiotracer with high selectivity
for SNCA over tau and amyloid is required to provide ade-
quate accuracy. Other key features of a potential radiotracer
include high affinity for SNCA aggregates, high penetration
in the brain and prompt clearance.

Several potential compounds with a desirable profile and
acceptable characteristics have been identified and the pro-
duction of an accurate radiotracer for SNCA remains the
greatest challenge of the neuroimaging community in move-
ment disorders [106]. One of the first compounds that was
tested in vitro was the benzoxazole BF227 [107]. Although
['®F]BF227 harbored high affinity for amyloid and low affin-
ity for SNCA in brain tissues, it was also evaluated in vivo in
a cohort of MSA patients without fully overcoming interpre-
tation issues [108]. A group of phenothiazine derivatives has
also been investigated in animal studies, as potential com-
pounds, due to their moderate selectivity for SNCA in PD
brains [109]. ['*F]WC-58a harbored a promising selectivity
and affinity for synthetic SNCA fibrils; however, it proved
to be too lipophilic with a slow clearance [110].

The development of a reliable SNCA radioligand is an
unmet need regarding in-depth cohort stratification, moni-
toring disease progression and designing experimental
treatments for synucleinopathies. The presence of inciden-
tal Lewy body disease among elderly is a caveat regarding
the diagnostic utility of SNCA-PET. However, the capa-
bility of in vivo quantification could provide a valuable
tool, especially when combined with other modalities to

understand the full spectrum and progression of overlap-
ping proteinopathies.

Sensitivity and specificity of molecular
imaging modalities in pathologically proven
DLB cases

['2311-FP-CIT-SPECT

The importance of ['*IJFP-CIT-SPECT in the differential
diagnosis of DLB and non-Lewy body dementias has been
extensively elucidated and is appreciated in the clinical
setting [111].

Class I evidence have been provided regarding the
application of ['*’I|FP-CIT-SPECT in discriminating DLB
patients [112]. However, results should be replicated with
patients recruited from different clinical settings. Reduced
uptake yields a respectable diagnostic accuracy in dis-
criminating DLB from AD. Alas, regarding differential
diagnosis with atypical parkinsonian syndromes and fron-
totemporal dementia, the utility of ['**I|FP-CIT-SPECT is
limited [86, 113, 114].

There are scarce studies evaluating ['**I|FP-CIT-SPECT
alongside post-mortem tissue in DLB (Table 4). Among
all cohorts, ['2*IJFP-CIT-SPECT exhibits higher sensitiv-
ity and specificity when compared to clinical diagnosis.
Vascular lesions in the substantia nigra have been reported
as a cause of false positive results [115]. Although posi-
tive scans have been reported in PSP, FTLD and CBD,
diagnosis can typically be made on distinct clinical char-
acteristics. However, Thomas et al. have reported two false
positive cases with features of parkinsonism and a clinical
diagnosis of DLB; post-mortem diagnosis revealed either
AD or FTLD features without evidence of SNCA pathol-
ogy in the substantia nigra [112]. The authors also identi-
fied six cases of false negative scans; three of the cases had
a clinical diagnosis of AD at baseline without any signs
of parkinsonism. At post-mortem examination, they har-
bored a mixed picture of AD and DLB features. The other
three cases were retrospectively reassessed and actually
fulfilled criteria for probable DLB. Hence, although ['?°I]
FP-CIT-SPECT harbors a suitable accuracy, absence of an
abnormal scan cannot fully exclude the presence of DLB.
This discrepancy could be explained either by the fact that
['2I]FP-CIT-SPECT measures the effect of SNCA in neu-
rons and not the deposition of SNCA per se; thus cortical
and striatal pathology might be evident without substantial
nigrostriatal neuronal degeneration.
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Amyloid imaging

A study by Albin et al., combining amyloid and dopamine
terminal PET imaging, revealed that imaging classifica-
tions were concordant with neuropathological diagnos-
tic classifications in 33/36 cases (91.7%) [116]. Of three
cases with discordant imaging-pathological classification,
one had a clinical and imaging diagnosis of DLB, but a
pathological diagnosis of AD. However, alpha-synuclein
immunoreactive Lewy body inclusions were present in the
midbrain, thus suggestive of mixed AD-DLB pathology.
The other discordant subject was classified as DLB via
imaging, but within the frontal cortex and hippocampus,
had transactive response DNA binding protein 43 kDa
(TDP-43)-immunoreactive neurites. This was particularly
unusual given that this case exhibited unilateral striatal
loss of [''C]DTBZ, a marker of striatal dopamine terminal
integrity. Although 8.3% of cases differed in diagnostic
classifications based on neuroimaging and histopathology,
this was an improvement compared to their previous stud-
ies, which demonstrated that ~35% of cases had discord-
ant expert clinical consensus and imaging classifications
[117, 118]. Therefore, this combined imaging approach
may be useful in establishing more accurate markers for
differentiating dementias.

['8FIFDG PET

Patterns of cerebral glucose metabolism in DLB have been
reported to encompass the ability to differentiate DLLB
from other forms of dementia. Although DLB has shown
to exhibit widespread glucose hypometabolism across
cortical regions, metabolic reduction has been shown to
be most prominent within the visual association cortex.
Through looking at metabolism within this region, DLB
can be distinguished from AD with a sensitivity of 86%
and specificity of 91% [119]. Although these authors only
scanned one patient with autopsy-confirmed DLB diag-
nosis, postmortem results from 17 DLB brains revealed
a distinct and extensive white matter spongiform change
with coexisting gliosis throughout cerebral white mat-
ter. These changes were consistently and pronouncedly
observed within the occipital lobe, with the severity of
the regional spongiform change mainly corresponding to
the regional differences in patterns of reduced glucose
metabolism illustrated by living AD and DLB patients
[119]. This study is in corroboration with findings reported
by Minoshima et al., who revealed that autopsy-confirmed
AD and DLB patients exhibited regional metabolic reduc-
tions, specifically within posterior cingulate, parietotem-
poral association, and frontal association cortex. DLB
cases, in particular, demonstrated significant metabolic
reductions within the occipital cortex, specifically within
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the primary visual cortex, which had the ability to distin-
guish DLB from AD with a specificity of 80% and sen-
sitivity of 90% [120]. Furthermore, patients who were
initially clinically diagnosed with probable AD, but later
fulfilled the clinical criteria for DLB, demonstrated hypo-
metabolism within the primary visual cortex at higher fre-
quencies, which often preceded the manifestation of sev-
eral DLB symptoms [120]. Although the authors of these
studies argue that ['®F]FDG PET may be a useful tool to
distinguish DLB from other dementias, Albin et al. dem-
onstrated that ~30% of classifications, based on glucose
metabolism, differed from final neuropathological diag-
noses in a cohort of DLB, AD and FTD who underwent
PET imaging and subsequent autopsy [116]. They reported
2 cases where ['®F]FDG PET classification was AD but
pathological verification was DLB, though combined amy-
loid and dopaminergic terminal PET imaging correctly
identified the pathological diagnosis [116]. Therefore, the
authors argued that classifications based on ['FIFDG PET
are less precise, with misclassifications ascribed to ['8F]
FDG PET being due to the absence of occipital metabolic
deficits in a substantial proportion of DLB patients [121].

A proposed ['®F]FDG PET imaging feature of DLB is
the cingulate island sign, which refers to the sparing of the
posterior cingulate relative to the precuneus and cuneus.
This sign is said to be useful for an accurate diagnosis of
DLB, given that it is specific, with a reasonable sensitivity
[66]. Studies assessing this sign in clinically diagnosed DLB
have revealed that the cingulate island sign metabolism, as
measured by ['*F]JFDG PET, is highly specific for detecting
DLB, with a specificity of 100% and sensitivity ranging from
62 to 86% [66]. In this study, 4/14 subjects had autopsy-
confirmed DLB, with the others being followed clinically
for several years and their diagnosis remaining unchanged.
Similarly, the cingulate island sign metabolism is higher in
DLB patients compared to AD, independent of amyloid load
[72]. Patients who exhibited the cingulate island sign were
more likely to be classified as having high or intermediate
probability of DLB pathology, receiving a clinical diagnosis
of DLB. Furthermore, a higher cingulate island sign ratio
was associated with a lower burden of neurofibrillary tan-
gles. 2 subjects who had the lowest cingulate island sign
ratio where clinically diagnosed with DLB, but at autopsy,
exhibited high likelihood of AD pathology without Lewy
body pathology. Taken together, these results indicate that
a reduction in cingulate island sign ratio is associated with
high burden of AD-type neurofibrillary tangles, therefore
‘pure’ DLB would present with the typical cingulate island
sign. This is incredibly important, as the convergence and
co-occurrence of AD and DLB pathology is common, with
‘pure’ DLB accounting for no more than a third of all DLB
cases and possibly 10% of all clinical dementia cases. This
was demonstrated by Barker et al., who identified DLB in
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14-26% of dementia cases, with the ‘pure’ form of DLB
accounting for 0-19% of dementia patients [122]. Therefore,
whilst helpful, the cingulate island sign will not very sensi-
tive or specific for DLB in other pathological series.

Conclusions

DLB is a common dementia in older patients and differential
diagnosis with AD and especially PDD can be challeng-
ing. Well-established neuroimaging modalities such as ['%I]
FP-CIT-SPECT and ['*I]MIBG can be extremely useful in
adding diagnostic accuracy between DLB and AD but not
with PD-MCI and PDD or atypical parkinsonian syndromes.
The application of novel radioligands targeting pathways rel-
evant to underlying pathophysiology, can provide valuable
tools in exploring molecular pathology. Furthermore, precise
quantification of tau pathology and the possibility of a tracer
targeting a-synuclein will further expand insights and poten-
tially harbor innovative therapeutic opportunities.
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