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ABSTRACT
Reticulate evolution, which involves the transfer of genes and other inheritable 

information between organisms, is of interest to a cancer researcher if only because 
“pirating” a trait can help a cell and its progeny adapt, survive, or take over much 
faster than by accumulating random mutations. However, despite being observed 
repeatedly in experimental models of neoplasia, reticulate evolution is assumed to 
be negligible in human cancer primarily because detecting gene transfer between the 
cells of the same genetic background can be difficult or impossible. This commentary 
suggests that gestational tumors, which are genetically distinct from the women who 
carry them, provide an opportunity to test whether reticulate evolution affects the 
development of human neoplasia.

The evolutionary model of cancer views neoplastic 
cells as unicellular asexual organisms that evolve by 
accumulating genetic and epigenetic alterations [1-5]. 
Accordingly, cancer development is represented as a 
phylogenetic tree, akin to the tree of life that depicts the 
evolution of species [2, 6, 7]. 

The tree of life, however, has been increasingly 
resembling a net, as genome sequencing has revealed that 
organisms of all kingdoms, and unicellular organisms in 
particular, can transmit their genes not only vertically, 
from parents to offspring, but also horizontally, from 
one organism to another [8-12]. Such speciation, which 
involves not only branching, as depicted by the tree of life, 
but also gene transfer, hybridization, symbiosis, and other 
mechanisms of information exchange, is fittingly called 
reticulate evolution, from a Latin word for “having a net-
like pattern” [13].

Reticulate evolution is of interest to a cancer 
researcher because “pirating” a trait by gene transfer or 
having a trait emerge as a result of hybridization can help 
an organism and its progeny adapt, survive, or take over 
much faster than by accumulating random mutations. 
For example, a gene transfer that happened between two 
fungi eight decades ago - an instance on the evolutionary 
timescale - resulted in a virulent wheat pathogen which 
has since spread worldwide [14]. Even complex traits can 

be acquired within a generation, which for unicellular 
organisms and cells means days, if not hours. 

The possibility of reticulate evolution in neoplasia 
is especially intriguing because some of its mechanisms, 
including horizontal gene transfer and hybridization 
between neoplastic or normal cells, have been documented 
to affect or even define carcinogenesis and tumor 
progression in experimental models and proposed to do 
so in human disease [15-21]. This proposal, however, 
is rarely considered in designing cancer treatment or 
prevention because the studies of reticulate evolution in 
human neoplasia are scant and their results inconclusive. 

The primary reason for this fact is that documenting 
DNA transfer or hybridization is difficult or impossible 
if the genomes of the donor and recipient cells cannot be 
distinguished by sequencing, genotyping, or karyotyping. 
A chromosome acquired from a neighboring cell becomes 
indistinguishable from a chromosome inherited through 
an error in mitosis, and a cell hybrid from a cell that 
duplicated its genome by skipping cytokinesis. 

In the laboratory, this problem is routinely and 
unambiguously solved by using chimeric animals, 
engineering reporter genes, or by grafting tumors derived 
from one species into another. 

In humans, reticulate evolution has been probed by 
analyzing tumors arising in organ transplant recipients, 
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who have cells of two genomically distinct individuals 
in their bodies, their own and those of the donor [22-24]. 
However, these patients and their samples have proven to 
be too rare to provide a critical mass of evidence required 
to make definitive conclusions or encourage a deeper 
inquiry.

A more accessible yet overlooked alternative, 
which I would like to suggest, is to analyze gestational 
neoplasia, which are tumors resulting from pregnancy. 
The remarkable feature of these tumors is that they are 
genomically foreign to the patient because they arise from 
her fertilized eggs [25-27]. 

Normally, a fertilized egg develops into a fetus, 
which has a copy of both the paternal and maternal 
genomes. However, at the incidence that varies worldwide 
between 20 and 1300 per 100,000 pregnancies [26], a 
fertilized egg develops into a lesion, the hydatidiform 
mole. Some of the moles, called partial, have both the 
maternal and paternal genomes, while others, known 
as complete, have only the paternal. About 15% of 
moles, mostly complete, become invasive and about 5% 
metastasize [28]. 

The most aggressive gestational tumor, however, 
is choriocarcinoma, whose incidence varies between 
2 and 200 cases per 100,000 pregnancies [26]. Half of 
these cancers result from a normal pregnancy and have 
both maternal and paternal genomes, while the other half 
stem mostly from complete moles and thus carries only 
the paternal genome [25], an ideal condition for studying 
gene exchange or hybridization between the tumor and 
host cells. 

Gestational tumors have several advantages over 
tumors arising in transplant patients.

First, gestational tumors are more accessible. While 
finding cancer patients who had a prior organ transplant 
requires some serious investigative work and results only 
in one to a few cases reported in each of the few published 
studies [24], a recent study reported a set of tissue samples 
and circulating tumor cells obtained from 115 gestational 
carcinoma patients [29]. 

Second, because gestational tumors are genomically 
foreign to the patient, they can be used to detect gene 
exchange with any cell type of the body. In transplant 
patients, such exchange can be detected only with the cells 
from the transplanted organ.

Third, gestational tumors develop in patients with 
diverse histories and backgrounds, which might help to 
correlate reticulate evolution, should it be found, with 
epidemiological factors, including infections, and indicate 
that the uncovered phenomena are not limited to the 
unusual and rare group of transplant patients.

Finally, choriocarcinoma cells retain the ability of 
the trophoblast, the cell of origin, to fuse [25], implying 
that at least one mechanism of reticulate evolution, 
hybridization, is at work in these cancers. 

What puzzles could gestational tumors help to 
explain?

One is that a fraction of circulating tumor cells 
(CTC) in some cancer patients - and in melanoma patients 
most of CTC - carry markers of hematopoietic cells [30, 
31]. This observation is consistent with the hypothesis 
that neoplastic cells become metastatic by hybridizing 
with hematopoietic cells [32], a possibility supported by 
studies in animal models [17] and consistent with recent 
studies in transplant patients [24]. Analyzing individual 
circulating tumor cells from choriocarcinoma patients [29] 
would allow one to determine unambiguously whether 
such hybrids exist. Although finding hybrids in gestational 
tumors would not automatically mean that these hybrids 
exist in other cancers, this finding might attract enough 
interest and talent to learn how to detect reticulate 
evolution involving syngeneic cells.

A related observation, made while analyzing tumors 
in transplant patients, is that a fraction of phenotypically 
neoplastic cells in some tumors are of bone marrow origin 
[22, 33, 34]. How common these cells, which I suggest 
calling “adopted cells”, are or whether they even exists is 
uncertain. If they do exist, we would need to reconsider 
our understanding of cancer development and to review 
treatment strategies, as adopted cells have a different, 
origin and evolutionary history from the bulk of the tumor 
and thus different properties. Gestational tumors are a 
suitable model to decide whether this review is needed.

The third observation that gestational tumors can 
help to explore is the fact that neoplastic and adjacent 
normal cells sometimes share genomic aberrations, 
including those that are considered oncogenic [35, 36]. 
These aberrations may arise in normal cells independently, 
but borrowing them from cancer cells through cell fusion 
was also suggested as a possible mechanism [36] that has 
been demonstrated in an animal model [20]. 

Finally, gestational tumors can help to test whether 
cancer cells borrow DNA from normal cells. Such pirating 
could explain the puzzling cases of mutation reversion 
reported in carriers of mutated BRCA1 or BRCA2 genes 
[37-40]. Normal cells of these patients carry both the 
mutant and the normal allele, but cancer cells usually 
retain only the mutant. The lack of functional BRCA1 or 
BRCA2 makes cancer cells particularly sensitive to DNA 
damaging drugs because these proteins participate in DNA 
repair. However, the majority of the cancers relapse and 
some of them regain BRCA activity, thus becoming drug 
resistant. 

Remarkably, in 13 out of 20 reported cases the 
activity was restored because BRCA proteins reverted 
to their wild type sequence, while in the remaining cases 
the restored activity was due to additional, compensatory, 
mutations [37, 38]. Because the reversion to wild 
type has been observed only in patients, but not in cell 
lines [38-41], it is not impossible that the normal allele 
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was borrowed from normal cells and then used either 
directly, or as a template to repair the mutant allele by 
gene conversion. Gestational tumors can help to test this 
hypothesis.

Overall, gestational tumors provide an opportunity 
to test several long-standing unorthodox hypotheses, 
which, should they prove to be correct, could open 
new venues for cancer understanding, treatment, and 
prevention.
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