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Abstract
Studies examining hormones throughout pregnancy and lactation in women have been lim-

ited to single, or a few repeated, short-term measures of endocrine activity. Furthermore,

potential differences in chronic hormonal changes across pregnancy/lactation between

first-time and experienced mothers are not well understood, especially as they relate to

infant development. Hormone concentrations in hair provide long-term assessments of hor-

mone production, and studying these measures in non-human primates allows for repeated

sampling under controlled conditions that are difficult to achieve in humans. We studied hor-

monal profiles in the hair of 26 female rhesus monkeys (Macaca mulatta, n=12 primipa-

rous), to determine the influences of parity on chronic levels of cortisol (hair cortisol

concentration, HCC) and progesterone (hair progesterone concentration, HPC) during

early- to mid-pregnancy (PREG1), in late pregnancy/early lactation (PREG2/LACT1), and

in peak lactation (LACT2). We also assessed infants’ neurobehavioral development across

the first month of life. After controlling for age and stage of pregnancy at the first hair sam-

pling period, we found that HCCs overall peaked in PREG2/LACT1 (p=0.02), but only in pri-

miparous monkeys (p<0.001). HPCs declined across pregnancy and lactation for all

monkeys (p<0.01), and primiparous monkeys had higher HPCs overall than multiparous

monkeys (p=0.02). Infants of primiparous mothers had lower sensorimotor reflex scores

(p=0.02) and tended to be more irritable (p=0.05) and less consolable (p=0.08) in the first

month of life. Moreover, across all subjects, HCCs in PREG2/LACT1 were positively corre-

lated with irritability (r(s)=0.43, p=0.03) and negatively correlated with sensorimotor scores

(r(s)=-0.41, p=0.04). Together, the present results indicate that primiparity influences both

chronic maternal hormonal profiles and infant development. These effects may, in part,

reflect differential reproductive and maternal effort in mothers with varied caretaking experi-

ence. In addition, infant exposure to relatively higher levels of maternal cortisol during the

late fetal and early postnatal periods is predictive of poorer developmental outcomes.
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Introduction
Pregnancy and lactation are known to affect circulating levels of ovarian steroids (e.g., estradiol
and progesterone, among others) and glucocorticoids (e.g., cortisol and corticosterone) in
many mammalian taxa including rodents, bovines, nonhuman primates, and humans.
Researchers examining fluctuations in these hormones have largely relied on analyses of
serum, salivary, or fecal concentrations, and their findings are generally in agreement: estradiol
gradually rises throughout pregnancy and peaks just prior to parturition, then sharply declines
shortly afterward, whereas progesterone remains elevated throughout pregnancy and sharply
declines just prior to parturition [1]. Both hormones remain low during lactation [2, 3]. In con-
trast, cortisol increases throughout pregnancy, peaks at parturition, and sharply declines
shortly after parturition [2]. When comparing lactating and non-lactating animals, however,
the picture is murky: some studies have shown that plasma and fecal levels of ovarian steroids
and glucocorticoids differ in lactating versus non-lactating animals [4–6] whereas others have
shown no difference [7–9]. In rodents and humans, lactation appears to have an attenuating
effect on hypothalamic-pituitary-adrenal (HPA) axis responses to stressful stimuli [10, 11].

Parity may also influence circulating levels of these hormones, though here too the results
are mixed: primiparous nonhuman primate females exhibited higher fecal estrogen metabolites
[2] but lower serum estradiol [12] than multiparous females. In cows, primiparity compared to
multiparity was associated with a longer interval from parturition to the first progesterone
peak, which is an indicator of likelihood of conception/implantation [13, 14]. With respect to
cortisol, studies in women have shown that multiparous mothers exhibit blunted salivary corti-
sol responses to stress compared to primiparous mothers [15].

Parity is known to influence pregnancy outcomes, birth weight, and infant growth, with less
experienced mothers having more complications and smaller/slower growing babies [16–18].
However, parity effects on other measures of infant development, such as neurobehavioral
indices, remain largely unexplored. With respect to physiological variables, higher levels of
maternal stress and/or cortisol in pregnancy and infancy are known to negatively impact preg-
nancy outcome [19] and infant emotional and cognitive development [20–22], though some
studies have suggested that these outcomes depend on the timing of this exposure [23, 24].

Possible reasons for some of the inconsistencies in these studies include the diversity of spe-
cies being examined and the matrix for assessing hormone concentrations. The majority of
studies investigating pregnancy, parity, and hormone function have been conducted with
rodents and cows, which undergo estrous cycles and absorb their endometrium. In contrast,
human and nonhuman primates experience monthly menstrual cycles that result in the shed-
ding of the endometrium. These differences may account for many of the inconsistencies
across studies. However, another important contributing factor may be the type of sample used
to assess hormone concentrations. Different types of biological fluids and tissues yield different
information regarding the timing of physiological responsivity, ranging from minutes (as mea-
sured in cerebrospinal fluid, plasma, and saliva), to hours (urine), to one or more days (feces,
depending on species gut passage time), to weeks or months (hair). The short-term, or “point”,
samples (i.e., serum, plasma, or saliva) are significantly affected by environmental factors
including time of day, meal consumption, and stressful stimuli. Thus, in order to gain a thor-
ough understanding of the long-term hormonal profiles of pregnant females or mothers differ-
ing in parity, one must collect numerous repeated samples over many months or years [25]. In
the case of animal studies, continual “point” sampling for monitoring reproductive cycles and
pregnancy/lactation either requires an indwelling catheter [26, 27] or repeated restraint and
venipuncture, which may affect the resulting sample owing to the inherent lability of the hor-
mones being measured [25]. In socially living animals (captive or wild), obtaining reliable
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urine or fecal samples to assay hormones over hours or days can be logistically difficult and
also requires repeated, disruptive sampling to obtain information over the course of weeks or
months [28].

Measuring hormones in hair has become a valuable method over the past several years, as
this matrix reflects long-term hormonal secretion over many months [25, 29, 30]. The most
commonly studied hormone in hair is cortisol, and early research by our laboratory showed
that hair cortisol concentrations (HCCs) reflect long-term HPA axis functioning in macaque
monkeys [31, 32]. Subsequent studies by a number of research groups have demonstrated that
HCCs are a reliable biomarker for stressful life events in humans and various animal species
[30, 33–38]. Reproductive hormones have also been detected in human and animal hair [39–
42], and hair progesterone has been validated as a means for detecting early pregnancy in cows
[43]. Thus, measuring hormones in hair is a useful means of assessing long-term HPA axis and
ovarian steroid functioning.

Despite the advent of hair hormone assays, no studies to date have examined long-term
HPA axis or ovarian steroid concentrations in primates throughout the periods of pregnancy
and lactation, especially with respect to parity. To our knowledge, only three studies have
assessed changes in hair cortisol during pregnancy, two in humans [44, 45] and the third in
pig-tailed macaque monkeys [46]. All of these studies found that HCCs increase during the
later stages of pregnancy. The study by D’Anna-Hernandez and colleagues [44] extended their
assessment to three months postpartum and found that mothers’HCCs significantly declined
from the third trimester to this time point, which is in line with a very recent study in sows that
reported higher hair cortisol in pregnancy than at weaning [47]. However, in the human stud-
ies, no information was provided as to whether or not the subjects were breastfeeding; thus,
there is a gap of knowledge surrounding chronic hormone secretion during lactation in pri-
mates. Furthermore, these studies also did not take parity into account.

Additionally, no studies to date have examined how long-term measures of maternal hor-
mone production, such as those measured in hair, influence infant development. Numerous
studies have reported links between plasma or salivary concentrations of maternal cortisol in
pregnancy and/or lactation and infant neurological development [20–22, 24], but these studies
typically rely on samples collected once or only a few times and do not reflect chronic hormone
secretion that the fetus may be exposed to. Other maternal hormones, such as reproductive
hormones (e.g., estradiol and progesterone), are typically studied with respect to maternal care
[48] and not measures of infant neurobehavioral development per se.

We sought to fill a significant gap in the existing literature by examining long-term hor-
monal functioning during pregnancy, early lactation, and late lactation (just prior to the onset
of the next breeding season) and subsequent infant development in a medically relevant model
of pregnancy in humans, the rhesus monkey (Macaca mulatta). Like humans, rhesus monkeys
have monthly menstrual cycles, long gestations, and provide intensive care for their infants;
they are also more similar to humans genetically, physiologically, and behaviorally than are
other typically studied models of reproduction like rodents and livestock [49, 50]. We investi-
gated hair concentrations of cortisol and progesterone during pregnancy and throughout lacta-
tion to determine whether these profiles changed over time and differed by parity. We also
assessed infant neurobehavioral development throughout the first month of life.

We predicted that changes in hair levels of these hormones would be similar to those found
in repeated plasma samples, in that they would be higher in pregnancy than during lactation.
We also expected to see differences in primiparous compared to multiparous mothers, espe-
cially in hair cortisol, given that primiparous rhesus mothers are naturally younger than mul-
tiparous mothers [51] and may experience more physiological stress during the peripartum
period due to the need to allocate resources to their own continued growth and development in
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addition to that of their fetus/infant. Finally, we predicted that higher levels of maternal cortisol
would correlate negatively with infant neurobehavioral development. Because the relationship
between maternal progesterone and infant development is not well understood, we made no
specific predictions in this regard but instead explored all possible associations.

Materials and Methods

Subjects
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were
approved by the NICHD Animal Care and Use Committee (Protocol number 11–043).

Subjects were 26 female rhesus macaques (Macaca mulatta), aged 5–19 years (mean±SEM:
8.02±0.5), weighing 6.3–10.8kg (mean±SEM: 8.6±0.3) born and raised at the Laboratory of
Comparative Ethology at the NIH Animal Center in Poolesville, MD. Monkeys were studied
during the 2013 calendar year and were socially housed in large indoor-outdoor runs in stable
social groups containing 6–8 other adult females, 1 adult male, and 3–5 offspring. The indoor-
outdoor enclosure was constructed of galvanized steel mesh connected by guillotine doors. The
floor was covered with wood chips, and multiple perches, swings, and enrichment devices were
provided. The indoor pen measured 2.44m x 3.05m x 2.21m, and the outdoor pen measured
2.44m x 3.0m x 2.44m. Animals were given free access between the indoor and outdoor por-
tions except when confined to one half for cleaning (twice per week), laboratory or protocol
procedures, or inclement weather (e.g., 4°C or below, a very rare occurrence). Inside lighting
was maintained on a 12:12 cycle (0700–1900), and the outdoor portion of the enclosure was
exposed to ambient lighting. Monkeys were fed Purina High Protein Monkey Chow (#5038,
St. Louis, MO) twice daily and received water ad libitum. Supplemental fruit and other foraging
materials such as peanuts or sunflower seeds were provided daily [52, 53].

Monkeys were classified as primiparous (PRIMIP, n = 12) or multiparous (MULTIP,
n = 14) based on confirmation of pregnancy via ultrasound during routine health exams from
January through March 2013. Subject characteristics are displayed in Table 1.

Hair sampling
Hair samples were collected by shaving the nape of the neck using commercially available pet
grooming clippers. Samples were collected during routine health exams in January, April, July,
and October 2013, with the same sampling area shaved at each time point. Consequently,

Table 1. Subject characteristics for this study.

AGE GROUP

PARITY PREGNANCY STAGE 5-9yrs 10-20yrs TOTAL

Primiparous (PRIMIP) Early Preg 6 6

Late Preg 6 6

Total 12 12

Multiparous (MULTIP) Early Preg 1 3 4

Late Preg 5 5 10

Total 6 8 14

TOTAL Early Preg 7 3 10

Late Preg 11 5 16

GRAND TOTAL 18 8 26

doi:10.1371/journal.pone.0131692.t001
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hormone concentrations in these samples reflected chronic steroid deposition over the previ-
ous time period (specifically three months in the case of the April, July and October samples)
[32]. Rhesus monkey gestation is generally considered to last approximately 165 days [54],
though in our colony average gestation is closer to 170 days (unpublished data). By the July
health exam, all pregnant monkeys had delivered their infants. The April hair sample repre-
sented average hormone concentrations during mid-to-late gestation (PREG1; range: 46–182
gestational days; mean±SEM = 124.9±8.7 gestational days), the July samples represented aver-
age hormone concentrations in the perinatal period (that is, in late gestation/early lactation;
PREG2/LACT1; range: 144–287 gestational days; mean±SEM = 230.1±8.7 gestational days or
60.1±8.7 postnatal days), and the October samples represented average hormone concentra-
tions during peak/late lactation (LACT2; range: 80–221 postnatal days; mean±SEM = 159.2
±8.8 postnatal days). In rhesus monkeys, peak lactation occurs between 3–4 postnatal months
and tapers significantly by 6 months, with full weaning usually occurring by one year of age
when the next sibling is born [55, 56].

Hormone assays
Hair storage and processing. Hair samples were stored in the freezer (-20 or -80°C) in

aluminum foil pouches until processing according to the methods described in Davenport
et al. (32). Briefly, 250 ± 1.5 mg of hair from each sample was weighed and then placed into a
disposable 15 mL polypropylene centrifuge tube. Hair samples were washed twice with 5 mL of
isopropanol to remove external contaminants and then air dried in a fume hood. Once
completely dry, each sample was placed into a 10 mL stainless steel grinding jar with a 12 mm
stainless steel ball and ground to a fine powder using a Retsch ball (model MM200) mill.
50.0 ± 0.5 mg of powdered hair was weighed and placed into a 2.0 mL Eppendorf microcentri-
fuge tube for extraction.

Cortisol extraction and assay. 1.0 mL of methanol was added to the powdered hair and
the tubes were placed on a constant slow rotator overnight (18–24 hours). Samples were centri-
fuged for 1.5 minutes at 14,000 RPM in a microcentrifuge to pellet the powder. 0.6 mL of the
methanol extract was placed into a 1.5 mL Eppendorf tube, after which the methanol was evap-
orated using a Savant Speedvac with refrigerated vapor trap and then the cortisol was reconsti-
tuted with 0.4 mL diluent from the assay kit. Extracts were either placed in a freezer or assayed
immediately. Extracts were analyzed in duplicate for cortisol by enzyme immunoassay (Sali-
metrics, State College, PA). The intra-assay coefficient of variation was 1.4% and inter-assay
coefficient of variation was 5.7%.

Progesterone extraction, purification, and assay. Hair progesterone was obtained from
the same methanol extracts as used for cortisol analysis. Initial testing of serially diluted metha-
nol extracts for parallelism with authentic progesterone standards revealed the presence of one
or more contaminants that interfered in the enzyme immunoassay. Consequently, the follow-
ing solid-phase extraction procedure was used to purify the samples prior to analysis. 0.6 mL of
the methanol extract was placed into a 13 x 100 mm glass tube and dried down under nitrogen
gas at 30°C using a water bath. Evaporated extracts were stored at -20°C until further process-
ing. Extracts were reconstituted in 1.10 mL of 30% methanol in deionized water and mixed
thoroughly. 1.0 mL of each extract was then loaded onto an Oasis HLB 1cc (30mg) extraction
cartridge (Waters, Milford, MA) that had been conditioned according to manufacturer’s
instructions. The cartridges were washed with 1.0 mL of 20% methanol in deionized water,
after which the progesterone was eluted with 1.0 mL of pure methanol. The purified extracts
were dried down under nitrogen at 30°C, reconstituted in 0.45 mL of diluent from the assay kit,
and then either placed in a -20°C freezer or assayed immediately. Extracts were analyzed in
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duplicate for progesterone by enzyme immunoassay (Salimetrics, State College, PA). Progester-
one recovery from the extraction cartridges was determined by spiking four separate hair
extracts with known amounts of progesterone and then measuring the levels in the unspiked
and spiked samples after the purification step. Three additional purified extracts were subjected
to serial dilution for determination of parallelism with authentic progesterone standards pro-
vided in the assay kit. The intra-assay coefficient of variation for the progesterone assay was
1.6% and the inter-assay coefficient of variation was 6.5%.

Neurobehavioral Assessments. Infants were administered routine neonatal assessments
of neurological and behavioral development weekly for the first month of life i.e., [57–59].
These assessments lasted approximately 30 min and evaluated infants’ survival reflexes (root-
ing, sucking, startle), motor reflexes (grasping, clasping, and placing), and sensorimotor
reflexes (auditory and visual orientation, and visual tracking). These measures were coded on a
scale ranging from 0 (reflex absent) to 1 (weak reflex) to 2 (full/strong reflex). Behavioral indi-
ces of emotionality (irritability and easy of consoling) were also recorded. For these measures,
researchers gave each infant a score reflecting their emotional reactivity across the entire
assessment, ranging from 0 (extremely irritable and inconsolable) to 1 (slightly irritable on a
few measures and difficult to console) to 2 (not irritable and very easy to console).

Data analysis. All HCC and HPC values were log-transformed to meet the assumptions of
normal distribution prior to analysis, but the untransformed values are presented for clarity.
Infant sex did not influence any hair hormone measure; however, preliminary correlational
analyses revealed that dams’ age in years was significantly negatively correlated with HCC val-
ues in July and with HPC values in October, and that gestational day was significantly nega-
tively correlated with HCC and HPC in July. Consequently, monkeys were divided into
pregnancy stages based on the first sample collection in April (1 = first half of pregnancy,
n = 10; 2 = second half of pregnancy, n = 15). Then, age and pregnancy groups were entered as
covariates in repeated measures ANOVAs with time as the within-subjects variable (PREG1,
PREG2/LACT1, and LACT2), parity as the between-subjects variable (PRIMIP and MULTIP),
and HCC and HPC as the dependent variables. Post-hoc tests with Fisher’s LSD corrections for
multiple comparisons were used to determine differences between parity groups for each hor-
mone at each time point. Brazelton scores were averaged into a mean score for the entire first
30 postnatal days, and were analyzed with independent samples t-tests using parity as the
grouping variable. Finally, Spearman correlations were used to examine the relations between
hair hormone concentrations and Brazelton scores. IBM SPSS v22 was used for analysis, and
p�0.05 was considered statistically significant.

Results
Recovery of progesterone from spiked hair extracts following solid-phase extraction averaged
109.7% (n = 4). Parallelism tests of serially diluted hair extracts with authentic progesterone
standards yielded an average R2 value of 0.99 (n = 3).

Even after controlling for females’ ages and pregnancy stages, while no effects of infant sex
were evident, significant effects of parity were revealed for both hair cortisol and hair
progesterone.

Hair cortisol concentrations (HCCs)
PRIMIP monkeys showed an elevation in HCCs during the PREG2/LACT1 period that was
lacking in MULTIP monkeys (Fig 1). This differential pattern was borne out in the ANOVAs
and post-hoc tests that revealed a main effect of parity (PRIMIPs>MULTIPs; F(1) = 8.06,
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p = 0.01), a main effect of sampling period (F(2) = 4.26, p = 0.02; PREG2/LACT1> PREG1,
p<0.05), and most importantly a significant parity x time interaction (F(2) = 10.62, p<0.001).

Hair progesterone concentrations (HPC)
A significant effect of time was revealed (F(2) = 7.16, p = 0.002), such that HPCs were highest in
PREG1, then dropped significantly in PREG2/LACT1 (p<0.001) and declined again in LACT2
(p = 0.01; Fig 2). A main effect of parity was also observed (F(1) = 6.06, p = 0.02), with PRIMIPs
having higher overall HPCs than MULTIPS. No significant time x parity interaction was
evident.

Parity and neurobehavioral development
Infants of primiparous mothers had lower scores for sensorimotor reflexes (t(24) = -2.48,
p = 0.02), indicating poorer ability to orient to and follow visual and auditory stimuli. They
also had higher scores of irritability (t(24) = 2.08, p = 0.05) and tended to be more difficult to
console (t(24) = 1.85, p = 0.08; Fig 3).

Hair hormone concentrations and neurobehavioral development
Across all subjects, HCCs in PREG2/LACT1 were significantly negatively correlated with sen-
sorimotor reflex scores (r(s) = -0.41, p = 0.04) and positively with irritability scores (r(s) = 0.43,

Fig 1. Parity differences in hair cortisol concentrations across pregnancy and lactation.
PRIMP = primiparous, MULTIP = multiparous. PREG1 = mean±SE gestational age 124.9±8.7 days; PREG2/
LACT1 = mean±SE gestational age 230.1±8.7 days or mean±SE postnatal age 60.1±8.7 days;
LACT2 = mean±SE postnatal age 159.2±8.8 days. **p<0.01.

doi:10.1371/journal.pone.0131692.g001
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p = 0.03). Further examination revealed that the correlation between HCCs and sensorimotor
scores was significant for PRIMIPs only (r(s) = -0.63, p = 0.03; Fig 4).

HPCs in PREG2/LACT1 were significantly positively correlated with motor reflex scores
(r(s) = 0.67, p<0.001) and with sensorimotor reflex scores (r(s) = 0.42, p = 0.03; Fig 5). No spe-
cific effects of parity for these correlations were revealed.

Fig 2. Parity differences in hair progesterone concentrations across pregnancy and lactation.
PRIMP = primiparous, MULTIP = multiparous. PREG1 = mean±SE gestational age 124.9±8.7 days; PREG2/
LACT1 = mean±SE gestational age 230.1±8.7 days or mean±SE postnatal age 60.1±8.7 days;
LACT2 = mean±SE postnatal age 159.2±8.8 days. *p<0.05.

doi:10.1371/journal.pone.0131692.g002

Fig 3. Parity differences in infant neurobehavioral development. PRIMP = primiparous, MULTIP = multiparous; *p<0.05; #p<0.10.

doi:10.1371/journal.pone.0131692.g003
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Discussion
We determined, for the first time, hair cortisol and progesterone concentrations (as biomarkers
of chronic levels of these hormones) across mid-to-late pregnancy and the period of lactation
in rhesus monkeys, and we further found an effect of parity on these measures. Overall, we
demonstrated that primiparous monkeys exhibit higher concentrations of both hair cortisol
and hair progesterone, indicating that first pregnancies in macaque monkeys may result in
noticeably greater hormonal changes than subsequent pregnancies. We also found infants born
to first-time versus experienced mothers exhibited some differences in neurobehavioral devel-
opment, and that chronic levels of maternal hormones were correlated with these outcomes.

We observed higher HCCs in our monkeys collectively during late pregnancy and early lac-
tation than later in the postpartum period, which is in agreement with previous studies in
humans and pigs [44, 47]. Primiparous monkeys exhibited significantly higher HCCs than
multiparous monkeys at the end of pregnancy and in the first few months postpartum (Fig 1),
findings which disagree with those of Kapoor and colleagues [41] showing no effect of parity
on HCCs in rhesus monkeys three days after parturition. One major difference between the
study of Kapoor et al. [41] and ours is that in theirs, mothers were singly caged with visual and
auditory access to other monkeys whereas our monkeys were socially housed with 8–10 other
adult females and an adult male. Postpartum mothers in Kapoor et al. [41] had average HCCs
of 130.4+46.53 pg/mg (mean+SD), whereas in our study mothers in the neonatal period
(PREG2/LACT1) had average HCCs of 94.12+36.03 (mean+SD), with PRIMIP mothers having
average HCCs of 119.3+36.34 pg/mg and MULTIP mothers having HCCs of 72.54+17.08 pg/
mg. We have previously reported significant differences in HCCs across different primate

Fig 4. Associations between hair cortisol concentrations in late pregnancy/early lactation and infant
neurobehavioral development. PRIMP = primiparous, MULTIP = multiparous.

doi:10.1371/journal.pone.0131692.g004

Fig 5. Associations between hair progesterone concentrations in late pregnancy/early lactation and
infant neurobehavioral development. PRIMP = primiparous, MULTIP = multiparous.

doi:10.1371/journal.pone.0131692.g005
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housing facilities for reasons that are not yet fully understood [60] In the present instance, it is
possible that single housing resulted in higher overall HCCs for pregnant monkeys and that
also masked differences between primiparous and experienced mothers. Alternatively, the rig-
ors of the social hierarchy may have exerted a greater impact on our primiparous monkeys,
thereby resulting in higher HCCs. However, Kapoor et al. [41] did find that primiparous moth-
ers had higher hair concentrations of cortisone, an inactive cortisol metabolite, at birth. A sig-
nificant portion of cortisol is converted to cortisone by the placenta, as well as by the hair shaft
[41, 42]. Though we did not measure hair cortisone, it is possible that housing environment
influences the cortisol:cortisone ratio in the hair of rhesus monkeys.

Numerous studies have demonstrated that primiparous monkeys are more anxious and
protective of their infants than multiparous monkeys [61–63], and that they also receive more
aggression from other adult females [57]. These collective physiological and environmental
stressors, combined with the fact that primiparous monkeys are younger and are still develop-
ing during lactation when they are also nourishing their young, appear to result in more
chronic activation of the HPA axis as evidenced by the elevated HCCs late in gestation and in
the early postpartum period. Our findings have important implications for understanding
HPA axis function in human pregnancy and lactation, as primiparous women have also dem-
onstrated greater adjustment difficulties and higher stress in the days and weeks following
birth compared to multiparous women [64, 65]. Moreover, neonatal exposure to maternal
stress is known to impact infant development adversely [66–69], in part through ingestion of
maternal glucocorticoids in mother’s milk [70–74]. Thus, studying chronic HPA axis activity
during pregnancy and lactation via hair cortisol may be a useful tool for identifying mother-
infant dyads at a higher risk for some of these negative consequences, such as delayed cogni-
tive development and susceptibility to emotional health problems, particularly in young, first-
time mothers.

We presented the first data on hair progesterone in a nonhuman primate species at multiple
time points during pregnancy and lactation. As expected based on well-known patterns of
plasma progesterone concentrations, HPCs were highest in pregnancy, lower during peak lac-
tation, and at their lowest values later in lactation. Moreover, our HPC values across the study
fall within the range of the values obtained by Kapoor et al. [41] in rhesus monkeys at birth
using a different analytical method. Lactation is known to suppress ovarian steroid function in
several mammalian species, including macaques [75]. Our findings of reduced progesterone
concentrations in hair during lactation are in line with previously observed suppressed serum
and fecal levels [2, 76, 77], and likely reflect the long-term suppression that occurs during this
postpartum period. The present results along with those of Kapoor et al. [41] illustrate the use-
fulness of measuring hair progesterone as a biomarker of long-term levels of this hormone,
similar to the growing use of hair cortisol as an index of chronic adrenocortical activity.

The higher overall HPCs in primiparous vs. multiparous monkeys may stem from the natu-
ral age-related decline in ovarian steroid production in older animals [78, 79]. Another possi-
bility is that primiparous and multiparous monkeys differ in their production of placental
progesterone, and/or in the amount of progesterone being utilized by the fetus for corticoste-
roid production [80, 81]. Additionally, perhaps the increased HPCs in primiparous monkeys
are present to prime the induction of maternal behavior in these naïve females, as progesterone
has been shown to induce such behaviors in nulliparous rodents [82, 83]. Further studies are
necessary to address these hypotheses.

The major difference in hair progesterone between primiparous and multiparous monkeys
occurred at the LACT2 sampling period (Fig 2). Given that the fall in progesterone after deliv-
ery of the infant triggers milk production [84], and that primiparous monkeys are known to
produce less milk than multiparous monkeys [56], the higher HPCs in the primiparous animals
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may be related to this differential milk production while simultaneously revealing the increased
allocation demands that first-time macaque mothers face since they must not only provide
resources to their infants but also to their own growing bodies [56, 85, 86]

To our knowledge, the present findings are the first to demonstrate parity effects on infant
neurobehavioral development in nonhuman primates. Given the differences in fetal/infant
physical growth between primiparous and multiparous mothers [16–18, 87], it is not surprising
that neurological differences would also be present. We also related offspring development to
maternal hair hormone concentrations, and discovered significant correlations between mater-
nal hair hormones in late pregnancy/early lactation and infant neurobehavioral measures. In
particular, higher HCCs were associated with poorer sensorimotor reflex scores and with
greater irritability, as predicted. These results are in agreement with previous studies linking
greater maternal stress and higher short-term concentrations of cortisol (i.e., plasma, saliva) in
pregnancy and the neonatal period with infant temperament [21, 22, 88]. They also align with
preliminary results from Grant et al. [46] showing that the rise in maternal cortisol over preg-
nancy is correlated with fetal hair cortisol concentrations and delayed infant cognitive develop-
ment. Thus, it is likely that chronic maternal circulating glucocorticoids, as measured by
HCCs, program infant physiological, neurological and behavioral development. Moreover, this
relationship is not only evident when mothers are stressed but (as shown in the present study)
even in the absence of an applied stressor, when cortisol levels vary within the non-stress
range. The extent of offspring exposure to maternal glucocorticoids via placental transfer [89]
or through milk ingestion [73, 74] is not yet fully elucidated, nor is it clear whether such expo-
sure is more important prenatally or during the early neonatal period in terms of programming
subsequent offspring neurobehavioral development.

Our findings of higher maternal HPCs correlating with better infant motor reflex and senso-
rimotor scores are also the first to be documented in any species. The results are in line with
studies of very pre-term human infants demonstrating that postnatal treatment with estradiol
and progesterone results in normal psychomotor development and lung maturation [90, 91],
and underscores the role of reproductive steroids on the developing nervous system. Similar to
cortisol, it is possible that progesterone is being transferred via the placenta and/or mother’s
milk (or some other mechanism), and future studies are needed to determine which mecha-
nism or mechanisms are involved. However, these findings should be evaluated with caution,
as our study was a correlational one and causal mechanisms between maternal hair hormones
and infant development could not be determined.

The present study has several limitations that should be noted. The first, as already stated, is
the correlational design of the study. For this reason, we cannot definitively ascribe differences
in offspring development to variation in maternal hair hormone levels. Second, animals cannot
be "randomly" assigned to parity status, as this is an outcome of their prior breeding history.
Thus, we cannot rule out a possible influence of colony events that differed in the first pregnan-
cies of the two sets of subjects. Additionally, the design of the study could be strengthened by
collecting hair samples from pregnant monkeys at the same time throughout pregnancy rather
than on the same calendar day. Unfortunately, the social housing environment precluded the
repeated disturbances to the group that would have to occur in order for different monkeys to
be captured on different days for hair sampling. Finally, we note that the hormones being mea-
sured in the mother’s hair may not originate exclusively from her tissues. An unknown portion
of these hormones may originate from the fetus or the placenta [89, 92, 93], in which case
maternal hair steroid levels are reflecting some output of fetal-placental communication. Fur-
ther study is warranted to tease apart the sources of maternal hormones during the
peripartum.
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Conclusions
Overall, the present findings show that primiparity is associated with a unique chronic hor-
monal profile across pregnancy and lactation, and in differential infant neurobehavioral devel-
opment. Compared to multiparous animals, primiparous primates may experience greater
physiological stress during the neonatal period, as evidenced by higher hair cortisol values, due
to the combined demands of their own physical growth and their infant’s survival and suste-
nance. Primiparous monkeys also appear to produce more progesterone across pregnancy and
early lactation, though the mechanisms underlying this observation require further investiga-
tion. Future studies will be able to utilize hormones in hair to determine physiological changes
that mothers undergo as they transition from primiparity to multiparity. Moreover, studying
hormones in hair will be useful for determining the long-term hormonal changes that puber-
tal/adolescent monkeys undergo as they transition from nulliparity to primiparity, and as such
will serve as a valuable model for risky pregnancies in humans.
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