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ABSTRACT: The COVID-19 pandemic has caused significant social and
economic disruption across the globe. Cellular entry of SARS-CoV-2 into
the human body is mediated via binding of the Receptor Binding Domain
(RBD) on the viral Spike protein (SARS-CoV-2 RBD) to Angiotensin-
Converting Enzyme 2 (ACE2) expressed on host cells. Molecules that can
disrupt ACE2:RBD interactions are attractive therapeutic candidates to
prevent virus entry into human cells. A computational strategy that
combines our Peptide Binding Design (PepBD) algorithm with atomistic
molecular dynamics simulations was used to design new inhibitory peptide
candidates via sequence iteration starting with a 23-mer peptide, referred
to as SBP1. SBP1 is derived from a region of the ACE2 Peptidase Domain
α1 helix that binds to the SARS-CoV-2 RBD of the initial Wuhan-Hu-1
strain. Three peptides demonstrated a solution-phase RBD-binding
dissociation constant in the micromolar range during tryptophan fluorescence quenching experiments, one peptide did not bind,
and one was insoluble at micromolar concentrations. However, in competitive ELISA assays, none of these peptides could
outcompete ACE2 binding to SARS-CoV-2-RBD up to concentrations of 50 μM, similar to the parent SBP1 peptide which also
failed to outcompete ACE2:RBD binding. Molecular dynamics simulations suggest that P4 would have a good binding affinity for
the RBD domain of Beta-B.1.351, Gamma-P.1, Kappa-B.1.617.1, Delta-B.1.617.2, and Omicron-B.1.1.529 variants, but not the Alpha
variant. Consistent with this, P4 bound Kappa-B.1.617.1 and Delta-B.1.617.2 RBD with micromolar affinity in tryptophan
fluorescence quenching experiments. Collectively, these data show that while relatively short unstructured peptides can bind to
SARS-CoV-2 RBD with moderate affinity, they are incapable of outcompeting the strong interactions between RBD and ACE2.

1. INTRODUCTION
Since the first report by the World Health Organization in
December 2019, severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) has heavily impacted the global
community. As of November 2021, there have been more
than 250 million confirmed cases of COVID-19 globally,
resulting in more than 5 million deaths.1 The advent of
vaccines at the end of 2020 and government-supported
vaccination campaigns have reduced the infection rate.
However, a slow rollout of vaccines in conjunction with the
emergence of more contagious variants of SARS-CoV-2, such
as lineages B.1.1.7 (Alpha variant), B.1.351 (Beta variant), P.1
(Gamma variant), B.1.617.1 (Kappa variant), B.1.617.2 (Delta
variant), and B.1.1.529 (Omicron variant),2,3 have further
prolonged the severity of this pandemic. As the pandemic
continues to evolve, so too does the need to develop effective
therapeutics capable of reducing infection rate, transmission,
hospitalizations, and recovery time for infected patients.

The initial Wuhan-Hu-1 strain of SARS-CoV-2 has been
shown to share an 86.9% sequence identity with SARS-CoV, a
coronavirus that emerged in 2002−2004, and both viruses rely
on the same human host receptor, Angiotensin-Converting
Enzyme II (ACE2), for cell entry.4,5 (Hereafter, we refer to this
initial strain of SARS-CoV-2 as a Wild-type (WT) strain.)
ACE2 is expressed on the surface of human cell membranes
where it facilitates the maturation of angiotensin. Entry of
SARS-CoV-2 into host cells is mediated by its Spike viral
protein, which can bind to ACE2 and subsequently initiate
membrane fusion between the virus and host cells. The Spike
protein has 1273 amino acids and contains two subunits, S1
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and S2, which are present on the viral membrane and protrude
outward, having a “corona-like” appearance. The Spike protein
subunit S1 binds to the peptidase domain (PD) of ACE2 via its
Receptor Binding Domain (RBD), while subunit S2 mediates
membrane fusion. The recognition of ACE2 by SARS-CoV-2
involves direct interactions between the RBD pocket and the
α1 and α2 helices of the ACE2 PD. The affinity between
SARS-CoV-2 WT and ACE2, measured by Wrapp et al. using
surface plasmon resonance, was found to be Kd ∼ 15 nM.6−8

Peptide sequences derived from ACE2 can competitively
inhibit the interaction between SARS-CoV-2 Spike protein and
ACE2 that is required for viral infection of host cells. Chan et
al. developed high-affinity decoy receptors through a deep
mutagenesis approach that identified amino acid substitutions
within ACE2 that increased Spike binding.9 Separate computa-
tional and experimental studies reported ACE2-derived α-
helical peptides that bound to the RBD WT and exhibited
modest antiviral activity, respectively.10,11 The Pentelute lab
synthesized a 23-mer peptide (sequence: IEEQAKTFLD-
KFNHEAEDLFYQS) termed “SBP1”, derived from the
ACE2 PD α1 helix (residue numbers: 21−43); its binding
activity to the SARS-CoV-2 RBD WT was observed to be ∼1.3
μM using biolayer interferometry (BLI).12,13 Notably, a shorter
12-mer peptide derived from SBP1 (sequence: TFLDKFNH-
EAED, residue numbers: 27−38 on the ACE2 PD α1 helix),
termed “SBP2”, was not observed to bind to RBD. The same
group also screened a library of peptide candidates against the
RBD using high-affinity selection mass-spectrometry; however,
the identified consensus peptide did not compete for ACE2
binding. It was instead predicted to bind at a different site on
RBD than ACE2, highlighting the importance of the binding
pocket on SARS-CoV-2 RBD for the design of effective
competitive binding inhibitors.14

Examining the interfacial interactions between the Spike-
RBD and ACE2 α1 helix may enable the discovery of new
peptide-based competitive inhibitors. An ideal inhibitor should
resemble SBP1 but exhibit a stronger affinity for the SARS-
CoV-2 RBD than ACE2. To increase the binding affinity of the
SBP1-mimicking peptides for SARS-CoV-2 RBD, we employed
PepBD, an automated peptide binding design algorithm
developed in the Hall group, to redesign the central portion
of SBP1 (“SBP2”, residue numbers: 27−38) while keeping the
flanking sequences at the SBP1 N-/C-terminus (residue
numbers: 21−26 and 39−43) fixed. Thus, within the general
SBP1 sequence, IEEQAKX1X2X3X4X5X6X7X8X9X10X11X12-
LFYQS, PepBD iterates the amino acids in each of the Xi (i
= 1−12) positions to generate a large library of variants that
are then analyzed in silico for their RBD-WT binding affinity.
The PepBD algorithm uses atomistic force fields, rather than
knowledge-based information, which to date has enabled the
discovery of high-affinity binding peptides to targets that have
no known binders available in the protein data bank.15−19 For
example, the PepBD algorithm has been used to design 15-mer
tRNALys3-binding peptides for the inhibition of HIV reverse
transcriptase,15−21 12-mer peptide-based biological recognition
elements for cardiac troponin I22 and for neuropeptide Y to
detect human performance indicators,23 Protein-A mimetic
peptide ligands to bind to immunoglobulin G for monoclonal
antibody purification,24 peptide ligands that bind to the Fab
fragment of immunoglobulin G,25 and peptide inhibitors
targeting C. dif f. toxins to neutralize the cytopathic effects of
the toxins.26

Highlights of our results are as follows. The PepBD
algorithm sampled approximately 450000 different peptide
sequences from a pool of ∼1013 possible peptide candidates.
Lead compounds from our computational search were
subjected to explicit-solvent atomistic MD simulations. The
implicit-solvent molecular mechanics/generalized Born surface
area (MM/GBSA) approach with the variable internal
dielectric constant model was used to estimate binding free
energies. We report 10 peptides that have a higher binding
affinity for SARS-CoV-2 RBD WT than SBP1 based on our in
silico analyses. Five peptides with favorable predicted binding
free energies were synthesized using conventional solid-phase
peptide synthesis methods. Of these, four of the peptides were
soluble in water up to mM concentrations. These four peptides
were tested for RBD-WT binding using a solution-phase
tryptophan fluorescence quenching binding assay that avoids
immobilization of either receptor or ligand. Competitive
inhibition of ACE2:SARS-CoV-2 RBD WT interactions by
these peptides was measured with an enzyme-linked
immunosorbent assay (ELISA). Three of the four peptides
bound RBD with micromolar solution-phase affinity, but none
of the three were capable of inhibiting ACE2:SARS-CoV-2
RBD WT interactions in the ELISA assay. Likewise, SBP1
failed to inhibit ACE2:SARS-CoV-2 RBD WT interactions in
the ELISA assay. Additional molecular dynamics simulations of
peptides SBP1 and P4 bound to the RBD of the Alpha, Beta,
Gamma, Kappa, Delta, and Omicron variants suggest that P4
binds with higher affinity than SBP1 to all variants except the
Alpha variant. Tryptophan fluorescence quenching assays
demonstrated that P4 bound to the SARS-CoV-2 RBD of
Kappa-B.1.617.1 and Delta-B.1.617.2 with micromolar affinity,
supporting these predictions. Collectively, these data demon-
strate the potential to design peptides that recognize the broad
spectrum of SARS-CoV-2 RBD variants using the PepBD
algorithm for the development of SARS-CoV-2 diagnostics and
drug-delivery applications.

2. MATERIALS AND METHODS
2.1. Computational Peptide Design Algorithm. The

PepBD algorithm uses an iterative procedure that optimizes
peptide sequences to bind with higher affinity and specificity to
a biomolecular target than a known reference ligand. The
algorithm requires a starting input structure for the complex
formed by an initial peptide sequence (reference ligand) and
the biomolecular target. This can be obtained from the PDB,
standard docking algorithms, crystallography, NMR, or from
atomistic molecular dynamics simulations. The design
algorithm performs 10,000 evolution steps and generates
variants to the original peptide that bind to the target protein
by two kinds of moves: sequence change and conformation
change. Each step samples approximately 20 different peptide
sequences or conformations. If a sequence change move is
selected, two kinds of trials that move to change the peptide
sequence are considered: (1) random substitution of a new
residue for an old one of the same residue type and (2)
exchange of amino acids at two random sites on the peptide.
The 20 natural amino acids are classified into six residue types
according to their hydrophobicity, polarity, charge, and size
(see Supporting Information, Table S1). If a conformation
change move is selected, a random number is generated to
decide which of three possible types of changes to the peptide
backbone conformation will be made: (1) concerted rotation
(CONROT) to displace three consecutive residues in the
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middle of the peptide chain leaving the outermost residues
fixed, (2) rotation of the N- or C-terminus plus two residues in
the middle, and (3) rotation of the entire peptide backbone.
Energy minimization is conducted to determine optimal side
chain configurations of the amino acids, allowing the trial
peptide chains to be repacked fully without atomic overlaps.
The score of the newly generated peptide sequence or
conformer is evaluated and the Monte Carlo Metropolis
algorithm is used to accept or reject the new trial peptide.
More details regarding the PepBD algorithm can be found in
our previous work.15−20

The score function that we use to evaluate newly generated
peptide candidates is given by

= + + +E E E E( )score binding peptide VDW
bound

peptide ELE
bound

peptide EGB
bound (1)

The first term of eq 1, ΔEbinding, accounts for the difference in
the energy of the complex and the energies of the peptide and
target biomolecule prior to binding. This requires calculation
of the internal energy, van der Waals energy (VDW),
electrostatic energy (ELE), and polar solvation energy
(EGB). The second term is the peptide stability term and
accounts for the energy of the free peptide in the bound-state
configuration. It is the sum of the van der Waals energy
(VDW), electrostatic energy (ELE), and polar solvation energy
(EGB) of the peptide prior to binding. Lower scores mean
better binders. The force field parameters are taken from the
Amber 14SB force field.
2.2. Explicit-Solvent Atomistic Molecular Dynamics

Simulation. Explicit-solvent atomistic MD simulations are
carried out in the canonical (NVT) ensemble using the
AMBER 18 package to examine the dynamics of the binding
process between the starting peptide sequence, SBP1 (hACE2
amino acids 21−43), and the best-scoring evolved peptides
(viz. peptides discovered via the algorithm) to the SARS-CoV-
2 RBD. The starting conformations of the SARS-CoV-2 RBD
and the best-scoring peptide complexes for the atomistic MD
simulations are obtained from our peptide search algorithm.
Three independent simulations are carried out for each
peptide:SARS-CoV-2 RBD complex for 100 ns to ensure
that the system reaches an equilibrated state. Each peptide−
receptor complex is solvated in a periodically truncated
octahedral box containing a 12 Å buffer of TIP3P water
(∼14000 water molecules) surrounding the complex in each
direction. Particle Mesh Ewald (PME) summation is used to
calculate the long-ranged electrostatic interactions with a cutoff
radius of 8 Å and a 1 × 10−5 tolerance for the Ewald
convergence to calculate the nonbonded interactions. Hier-
archical clustering analysis is performed on the last 5 ns of the
simulation trajectories to obtain the representative structure of
the complexes in solution. The implicit-solvent molecular
mechanics/generalized Born surface area (MM/GBSA)
approach with the variable internal dielectric constant model
is used to post-analyze the last 5 ns simulation trajectories of
the peptide:SARS-CoV-2 RBD complexes to calculate the
binding free energies. Details of the computational procedures
and post-analysis of the atomistic MD simulations can be
found in our previous work.15−20

2.3. In Vitro Peptide Preparation. Peptides were
synthesized and purified to (≥95%) by GenScript Biotech
Corporation (Piscataway, NJ, U.S.A.). Due to their negative
charge, lyophilized peptides were dissolved in 5% (v/v)
NH4OH in ultrapure deionized water. The molar concen-
tration of reconstituted peptides was measured using a

NanoDrop spectrophotometer (ThermoFisher; λ = 280 nm).
For fluorescence quenching experiments, reconstituted pep-
tides were diluted 1:1 (v/v) in 2× phosphate buffered saline
(PBS; 274 mM NaCl, 5.4 mM KCl, 20 mM Na2HPO4 and 3.2
mM KH2PO4, pH 7.4). For competitive inhibition ELISA
assays, reconstituted peptides were diluted in 0.5 M DMSO in
H2O to a final concentration of 50, 75, or 100 μM. These
concentrations were used to create a peptide range from 0.01
to 100 μM.
2.4. Tryptophan Fluorescence Quenching of SARS-

CoV-2 RBD by PepBD Designed Peptides. SARS-CoV-2
(2019-nCoV) SARS-CoV-2 RBD-His Recombinant Protein
(Sino Biological, Baculovirus-Insect Cells Derived, 40592-
V08B), κ SARS-CoV-2 (2019-nCoV), SARS-CoV-2 RBD
Protein (Sino Biological, HEK293 Cells Derived, 40592-
V08H88), and δ SARS-CoV-2 RBD Protein (Sino Biological,
HEK293 Cells Derived, 40592-V08H115) were purchased and
used as provided by the manufacturer. Tryptophan fluo-
rescence quenching was measured using a SpectraMax M5
plate-reader in a quartz cuvette (NC9030411, ThermoFisher)
by adapting previously reported methods.27 Here, tryptophan
fluorescence quenching was measured by adding six 5 μL
increments of a 0.1 mM peptide stock solution followed by six
5 μL increments of 1 mM peptide stock solution to 500 μL of
SARS-CoV-2 RBD (2.5 μM) in 1× PBS, with tryptophan
fluorescence of the sample measured after addition of each
peptide volume increment (excitation λ = 280 nm; emission λ
= 335 nm). As negative controls, (1) 12 5 μL increments of
ultrapure deionized water were added to 500 μL of SARS-
CoV-2 RBD (2.5 μM) in 1× PBS or (2) peptide was added in
six 5 μL increments of a 0.1 mM peptide stock solution,
followed by six 5 μL increments of 1 mM peptide stock
solution, to ultrapure deionized water, with tryptophan
fluorescence of the controls measured after addition of each
water or peptide volume increment (excitation λ = 280 nm;
emission λ = 335 nm). All peptides designed by PepBD had at
least one tryptophan residue, whereas SBP1 has no tryptophan
residues. Thus, only the peptides designed by PepBD were
evaluated using this method.
The change in tryptophan fluorescence (ΔRFU) relative to

baseline was calculated by subtracting RFU (relative
fluorescence units) of experimental samples containing protein
and peptide (i.e., quenched fluorescence signal) from the sum
of the RFUs of control samples containing only peptide and of
control samples containing only protein, which we refer to as
the “estimated RFU”. Dissociation constants were estimated by
nonlinear regression using GraphPad Prism software. To
account for experimental variability for all experiments where
ΔRFU was significantly greater than zero, three independent
experiments were performed; when ΔRFU was not signifi-
cantly different from baseline, only two independent experi-
ments were performed.
2.5. ELISA-Based ACE2:SARS-CoV-2 RBD Binding

Assay. The relative abilities of different peptides to
competitively inhibit ACE2:SARS-CoV-2 RBD WT binding
were characterized using a commercially available COVID-19
ACE2:SARS-CoV-2 RBD WT Binding Assay Kit (RayBio-
Tech, CoV-ACE2S2−1) according to the manufacturer’s
instructions. Serial dilutions of SBP1 or PepBD-designed
peptide stock solutions (0.001, 0.01, 0.1, 1, 2.5, 5, 10, 25, 50,
75, and 100 μM) were first mixed with recombinant SARS-
CoV-2 RBD WT with an Fc tag at a ratio of 3:1 (v/v). These
solutions were then added to wells of a 96-well plate that had
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first been coated with recombinantly expressed ACE2. Plates
were incubated overnight at 4 °C with gentle shaking. Solution
with unbound SARS-CoV-2 RBD was removed by aspiration,
and the plates were washed four times with 1× Wash Buffer to
remove any loosely bound SARS-CoV-2 RBD. Horseradish
peroxidase (HRP)-conjugated IgG, as supplied, was then
added to the wells, and the plates were incubated for 1 h at 10
°C. The HRP-IgG solution was then removed by aspiration
and the plates were washed four times with 1× Wash Buffer.
The HRP substrate 3,3′,5,5′-tetramethylbenzidine (TMB) was
then added to each well of the plate. After 30 min, the HRP-
TMB reaction was stopped with 0.2 M sulfuric acid Stop
Solution. The solution absorbance was then measured (λ =
450 nm) using a SpectraMax M5 plate-reader and Softmax Pro
v5.0 software. In the commercial assay, HRP-conjugated IgG
binds to the SARS-CoV-2 RBD protein and reacts with the
TMB solution, producing a yellow color that is proportional to
the amount of SARS-CoV-2 RBD bound to ACE2 adsorbed
onto the plate. Peptide inhibition of ACE2:SARS-CoV-2 RBD
binding leads to a decrease in formation of this yellow product,
which can be measured as a decrease in absorbance relative to
the control. Two independent replicates were performed per
sample. Data were analyzed for statistically significant differ-
ences relative to the control (0 mM peptide) using ANOVA
and post hoc unpaired t tests.

3. RESULTS AND DISCUSSION
3.1. Peptide Design Strategy to Discover Spike-RBD

WT Binding Peptides. The PepBD design algorithm requires
an input structure of the complex formed between an initial
peptide sequence (reference peptide) and the target
biomolecule, in order to start the peptide search process. We
focus on a 23-mer peptide fragment, SBP1, residues 21−43 on
the peptidase domain of the α1 helix on human ACE2, which
is present at the binding interface of SARS-CoV-2 RBD WT.
This structure is derived from the cryo-EM structure (PDB ID:
6M17) determined by Yan et al5 of a full-length human ACE2-
B0AT1 complex bound to the SARS-CoV-2 RBD WT (Figure
1a,b). We perform 100 ns explicit-solvent MD simulations with
the Amber18 software suite on four complexes: (i) peptide
SBP1 (hACE2 amino acids 21−43, IEEQAKTFLDKFNH-
EAEDLFYQS) with SARS-CoV-2 RBD WT, (ii) a truncated
SBP1 lacking both N- and C-terminal flanking domains
(hACE2 amino acids 27−38, SBP2, TFLDKFNHEAED)
with RBD-WT, (iii) a truncated SBP1 lacking only the C-
terminal flanking domain (hACE2 amino acids 21−38,
IEEQAKTFLDKFNHEAED) with SARS-CoV-2 RBD WT,
and (iv) a truncated SBP1 lacking only the N-terminal flanking
domain (hACE2 amino acids 27−43, TFLDKFNHEAED-
LFYQS) with SARS-CoV-2 RBD WT. Full-length SBP1 and
SARS-CoV-2 RBD WT (i.e., complex (i)) form stable contacts,
whereas none of the truncated SBP1 variants ((ii) to (iv))
form stable complexes with SARS-CoV-2 RBD WT. The

Figure 1. (a) The structure of the complex between SARS-CoV-2 and ACE2 (PDB ID: 6M17). This shows that the molecular recognition of ACE2
peptidase domain (orange) by SARS-CoV-2 receptor-binding domain (green) involves primarily the ACE2 α1 helix (red) with a minor
contribution from the ACE2 α2 helix (gray). (b) Peptide sequence (IEEQAKTFLDKFNHEAEDLFYQS for residue ID: 21−43, termed “SBP1”)
derived from ACE2 α1 helix was confirmed experimentally to have an affinity of ∼1.3 μM with SARS-CoV-2 RBD. However, the middle fragment,
the peptide sequence (TFLDKFNHEAED for residue ID: 27−38, termed “SBP2”) does not bind with SARS-CoV-2 RBD in similar experiments.
In our in silico evolution algorithm, residues 27−38 (SBP2 domain of SBP1) were subjected to both sequence and conformation change moves
while residues 21−26 (IEEQAK) and 39−43 (LFYQS) were subjected only to conformation change moves.
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binding free energy (ΔGbinding) of the simulated full-length
SBP1:SARS-CoV-2 RBD WT complex is predicted to be
−5.78 kcal/mol. These simulations suggested that the N- and
C-terminal flanking domains of SBP1 are important for SARS-
CoV-2 RBD WT binding, consistent with a prior experimental
report which showed that SBP1 binds SARS-CoV-2 RBD WT
with low micromolar affinity, whereas the truncated SBP2
variant lacking both the N- and C-terminal flanking domains
had no measurable binding affinity.12,13 Hence, full-length
SBP1 is chosen as our reference peptide and the simulated
complex of SBP1:SARS-CoV-2 RBD WT is used as the starting
input structure for PepBD (Figure 2a).
Next, we specify the hydration properties for the designed

peptides as input parameters in the PepBD algorithm. Since
the N and C termini proved to be important in the binding of
SBP1 and RBD WT, we decided to mutate only the residues

within the central SBP2 domain of SBP1 during the PepBD
iterations, while allowing conformation change moves within
the entire SBP1 peptide. The SBP2 region (TFLDKFNH-
EAED) has 12 residues: 3 hydrophobic residues (2 Phe-F, 1
Leu-L), 3 hydrophilic residues (1 Thr-T, 1 Asn-N, 1 His-H),
four negatively charged residues (2 Asp-D, 2 Glu-E), 1
positively charged residue (1 Lys-K), 1 other residue (1 Ala-
A), and no glycine residue. The number of hydrophobic and
hydrophilic amino acids on our designed peptide chain of
SBP2 was chosen to be greater than the numbers on SBP2, as
hydrophobic residues tend to favor specificity in the binding
behavior, while hydrophilic residues contribute to peptide
solubility. Analysis of the residues present on the binding
interface of SARS-CoV-2 RBD WT reveals that it has a high
concentration of positively charged residues. Hence, we chose
to allow negatively charged residues but avoid positively

Figure 2. Computational modeling of peptide SBP1:SARS-CoV-2 RBD-WT complex and in silico peptide evolution. (a) Left side: Starting input
structure of SBP1:SARS-CoV-2 RBD-WT for PepBD obtained after a 100 ns atomistic MD simulation of the complex between SARS-CoV-2 RBD-
WT (in green) and SBP1 (in blue and red) obtained from PDB ID: 6M17. Right Side: SBP1 at the binding interface of the RBD (in purple). The
score/RMSD vs sequence and conformation change steps for (b) Case One (left side) resulting in peptide P4 (right side) and for (c) Case Two
(left side) resulting in peptide P8 (right side). The dotted ellipses (in green) and arrows (in green) correspond to the region on the score/RMSD
profile of Cases 1 and 2, where peptides P4 and P8 are obtained, respectively.
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charged residues on the designed peptide chain of SBP2 as the
negatively charged residues will contribute to favorable
electrostatic interactions. We investigate two cases with two
different sets of hydration properties for the peptide chain:
Case One: Nhydrophobic = 6, Nhydrophilic = 4, Npositive charge = 0,
Nnegative charge = 2, Nother = 0, and Nglycine = 0; and Case Two:
Nhydrophobic = 6, Nhydrophilic = 5, Npositive charge = 0, Nnegative charge =
1, Nother = 0, and Nglycine = 0.
3.2. In Silico Evolution of SARS-CoV-2 RBD WT

Binding Peptides. Starting with the input structure of the
SBP1:SARS-CoV-2 RBD WT complex described in Figure 2a,
we perform eight independent sequence evolutions: Cases One
and Two (each starting from three different random seeds plus
a fourth search that samples only sequence change moves).
This is done to ensure that the computational algorithm
samples peptides from a large pool of peptide sequences and
conformations. All eight evolutions are initialized with random
sequences and then proceed along different search pathways
that are determined by their specific input parameters. Overall,
the algorithm sampled approximately 450000 distinct peptide
sequences from a pool of ∼1013 possible peptide candidates
(see calculation of the number of theoretically possible peptide
sequences in Cases 1 and 2 in the Supporting Information).
Our PepBD algorithm efficiently samples high affinity peptides
to the RBD evaluated using the score function (Γscore). Figure
2b shows an example of the score/RMSD vs the number of
steps for Case One, as well as the peptide P4:SARS-CoV-2
RBD WT binding interface structure that is obtained from that
evolution. The score/RMSD vs the number of steps for one of
the Case Two evolutions and the peptide P8:SARS-CoV-2
RBD WT binding interface structure obtained from that
evolution are shown in Figure 2c.
Explicit-solvent atomistic MD simulations are carried out for

100 ns to examine the dynamic properties of the top peptide
candidates with the lowest scores when bound to the Spike-
RBD WT. The score and the binding free energies of the initial
peptide SBP1 and the top 10 peptide candidates (P3−P12) are
reported in Table 1 (Note: the lower the value of ΔGbinding, the
higher the binding affinity). All of the peptides listed in Table 1
have binding free energies that are lower than SBP1, suggesting
that these in silico peptides bind to RBD with higher affinity
than SBP1. It is to be noted that some inconsistency is
expected between ΔGbinding

avg and the corresponding KD values

determined from experiments. This is because the MM/GBSA
approach used to analyze the explicit solvent molecular
dynamics trajectories and evaluate the ΔGbinding

avg is an implicit
solvent method and partly neglects the effect of water. Hence,
it does not account for the true enthalpy and entropy of
desolvation of both the SARS-CoV-2 RBD and the peptide
ligand upon binding. The enthalpy and entropy of desolvation
are considered via the dielectric constant of the solvent and are
expected to only partially account for the free energy of
desolvation. Furthermore, the one-average MM/GBSA (1A-
MM/GBSA) approach as used here neglects the change in
structure of the peptide and receptor upon peptide binding
and, thus, considers the structure of the peptide and receptor
to be identical in the bound and unbound states.28−30 The
values of ΔGbinding

avg are instead a useful tool to guide the
selection of sequence variants for experimental character-
ization. Table 1 also lists the solubility scores of the peptides,
which are calculated using the CamSol method (http://www-
cohsoftware.ch.cam.ac.uk). The CamSol method was devel-
oped in the Vendruscolo lab31,32 and is a sequence-based
approach for predicting protein/peptide solubility. In the
CAMSol method, highly soluble residues in a protein or
peptide are predicted to have intrinsic residue solubility scores
close to or larger than 1, while residues with scores close to or
less than −1 are poorly soluble.
3.3. Experimental Evaluation of the SARS-CoV-2 RBD

Binding Properties of PepBD-Designed Peptides. To
optimize the experimental cost, time, and efficiency we
evaluated the binding properties of seven peptides (P4, P5,
P6, P9, P10, P11, and P12) to the SARS-CoV-2 RBD-WT.
These peptides were chosen based on their favorable in silico
ΔGbinding

avg values and intrinsic solubility scores as predicted by
the CAMSol method. Peptides P6 and P9 could not be
synthesized, and peptide P11 was only soluble under very
alkaline conditions (pH > 11) or at concentrations that were
too low to be accurately measured in tryptophan fluorescence
quenching experiments. Peptide P7 was excluded, as it has a
less favorable binding free energy than the other peptides.
Peptides P3 and P8 were not considered as their ΔGbinding

avg

values were similar to that of peptide P5, so we did not expect
significant difference in their binding affinity to the SARS-
CoV-2 RBD. Another reason that peptide P8 was excluded was
that its intrinsic solubility score, −0.32, was low.

Table 1. Γscore (kcal/mol) Obtained from the PepBD Algorithm, ΔGbinding
avg (kcal/mol) Obtained by Averaging over Three

Independent 100 ns Explicit Solvent MD Simulation Runs and Intrinsic Solubility Scores for Peptides Binding to the SARS-
CoV-2 RBD-WT by the CamSol Method

peptide sequences Γscore (kcal/mol) ΔGbinding
avg (kcal/mol) intrinsic solubility score

SBP1 IEEQAKTFLDKFNHEAEDLFYQS −5.78 1.74
SBP2 TFLDKFNHEAED 0.00
Case 1
P3 IEEQAKIWNFVQEWFQHDLFYQS −64.49 −11.85 0.55
P4 IEEQAKIWNQLNEWQVLDLFYQS −64.26 −7.31 1.07
P5 IEEQAKMWNQLLEWQNLDLFYQS −64.13 −11.99 1.34
P6 IEEQAKMTQQIYEWWQWDLFYQS −60.49 −16.20 0.25
P7 IEEQAKITQQLLEWWSWDLFYQS −60.18 −6.72 0.43
Case 2
P8 IEEQAKVQYQVNWWFQQDLFYQS −56.52 −11.60 −0.32
P9 IEEQAKMTVQQNIWFNLDLFYQS −55.19 −16.53 0.11
P10 IEEQAKIVVQVQHWFNQDLFYQS −53.23 −9.83 0.25
P11 IEEQAKMIQMINHWFNQDLFYQS −41.85 −13.16 0.84
P12 IEEQAKLSMMINHWWQQDLFYQS −41.57 −7.70 0.81
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To experimentally evaluate the binding of PepBD-designed
peptides to SARS-CoV-2 RBD-WT, we first used tryptophan
fluorescence quenching of samples containing a fixed amount
of SARS-CoV-2 RBD WT with increasing amounts of peptide
to estimate the solution-phase binding affinity. Such solution-
phase binding assays provide an approximate measure of the
strength of the solution-phase interaction between each
peptide and SARS-CoV-2 RBD WT. Solution-phase binding
assays also avoid artifacts that can arise from immobilization of
the peptide inhibitor or SARS-CoV-2 RBD WT.33 In the
solution phase assay used here, an increase in tryptophan
fluorescence quenching (i.e., ΔRFU) indicated binding of a
peptide to SARS-CoV-2 RBD WT. Peptides P4, P5, P10, and
P12 each had at least one tryptophan residue, (2, 2, 1, and 2,
respectively), whereas SBP1 has no tryptophan residues and
was therefore not suitable for this assay. The PepBD-designed
peptides and the SARS-CoV-2 RBD protein both have
tryptophan residues that independently fluoresce. Thus, the
results of these solution-phase binding assays are reported
using the change in Relative Fluorescence Units (ΔRFU)
between the predicted and experimental fluorescence emission
as described in the methods.

ΔRFU increased with peptide concentration for samples
containing P4, P5, and P10, indicating that these peptides
bound to SARS-CoV-2 RBD (Figure 3a−c). In contrast,
ΔRFU did not change from baseline for samples containing
P12 (Figure 3d), suggesting that this peptide was unable to
bind to SARS-CoV-2 RBD WT. Nonlinear regression using a
single-site binding model of the ΔRFU values relative to
peptide concentration for P4, P5, and P10, estimated that the
peptides bound SARS-CoV-2 RBD with micromolar dissoci-
ation constants (see Supporting Information, Table S2). This
was consistent with a prior report that estimated a dissociation
constant for SBP1:RBD-WT binding of 1.3 μM using biolayer
interferometry.13 We note that surface immobilization and
transport effects can lead to discrepancies between biolayer
interferometry and solution-phase binding measurements,
which complicates comparison of dissociation constants

measured using different techniques.33Figure 3e,f shows the
tryptophan fluorescence quenching measurements of P4
bound to κ and δ strains of SARS-CoV-2 RBD (explained
later in section 3.5).
Based on the solution-phase binding data, we assessed the

relative activity of SBP1, P4, P5, and P10 to competitively
inhibit ACE2 and SARS-CoV-2 RBD WT binding using an
ELISA assay that measures the amount of SARS-CoV-2 RBD
WT captured by immobilized ACE2. In this assay, a decrease
in measured optical density below the SARS-CoV-2 RBD WT
control would indicate that the peptide is inhibiting
ACE2:SARS-CoV-2 RBD WT binding. All peptides (SBP1,
P4, P5, and P10) failed to inhibit ACE2:SARS-CoV-2 RBD
WT binding up to a concentration of 50 μM (Figure 4).
Unexpectedly, peptide P10 increased the measured optical
density above the control with increasing peptide concen-

Figure 3. Tryptophan fluorescence quenching measurements of the solution-phase binding of ACE2 SBP1 mutants to SARS-CoV-2 Spike proteins.
ΔRFU plots of aqueous solutions: of SARS-CoV-2 SARS-CoV-2 RBD with (a) P4, (b) P5, (c) P10, and (d) P12; of κ SARS-CoV-2 RBD with (e)
P4; and of δ SARS-CoV-2 RBD with (f) P4. All data are reported as mean ± standard deviation. Disassociation constants (Kd) are reported in μM
(experimental replicates, n = 3 for b, c, e, and f; n = 2 for d).

Figure 4. Measurement of the inhibition of SARS-CoV-2 RBD-ACE2
interaction in the presence of ACE2 SBP1 mutants. Optical density at
450 nm correlates to the amount of SARS-CoV-2 RBD bound to
surface-adsorbed ACE-2 as a function of inhibitor concentration in
solution. Results of the competitive COVID-19 Spike-ACE2 binding
assay show a lack of inhibitory function of SBP1, P4, P5, and P10. All
data are reported as mean ± standard deviation. (μM = 10−50, n =
2).
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tration. Control measurements of P10 at a range of
concentrations or in the absence of SARS-CoV-2 RBD WT
also showed an increase in optical density. This demonstrates
that P10 binds to other components of this assay, such as the
plate-bound ACE2, leading to erroneous signal generation.
Thus, P10 is not specific for SARS-CoV-2 RBD (see
Supporting Information, Figure S1). Collectively, these results
demonstrate that the P4 and P5 peptides designed by the
PepBD algorithm can bind to RBD WT but cannot
competitively inhibit ACE2:RBD WT binding, analogous to
the behavior of the parent SBP1 peptide.

3.4. Computational Analysis of P4, P5, and P10
Binding to SARS-CoV-2 RBD WT. To understand the
observed differences in binding affinity and inhibitory potency
of P4, P5, and P10 to SARS-CoV-2 RBD WT, we study the
contributions by the individual residues of each peptide to the
interaction energy (Figure 5a−c, right side). We also construct
energy panels detailing the pair wise VDW and ELE+EGB
interactions of P4, P5 and P10 bound to SARS-CoV-2 RBD
WT (see Supporting Information, Figure S2). D (Asp,
negatively charged) at the 18th position is the most significant
contributor to the binding affinity of all three peptides, as it
formed strong ionic bonds with 403R (Arg, positively charged)

Figure 5. Snapshots of the representative structure of (a) P4 bound to SARS-CoV-2 RBD-WT, (b) P5 bound to SARS-CoV-2 RBD-WT, and (c)
P10 bound to SARS-CoV-2 RBD-WT after 100 ns atomistic simulation (left side). The SARS-CoV-2 RBD-WT is represented by the green ribbon;
the peptide (residues 21−26 and 39−43) is in blue and the SBP2 domain (residues 27−38) is in red. The residues along the binding interface on
the SARS-CoV-2 RBD are shown in purple. The various contributions to the binding energy along the peptide chain for the three structures are
shown in the adjacent plots (right side).
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of the RBD. Notably, SBP1 also has a D (Asp) at the 18th
position, and we allow the 18th position to be mutated in the
PepBD screening process. The retention of D in the 18th
position after PepBD screening demonstrates the ability of our
algorithm to predict the optimal residues for robust
intermolecular contacts. W (Trp, aromatic hydrophobic) at
the 14th position in P4, P5, and P10, and again in the eighth
position in P4 and P5, contribute to the binding affinity via
π−π stacking, cation−π, or anion−π interactions, and VDW
contacts. Notably, the aliphatic hydrophobic residue V (Val) at
the eighth position in P10 does not contribute significantly to
the binding affinity, underscoring the importance of having an
aromatic residue at this position (F in SBP1 and W in P4/P5,
respectively) for increased binding affinity. The N-terminal
flanking region of SBP1, which is not mutated by PepBD, also
contributes to the binding affinity. In particular, Q (Gln) at the
fourth position on SBP1 and on all of the designed peptides
interacts strongly with RBD-WT via both VDW and ELE
+EGB interactions. Simulations also predict that the helical
structure of the C-terminal flanking residues (residues 19−23),
which are also not mutated by PepBD, is maintained in the
bound state of peptide P4 (Figure 5a, left side) and P5 (Figure
5b, left side), whereas P10 (Figure 5c, left side) adopts a
random-coil structure in this region. Contacts between Y (Try)
and Q (Gln) in this region on the peptides with SARS-CoV-2
RBD WT contribute to the binding affinity; however, the Q
residue in P4 is predicted to contribute more energy from ELE
+EGB interactions than the same residue in P5.
3.5. Binding Properties of SBP1 and P4 Against the

RBD of Other SARS-CoV-2 Strains. As the pandemic
progressed, new and more virulent strains of SARS-CoV-2 such
as the Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, Kappa-
B.1.617.1, Delta-B.1.617.2, and Omicron-B.1.1.529 variants
emerged. More information about the mutations in the RBD of
the various SARS-CoV-2 strains is provided in the Supporting
Information. Hence, we decided to perform 100 ns MD
simulations of P4 and our reference peptide SBP1 to check
their binding affinity against SARS-CoV-2 RBD across all the
variants (summarized in Table 2). The ΔGbinding

avg values

indicate that P4 has stronger binding affinity than SBP1
against the SARS-CoV-2 RBD of all the variants except the
Alpha variant. These simulation results indicate that our in
silico designed peptide P4 may recognize new strains that
emerge as the COVID-19 pandemic progresses more
effectively than SBP1.
In light of these predictions, we experimentally measured the

solution-phase binding of P4 and P5 to both δ SARS-CoV-2

RBD and κ SARS-CoV-2 RBD (Figure 3e,f). P4 binds to both
δ SARS-CoV-2 RBD and κ SARS-CoV-2 RBD with micro-
molar solution-phase dissociation constants that were com-
parable to that of P4:SARS-CoV-2 RBD binding. P5 also binds
to κ SARS-CoV-2 RBD, with a micromolar solution-phase
dissociation constant as measured via tryptophan fluorescence
quenching (see Supporting Information, Figure S3). Collec-
tively, these data demonstrate that PepBD and molecular
dynamics simulations can be used to identify ACE2 variants
that bind to emergent SARS-CoV-2 Spike RBD variants.

4. CONCLUSION
The goal of this study was to evaluate the use of the PepBD
algorithm to generate mutated variants of the ACE2-derived
SBP1 peptide that demonstrate increased potency for
inhibiting ACE2:SARS-CoV-2 RBD binding. Using this in
silico approach, 10 peptides were identified that were predicted
to have a lower binding free energy than SBP1. Five of these
peptides were evaluated experimentally of which three bind to
RBD WT in solution with micromolar dissociation constants,
one does not bind, and one is insoluble. Peptides 4 and 5 also
bind to the δ SARS-CoV-2 RBD and κ SARS-CoV-2 RBD with
micromolar dissociation constants, suggesting the potential of
our approach to identify peptides that recognize emergent
SARS-CoV-2 variants. However, neither SBP1 nor the
designed peptides could inhibit ACE2:SARS-CoV-2 RBD
binding in a competitive ELISA assay, suggesting that relatively
short peptides with modest binding affinity are incapable of
outcompeting high-affinity RBD:ACE2 interactions.
Increasing binding affinity by extending the length of the

peptide or achieving native-like peptide secondary structures
could lead to effective inhibitors, as has been shown with
ACE2 mutants and designed mini-proteins.9,34

Collectively, our results demonstrate the potential of the
PepBD algorithm to identify peptide-based molecules that can
recognize the SARS-CoV-2 Spike protein or molecular
components of other emerging pathogens.
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Table 2. ΔGbinding
avg values of SBP1 and P4 Bound to SARS-

CoV-2-RBD of Alpha, Beta, Gamma, Kappa, Delta, and
Omicron Variant Averaged over Three Independent 100 ns
Explicit Solvent MD Simulation Runs

ΔGbinding
avg (kcal/mol)

SARS-CoV-2 variant SBP1 P4

Wuhan-Hu-1 (WT) −5.78 −11.85
Alpha −2.18 −0.57
Beta −3.21 −14.74
Gamma −2.03 −14.83
Kappa −5.88 −10.98
Delta −10.02 −15.22
Omicron −0.83 −17.05
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