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Abstract: Coronary artery disease (CAD) is one of the most common causes of death worldwide.
In the last decade, significant advancements in CAD treatment have been made. The existing
treatment is medical, surgical or a combination of both depending on the extent, severity and clinical
presentation of CAD. The collaboration between different science disciplines such as biotechnology
and tissue engineering has led to the development of novel therapeutic strategies such as stem
cells, nanotechnology, robotic surgery and other advancements (3-D printing and drugs). These
treatment modalities show promising effects in managing CAD and associated conditions. Research
on stem cells focuses on studying the potential for cardiac regeneration, while nanotechnology
research investigates nano-drug delivery and percutaneous coronary interventions including stent
modifications and coatings. This article aims to provide an update on the literature (in vitro,
translational, animal and clinical) related to these novel strategies and to elucidate the rationale
behind their potential treatment of CAD. Through the extensive and continued efforts of researchers
and clinicians worldwide, these novel strategies hold the promise to be effective alternatives to
existing treatment modalities.
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1. Introduction

The scientific advancements in the understanding of the pathophysiology of coronary artery
disease (CAD) have led to a decrease in the mortality (in age-adjusted subjects) towards the turn
of the 20th century [1]. However, CAD remains one of the leading cause of death in the world [2].
CAD is responsible for one-third of deaths in developing and developed countries in people over
35 years of age, with the percentage reaching close to 50% (according to some estimates) in western
countries [3,4]. The worldwide burden is set to reach 47 million disability adjusted life years (years lost
due to disability, ill-health or death) by the year 2020 as projected by World Health Organization [5].
In the United States alone, there are estimated to be 900,000 subjects who suffeedr or die from CAD
and its complications in 2016 [6].

There has been a greater focus in research aimed at all aspects of CAD in the last decade. Due
to exhaustive efforts from clinicians and researchers worldwide, there has been significant progress
made in developing novel strategies for patients suffering from CAD and its associated complications.
These strategies have ranged from drugs to robotic surgery to nanotechnology. This article will
summarize the literature on the recent advances in coronary artery disease research in respect to
therapeutics and biomarkers. This article will cover topics under the following headings: robotic
surgery, nanotechnology, stem cells and other related advancements.
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2. Robotics

Robots have been in place in mass production industries for many years. However, their
introduction in medicine was fairly recent and started in the fields of surgery and radiotherapy.
In cardiology, they have been in use for more than a decade for surgeries like mitral valve repair,
coronary artery bypass graft and septal defect closure. The technology is fast evolving with reports
emerging about their potential applications in percutaneous coronary intervention (Figure 1) and atrial
fibrillation ablation [7]. Robotics provide the operator with advantages such as improved ergonomics,
precision and sometimes shortening of intraoperative time (Figure 2) [7]. There have been reports that
robot-assisted surgery can shorten patient hospital stay and improve patient perception (Figure 2) [8].
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procedures. Conventional angiography radiation exposure for CAD patients is estimated at 7 mSV, 
and this exposure can be increased by up to 5 times in complicated surgeries [9]. Robotic guided 
surgery has potential to limit this radiation exposure. In addition, they can also reduce contrast 
induced nephrotoxicity and associated mortality in patients (Figure 2) [9]. In terms of patient related 
outcomes, the robotic assisted surgery has potential benefits as it can accurately measure the size of 
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In the field of interventional cardiology, robotics are being used for catheter-based surgical
procedures. Conventional angiography radiation exposure for CAD patients is estimated at 7 mSV,
and this exposure can be increased by up to 5 times in complicated surgeries [9]. Robotic guided
surgery has potential to limit this radiation exposure. In addition, they can also reduce contrast
induced nephrotoxicity and associated mortality in patients (Figure 2) [9]. In terms of patient related
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outcomes, the robotic assisted surgery has potential benefits as it can accurately measure the size
of the lesions (which can be miscalculated using 2D angiography) which could improve long-term
health. Hence, they reduce radiation exposure for the surgeon and the patient as well as improve
precision by rendering accurate measurements of lesions (Figure 2) [7]. Granada et al. published
the first robotic interventions for cardiac patients [10]. They performed coronary angioplasty and
reported 100% success rate (measured in terms of less than 30% residual stenosis along with the
absence of major cardiac complications) in all of their patients (80 subjects) [10]. In a multicenter
study published by Weisz et al., a percutaneous coronary intervention was performed for patients
with coronary artery disease [11]. They used similar success criteria (measured in terms of less than
30% residual stenosis along with absence of major cardiac complications) and reported a 97.6% rate
of success (164 patients) [11]. They also reported a significant reduction (95%) in operator radiation
exposure [11].

Robotics has also been used to perform coronary artery bypass grafting in CAD patients (Figure 1).
The procedure, including the harvesting of the mammary arteries and anastomosis, can be performed
endoscopically [7]. The results of the clinical studies are summarized in Table 1. Although there are
reported benefits for robotically assisted bypass grafting, high costs and long learning curves have
slowed down its progress towards becoming used routinely [12]. Robotically assisted hybrid coronary
revascularization, which involves coronary artery bypass graft as well as percutaneous coronary
intervention, has also been developed as a treatment modality for CAD. There have been reported
benefits such as reduced morbidity and shortened hospital stays due to the minimally invasive nature
of the procedure [13–16].

Table 1. Summary of clinical studies for robotic assisted coronary artery bypass grafting.

S. No. Author’s Name Results Additional Comments

1. Dogan et al. [17] They reported a patency rate of 100%. TECAB was performed on hearts
arrested intraoperatively.

2. Kappert et al. [18]
Reduced duration of surgery (down
from 280 to 186 minutes); All of them
had normal wound healing

TECAB was performed on a beating
heart. 3 patients had to undergo
re-exploration due to bleeding.

3. Mohr et al. [19]

Successful procedure in 22 patients
(5 of them had to be converted to
manual procedure); At discharge,
patency was 100% and 95.4% at 3
months; In the TECAB group,
success rate was 50%.

TECAB was performed on beating
(n = 8) and arrested (n = 27) heart.

TECAB: Totally endoscopic coronary artery bypass graft; S. No: Serial number.

The current state of robotic surgery is promising in the treatment of CAD. These systems are of
excellent quality with high-end technology. Their proposed benefits in the form of improved precision,
increased visibility, improved ergonomics and reduced radiation exposure have been documented,
which have translated into improved patient recovery times with reduced hospital stays [7,20,21]. They
also provide a distinct advantage for procedures that are difficult to be performed using endoscopy or
catheters [7]. However, their translation into full-fledged clinical usage is inhibited by high cost and
the learning curve needed to master these procedures [22]. It remains to be determined, with further
technological advancement, whether this technology will be accepted into routine clinical practice and
replace conventional technologies.

3. Nanotechnology

Nanotechnology has been revolutionizing several fields including medicine. It involves the
engineering of nanoscale molecules with distinctly different properties than bulk molecules of the
same composition. These inherent differences provide distinct benefits which are strong reasons for the



Int. J. Mol. Sci. 2018, 19, 424 4 of 18

boom in nanotechnology research. This technology has been studied in CAD for its potential benefits
in medical (non-invasive) and invasive treatment modalities, drug delivery applications, percutaneous
coronary interventions, gene therapy, and coronary artery bypass graft (Figure 1).

Cholesterol is an important factor involved in the pathogenesis of coronary artery disease. High
levels of low-density lipoproteins (LDL) are implicated in coronary artery disease whereas high-density
lipoproteins (HDL) are thought to have a protective role since they are involved in transportation
of cholesterol away from the peripheral tissues. Nanotechnology has been used in the synthesis of
a dimyristoyl phosphatidylcholine, which mimics the surface characteristics of HDL (Figure 3) by
mediating the removal of cholesterol from the peripheral tissues and transport it to the liver. In an
animal model study, mice fed with a cholesterol-rich diet showed significantly lower plaque volume
and cholesterol content in the aorta when treated with dimyristoyl phosphatidylcholine liposomes [23].
Fumagillin is an anti-angiogenic drug that has been shown to inhibit angiogenesis thereby promoting
plaque regression in coronary arteries. One of the disadvantages that has prevented Fumagillin
application is its ability to cause adverse neurocognitive effects at high doses, which is required
to achieve a therapeutic effect. Winter et al. demonstrated that the Fumagillin can be delivered
through αvβ3 integrin targeted nano-delivery system, and is able to achieve significant antiplaque
effects at one-third of the usual dose (Figure 3) [24]. Several nanoparticle-based antithrombotic
agents have been tested for their potency. D-phenylalanyl-L-prolyl-Larginyl-chloromethyl ketone is a
potent antithrombotic agent that is rapidly cleared from the body, thus limiting its clinical use [25].
When combined with a perfluorocarbon-core nanoparticle, it has been shown to have improved
antithrombotic action, as shown by Myerson et al. in an animal model study (Figure 3) [26]. Peters
et al. on the other hand used hirudin with fibrin binding micellar nanoparticles which exhibited
greater targeting of fibrin clots in vivo (Figure 3) [27]. Collagen IV nanoparticles have been tried in an
animal model study and were shown to improve collagen formation while reducing oxidative stress
by mimicking Annexin A1 (glucocorticoid regulatory protein) [28].
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of CAD. PCI—Percutaneous coronary intervention. Abbreviations: percutaneous coronary intervention
(PCI). The upward or downward arrows represent an increase or a decrease of the referred parameters.

The studied modifications were in the form of liposomal glucocorticoid carrier (to deliver
anti-inflammatory hormones thereby reducing arterial wall inflammation), lipid nanoparticles



Int. J. Mol. Sci. 2018, 19, 424 5 of 18

(to deliver siRNA antagonistic to the C-C chemokine type 2 pro-inflammatory receptor), and
HDL nanoparticles (to deliver simvastatin to inhibit monocyte recruitments) [29–31]. Gel-based
nanoparticles combined with rapamycin (antiproliferative and antiapoptotic effect) were studied in
an animal model, which were found to re-endothelialize injured arteries and reduce hyperplasia [32].
Smart nanoparticles such as a pH-dependent delivery of antioxidants as developed by Tang et al. has
shown promise in treating cardiac diseases [33].

Nanotechnology has shown potential benefits when used in percutaneous coronary intervention.
They have been studied for their ability to release drugs as well as promote healing and reduce
restenosis (Figure 3) [25]. Nano-sized hydroxyapatite coating for controlled release of sirolimus
(an immunosuppressive drug) performed satisfactorily in clinical trials [34]. Similarly, the release
of sirolimus was studied using carbon nanoparticle coated stents with consistent drug release, as
reported in an in-vitro study [35]. The sirolimus-releasing stents were compared with pitavastatin
nanoparticle-eluting stents. The latter were found to be more efficient in terms of faster endothelial
healing while being comparable in other parameters (Figure 3) [36]. Magnetic silica nanoparticles
were loaded with rapamycin, coated onto the stent and exhibited rapid endothelialization in
in vivo studies [37]. Endothelial healing and re-endothelialization help to restore the injured vessel
back to health. Polycaprolactone was found to be an effective carrier for nitric oxide to prevent
restenosis (Figure 3) [38]. In animal model studies, it has been proven that liposome encapsulated
alendronate (a bisphosphonate) can reduce restenosis and neointimal formations (Figure 3) [39].
Similarly, paclitaxel (antimitotic drug) in the form of albumin-based nanoparticles have shown to have
significant antiproliferative and restenosis effects without significant toxicity even when administered
systemically [40,41]. The nanoparticles in these cases were either used to improve cell membrane
permeability (alendronate) or binding capacity to the targeted tissues (paclitaxel) [42]. Polymeric stent
coatings in the form of poly(lactic-co-glycolic acid) were proven to have a controlled release of the drug
paclitaxel (nanocoatings-64) and polyethylene glycol was proven to reduce platelet adhesion [38,43].
Nanomodifications have also helped scientists in targeting specific delivery of medications such as
collagen IV, chondroitin sulfate, tissue factor, or stents [44–47].

Nanotechnology has the potential to promote healing by inducing endothelialization of the
stent (Figure 3) [25]. These nano-modifications have been in the form of nanofibrous matrix (attracts
endothelial cells), polyhedral oligomericsilsesquioxanepoly-(carbonate-urea) urethane (improved
adherence and proliferation of human endothelial cells), peptide amphiphile-nanofiber coating (for
promotion of endothelial cell adhesion), and magnetic nanoparticles (for preferential movement
of cells towards the stent) [48–51]. Nanotechnology also has potential applications in finding
synthetic alternatives for coronary artery bypass grafts. Researchers have studied the potential
of electrospunnanosized fibrous scaffolds, which may prove to be an alternative synthetic graft for
coronary artery bypass graft procedures [52,53]. Targeting drug-eluting stents in gene therapy is
another area where nanotechnology holds promise. Gene eluting stents can be used to overcome
restenosis, in-stent thrombosis, and delayed endothelialisation [54,55]. Several nano-coatings in the
form of hyaluronic acid (to carry pDNA), nanobiohybrid hydrogel (to carry Tat peptide and DNA),
and poly(lactic-co-glycolic acid) nanoparticles (carrying PDGF receptor-β antisense RNA) have been
studied in animal models and have shown promising results [56–58]. Other gene targets that have been
studied extensively include antisense oligonucleotide, chitosan-plasmid DNA, Akt1 siRNA, vascular
endothelial growth factor, prostacyclin synthase, and endothelial nitric oxide synthase [54].

Nanotechnology has led to an interesting and promising direction in the treatment of CAD.
It has valuable potential in delivering drugs that are otherwise limited by their pharmacokinetics.
Its applications in stent and gene therapy are potentially useful for future therapeutics based on these
modalities. Further randomized controlled trials need to be conducted to establish strong evidence
to support the use of these newer technologies for CAD treatments. This needs to be carried out
with strong collaboration between researchers, engineers, biomedical engineers, nanotechnologists
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and clinicians. As the technology and evidence develops, we will soon enter an era where existing
established treatment modalities could be questioned and eventually replaced by nanotherapeutics.

4. Stem Cells

Research in cardiovascular disease has sought to repair myocardial damage and increase blood
supply in ischemic conditions of the heart, thereby reversing the effects of CAD. In this respect, both
vascular growth factors and stem cells have generated a lot of interest as a mode of treatment in
patients with CAD [59]. The rationale behind such therapy is to improve the blood supply to ischemic
areas of the heart by stem cells, as well as promote cardiac cell regeneration (Figure 1). This can be
achieved in one of two ways: by a direct effect of the stem cells, or by paracrine factors secreted by
these stem cells [60]. In this regard, hematopoietic stem cells have been of great interest, especially for
mononuclear cells and endothelial progenitor cells (Figure 4). Studies conducted using these cells for
various forms of ischemic heart disease (such as acute myocardial infarction (MI) and chronic ischemic
heart disease) have been contradictory, although some studies have demonstrated a beneficial effect
in such patients [61–64]. This has led to the inclusion of other types of stem cells, such as adipose
derived stem cells, into such studies. A novel alternative is the creation of induced pluripotent stem
cells, for which adult cells are transformed into pluripotent stem cells, similar to embryonic stem
cells [65,66]. Although it offers a promising alternative, concerns of cancerous transformation of the
undifferentiated stem cells have to be taken into account before they can be tried in human subjects.
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The stem cells studied in cardiovascular research ranged from bone marrow to adipose tissue
to skeletal muscle stem cells. Bone marrow-derived mononuclear cells are the most readily available
cells for transplantation in the body. They are easy to identify based on their cell surface markers
and can be isolated from the bone marrow [60]. However, their therapeutic potential is low since the
harvested cells contain a multitude of cells with a small proportion of stem cells (Figure 4) [63,67]. The
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bone marrow-derived mesenchymal stem cells are found in even lower concentrations than that of
mononuclear cells thus requiring several weeks of maturation with different growth factors in the lab
prior to clinical usage. The adipose derived stem cells can be surgically harvested from adipose tissues.
They are more abundant in comparison to the bone marrow-derived cells. This drastically reduces
the time and cost involved in laboratory procedures to culture them for clinical use (Figure 4) [68].
The pluripotent stem cells have a high potential for transformation. Although embryos represent
the most obvious source of stem cells, their use has ethical concerns and is in debate. Additionally,
these cells could potentially face rejection when transplanted to a recipient. However, it is possible
to reprogram adult cells and transform them into pluripotent cells (similar properties as embryonic
stem cells), thereby being called induced pluripotent stem cells. These cells can be auto-transplanted
and therefore would not be rejected. However, due to their transformation potential, unless closely
regulated, they can undergo teratomatous (derived from all three germ layers) changes in the body
(Figure 4) [65,69]. Due to the risk of teratomatous changes, this area of research requires more work
before they can be considered safe for human trials. Another interesting source of stem cells are cardiac
stem cells. Although the heart was considered as a static organ (with little or no potential to undergo
mitosis during adulthood) [70–72], recent evidence has shown a different perspective. The heart is
now believed to have intrinsic regenerative potential and undergoes constant turnover throughout
adult life (Figure 4) [73]. Beltrami et al. showed that the heart possesses cardiac stem cells that could
be responsible for the intrinsic regeneration and turnover throughout adult life [70]. These cells are
more numerous in the apices of the atrium and ventricles [74]. Although these cells are known to
be involved in tissue homeostasis, their reparative potential is limited, especially in conditions with
extensive damage such as myocardial infarction (MI) [72,75–77]. More recently, there has been an
interest to develop and inject multiple stem cells that can communicate with each other, termed as a
“Cardiocluster”. These clusters are cocktails of cells that include cardiac progenitor cells, mesenchymal
stem cells, endothelial progenitor cells and fibroblasts (Figure 4). They have the potential to promote
cardiac cell regeneration in disease states where cell function is reduced such as CAD [78].

The clinical data for stem cell therapy is in its early days with reported literature covering both
non-randomized and randomized trials. One non-randomized trial reported improved left ventricular
ejection fraction (LVEF) function following injection of mononuclear stem cells in patients with MI
within three months [79]. Improved exercise capacity, reduced mortality and scar tissue are shown
in a 5-year follow up [80]. Several other studies showed similar effects following treatments with
mononuclear stem cells after MI [64,81–83]. An earlier meta-analysis reported an improvement in LVEF
function by 2.99% following bone marrow stem cell transplantation in patients after MI [84]. However,
the meta-analysis did not include recent studies that reported no improvement in left ventricular
function [61,62]. In patients suffering from chronic ischemic heart disease, there is reported evidence
towards improved cardiac function following the use of bone marrow derived-stem cells [85–88].
There have been several trials that have studied the clinical efficacy of mesenchymal stem cells. They
have reported an improvement in cardiac function and relative safety in the use of mesenchymal
stem cells [89–92]. Cardiac derived stem cells have also undergone clinical testing and have shown
promising results [93–95]. They reported an improvement in LVEF [93], an improvement in the left
ventricular mass that was viable [94], improved quality of life [93], reduced scar mass, improved
regional contractility [95] and safety of the procedure [93,94]. Interestingly, a patient that was treated
with cardiac stem cells 14 months after MI had similar therapeutic benefit as someone treated earlier,
suggesting that cardiac stem cells could be beneficial in chronic ischemia patients [96]. However,
it should be noted that the observed clinical benefit was less than the expected clinical benefit based on
prior in vitro and animal studies [97] (for a more in-depth review on this topic, the reader can refer to
Kastrup [60], Quijada and Sussman [98] and Dixit and Katare [99]).

Stem cell therapy continues to be a promising treatment modality for coronary artery disease (both
acute and chronic). The experimental and clinical studies have shown promising results. However,
further research is needed to understand the exact mechanisms of action and the ideal source of stem
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cells to derive optimum benefit and to further our understanding. Several challenges have to be
overcome (such as long term safety and route of administration), but the direction of current research
looks promising.

5. Other Advancements

5.1. 3-D Printing

Cardiac conditions often require 3-D imaging such as magnetic resonance imaging, computerized
tomography, and 3-D echography to diagnose and treat these conditions. The limitations to this are
that though these images are in 3-D, they are viewed on a 2-D computer screen or films. Although it
could be sufficient for some cardiac procedures, the current imaging modalities are not effective for
more complex interventions [100,101]. 3-D printing has a potential role in CAD (Figure 1) as it cannot
only overcome these limitations but also allow for complete visualization, tactile sense, education and
surgical planning as well as simulation [102]. 3-D printing involves additive manufacturing of a model
using 3-D data from imaging modalities. Scientists are starting to see the full potential of 3-D printing
as the technology continues to evolve. In the field of cardiology it has tremendous potential in the
treatment of congenital defects, cardiac tumors, cardiomyopathy, functional flow models, valvular
heart diseases, stent placement for CAD and other cardiac surgeries [103–106]. 3-D printing allows the
visualization of 3-D printed heart with coronary arteries in order to visualize the extent of occlusion
and stenosis in CAD patients [107]. These models can be used in a pulsatile flow loop environment, not
only to visualize and understand complex flow patterns but also to simulate interventions [105]. 3-D
printed models are also useful in CAD research to compare imaging and treatment modalities [105,108].
One in vitro study mimicking a clinical scenario proved that 3-D printing could be more effective
in planning and treating complex situations (bifurcation lesions) that require stent placement [106].
Tissue engineering models are now being tested to fabricate stem cells along with extracellular matrix
(tissue printing) for implantation in the body [109]. In vitro studies have been successful in tissue
printing cardiac cells in different scaffolds [109,110]. In animal model studies, the implantation of
printed tissue in epicardial tissues showed beneficial effects including reduced adverse remodeling
and improved perfusion in myocardial infarct models [109,110].

5.2. Drugs

CAD patients are often on supportive, therapeutic, and lifelong medication for the condition
itself and co-morbidities (such as hypercholesterolemia). There have been recent advances in drug
developments for CAD patients (Figure 1). One class of drugs taken by patients suffering from CAD
are oral antithrombotic medications such as aspirin and clopidogrel. A few years ago a group of drugs
collectively termed as novel oral anti-coagulants were discovered. This group consists of the following
drugs: ximelagatran, darexaban, dabigatran, rivaroxaban, and apixaban [111]. Of which, dabigatran,
edoxaban, rivaroxaban, apixaban are approved for clinical use. Dabigatran is a competitive inhibitor
of thrombin while edoxaban, rivaroxaban, and apixaban are inhibitors of clotting factor Xa. Use of
dabigatran in CAD patients was studied in a phase 2 trial. The results revealed that ischemic events in
patients were significantly reduced at higher doses of the drug (110 and 150 mg), but this benefit was
counteracted with a four-fold increase in bleeding risk. However, the trials concluded that lower dose
therapy could be used without a significant increase in bleeding risk [112].

An important protein that controls the regulation of LDL is proprotein convertase subtilisin/kexin
type 9 (PCSK9) [113–115]. They function to reduce the number of LDL receptors thereby decreasing
LDL cholesterol levels in the blood [115]. Another important drug which could block the action of
PCSK9 is Alirocumab. The drug itself is a monoclonal antibody produced by recombinant DNA
technology [114]. The first studies reported a reduction in LDL cholesterol levels ranging from 28% to
65% depending on the route of administration (subcutaneous or intravenous) [116]. In phase II studies
(randomized controlled double blinded trials) it was reported that LDL cholesterol reduction ranged
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from 18.2% to 67% (depending on the dosage) compared to placebo [116,117]. When combined with
atorvastatin, Alirocumab brought about a LDL cholesterol reduction of 66–73% whereas placebo and
atorvastatin brought about a reduction of 17% [118]. These results were confirmed in several phase
III trials [119–130]. Since high LDL levels are linked to CAD, the use of Alirocumab reduced adverse
cardiovascular events by 15–48% [127,131,132]. Another drug that was recently developed for the
treatment of heart failure is the angiotensin receptor-neprilysin inhibitor (ARNi). This drug contains
a combination of sacubitril and valsartan, commonly referred to as the LCZ696 or ARNi [133,134].
The valsartan portion is a drug of the angiotensin receptor blocker family as well as angiotensin II
receptor antagonist, while the sacubitril component is neprilysin inhibitor [135]. This drug has proven
to be more effective in the treatment of heart failure than traditional Angiotensin-converting enzyme
(ACE) inhibitors [136]. Although initial trials are promising, the results of phase III clinical trials are
being awaited [136–140]

6. Conclusions

Despite great progress in cardiovascular research, CAD remains one of the most common causes
of morbidity and mortality worldwide. However, significant inter-collaborative efforts between
researchers, clinicians and other related professionals have led to multi-faceted and novel strategies to
be developed to treat CAD and its associated conditions. Though some of these strategies have strong
evidence supporting their clinical use, some others are still in the experimental stage. Despite only
early evidence being available on some of these novel treatment modalities, the results are promising
and hold the potential to become alternatives to current treatment options in the future. Since we live
in the era of evidence-based medicine, further evidence in the form of clinical trials and long term
follow up studies are required before these novel treatment strategies enter into mainstream practice.
With sustained continued efforts, the future for CAD therapeutics looks substantially promising.
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PCI Percutaneous coronary intervention
PCSK9 Proprotein convertase subtilisin/kexin type 9
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