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Abstract: In this paper, two polarization-insensitive Gallium Nitride (GaN) metasurfaces based on a
dynamic phase for adjusting the wavefront are proposed. Specifically, we obtained the target phase
to satisfy some design conditions by changing the structural parameters at the nanoscales. Under the
irradiation of linearly polarized (LP) light and circularly polarized (CP) light, respectively, one of the
metasurfaces can generate a focused beam with an efficiency of 84.7%, and the other can generate a
vortex beam with a maximum efficiency of 76.6%. Our designed metasurfaces will have important
applications in optical communication, holographic projection, and particle capture.

Keywords: highly efficient; polarization-insensitive; GaN metasurface

1. Introduction

Traditional lenses made of natural materials are the main means of beam focus-
ing. However, the inflexibility of natural materials may lead to inefficient and oversize
lenses [1–4]. At the same time, traditional lenses are not suitable for some flat optical de-
vices because of their convex structure. Therefore, it is particularly important to design
lenses with a small volume and high efficiency [5–8]. In comparison to natural materi-
als, metamaterial, as a kind of artificially designed composite material, has supernormal
physical properties such as negative refraction and electromagnetic stealth, which natural
materials do not have [9–11]. In recent years, metasurface, a 2D metamaterial, has attracted
more and more attention because of its subwavelength size, planar shape, and multi-
function integration [12–16]. Since each nanoscale of a metasurface can independently
control the wavefront of the incident beam, the designed purpose can be achieved through
different arrangements of the nanoscales, and the incident beam can be reshaped with a
large degree of freedom of motion [17–21].

In this paper, a method has been elaborated for designing two types of GaN meta-
surfaces based on the dynamic phase. One of the metasurfaces can generate a focused
beam, while the other can generate a vortex beam. Compared with the focused beam,
vortex beams carry orbital angular momentum (OAM) because of the spiral phase factor
exp(imθ) [22,23]. The vortex generator acts as a combination of a focusing lens and a
spiral phase plate. It is expected to play an important role in holographic projection [24,25],
optical communication [26,27] and optical acquisition [28,29].

Compared with Si and TiO2 metasurfaces [30,31], our metasurfaces use the third-
generation semiconductor material GaN, which can perform beam regulation more ef-
ficiently. At 630 nm wavelength, the simulation shows that a focused beam’s efficiency
is 84.7%, while the vortex beam’s maximum efficiency is 76.6%. The simulation results
proved the superiority of GaN and are also consistent with the theoretical analyses. Due to
the advantages of high power and high bandwidth, the GaN metasurface can be widely
applied in industrial communication fields, and it will lead the third-generation semicon-
ductor market [32,33].
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2. Structure Design

The dynamic phase is mainly related to the refractive index of the material and the
geometry of the nanoscale of the metasurface. Figure 1a schematically depicts a dielectric
metasurface unit consisting of a GaN nanoscale embedded on a SiO2 substrate. To further
obtain the phase distribution, the numerical simulation of the nanoscale is performed
using the commercially available three-dimensional finite difference time domain (FDTD)
solver from Lumerical. The FDTD method uses polarization along the x- and y-axis to
obtain the transmission coefficients of a series of nanoscales. The wavelength of the
incident light is λ = 630 nm, and the period is P = 400 nm. In addition, the diameter
D of the dielectric column is in the range of 100 to 300 nm, and the height is fixed at
H = 700 nm. Perfectly matched layers (PMLs) were used in the z−direction, and periodic
boundary conditions (PBCs) were applied in the x and y directions. Figure 1b shows the
functional relationship between the transmission T and the phase, with the radius R of
the nanoscales. It can be seen that the transmissions are high. All the transmissions are
greater than 87% and most of them are greater than 95%. As shown in Figure 1b, the phase
spans from 0 to 2π independently, so an arbitrary phase can be obtained by selecting the
appropriate R. The plane wave propagates along the +z direction, and by adjusting R,
the transmitted wave refracts along the specified direction to produce a focused beam or
vortex beam. The phase and transmission curve distributions are almost identical when LP
and CP are incident, respectively (Figure 1b). This provides a prerequisite for us to design
polarization−insensitive structures. Figure 1c,d are schematics that metasurfaces can
generate a focused beam and a vortex beam, respectively. They show that the metasurfaces
have a strong capacity to control the incident wave.
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3. Theory and Results Analysis

Figure 1c presents a schematic diagram of the metasurface with the focused beam. It
is made up of hundreds of GaN nanoscales. The phase of GaN nanoscales in the transverse
plane (x, y) is expressed by:

ϕ = 2π( f −
√

x2 + y2 + f 2)/λ (1)

where ϕ is the focusing phase distribution, λ is the wavelength of the incident beam, and f
is the focal length. In this study, the focal length was set to f = 50,000 nm, λ = 630 nm. To
better demonstrate the focus characteristics of the metasurface, we calculated the far-field
normalized intensity distribution (Figure 2a) and the normalized intensity of the focused
beam on the metasurface in the x–y plane, and at the focus, z = 50,000 nm (Figure 2b).
Figure 2c reveals the normalized intensity distribution curve of focusing in the +z direction
when the incident light is LP and CP, respectively. The results show that there is a difference
of two times between the values of the two focusing intensity curves, because CP can be
equivalent to the combination of two orthogonal LP with a phase difference of π/2. In this
case, each orthogonal source has an amplitude of 1, this means that Ex and Ey are both 1.
This implies that |E| =

√
2(V/m). A power transmission located in front of the sources

would return 1 (not 2) because the transmission function is normalized to the sum of the
source power from all sources. Thus, the strength of CP is twice the strength of the LP,
resulting in this consequence (Figure 2c). As shown in Figure 2c, although the intensity
performance is inconsistent, the focal point position and the intensity distribution of the
focused beam are identical, which verifies the polarization insensitivity of the structure.
Figure 2d shows the normalized intensity curve distribution at the focal point. It can be
seen that the full width of the half-maximum intensity of both curves is ω = 1540 nm,
and the diffraction-limited full width at half maximum (FWHM = λ f /L) is 1540 nm.
Therefore, our results are obtained close to the diffraction limit. The focusing efficiency
of the metasurface is 84.7%, which is calculated by dividing the intensity of the light at
the focal point by the intensity of the incident beam. The above results show that the
metasurface has great optical control ability.
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As shown in Table 1, we compared the focusing efficiency of various metasurfaces in
different studies, which implies that our structure has great advantages regarding focusing
efficiency. In addition, GaN has the characteristics of low cost and high efficiency compared
with other materials.

Table 1. Summary of our result and other references.

References Efficiency Material Wavelength

Our result 85% GaN 630 nm
[4] 23%, 39%, 54% Au 532 nm, 632.8 nm, 780 nm

[34] 27% Au, MgF2 900 nm
[35] 20% ITO 850 nm
[36] 60% TiO2 532 nm
[37] 20% Copper 30 mm

In addition, we used designed units to construct metasurfaces that generated vortex
beams. Theoretically, an ideal vortex beam can be obtained by the Fourier transform of the
ideal Bessel beam, which is as follows [38]:

Eb(r, z) = Jl(krρ)· exp(imθ + ikzz) (2)

where
√

kr2 + kz2 = k = 2π/λ is the wave vector at the incident wavelength, Jl is the
first class of l—order Bessel functions, r is the polar coordinate in the beam cross-section, kr
is the radial wave vector, and kz is the longitudinal wave vector. The ideal vortex beam is
generated by the Fourier transform of the Bessel–Gaussian (BG) beam [39], and then:

Ebg(r, z) = Jl(krρ)· exp(imθ − ρ2/ω0
2 + ikzz) (3)

where ω0 is the width of the light field. The ideal vortex beam can be obtained by the
following steps. Firstly, the Gaussian beam is converted into a Laguerre Gaussian (LG)
beam by a spiral phase plate. Secondly, an axicon is utilized to convert the LG beam into
a BG beam. Thirdly, using a Fourier lens can transform the BG beam into an ideal vortex
beam. Subsequently, the phase profile of the vortex generator can be expressed as [40]:

ϕ(x, y) = ϕa(x, y) + ϕb(x, y) + ϕc(x, y) (4)

where:

ϕa = −2π

√
x2 + y2

p
(5)

ϕb = l·arctan(x/y) (6)

ϕc =
−π(x2 + y2)

λ f
(7)

where (x, y) is the coordinate of each nanoscale, P is the periodic constant of the axicon,
and l is the topological charge. Figure 3 shows an example of the phase superposition of
Equations (5)–(7) at l = 2, P = 4000 nm.
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Figure 1d is a schematic diagram of the vortex generator and phase distribution of the
near field (l = 2). According to Equation (6), we constructed the metasurface of topological
charges l = 2, l = 3, and l = 4. Figure 4a,d,g show the near−field phase distribution of the
vortex generator. As shown in Figure 4b,e,h, the phase singularity of the vortex center
generates the distribution of the center hole, and the topological charge number of the
vortex beam can be distinguished, which verifies the good performance of the device. The
efficiency of vortex beam generation is 76.6%, 71.4%, and 63.9%, respectively. When the
incident light is LP and CP, the vortex generator can produce almost the same vortex beam
(Figure 4c,f,i). However, due to the different intensity of the incident beam, the intensity of
vortex beams will be approximately two times higher. This shows that the structure has
good polarization insensitivity.
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4. Conclusions

In this paper, we proposed two metasurfaces based on the dynamic phase to generate
a focused beam and a vortex beam at the incident wavelength of 630 nm. The advan-
tage of the dynamic phase is that it requires less polarization of the incident light. The
focus intensity curves of the beams are highly coincident when LP and CP are incident,
respectively, which verifies the polarization insensitivity of the structure. Therefore, when
different polarization light beams are incident, we do not need to redesign the metasur-
faces or change the polarization of the light. Meanwhile, the designed metasurfaces have
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the advantage of high efficiency, which can be applied into the field of communication.
However, there is a certain deviation between the theoretical focal point and the simulated
focus, which is caused by the small size of the structure and the small number of nanoscales
used in simulations. Note that the problem can be solved by changing the size of the
metasurface. Be aware that the structure itself has low wastage due to electric or magnetic
dipole resonances. To sum up, the metasurfaces we designed have strong capabilities
for beam regulation, and can provide an efficient approach for optical control, which has
potential in many fields, ranging from communication to artificial intelligence.
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