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Summary 1 

Background Recent studies suggested a link between long-term exposure to air-pollution and 2 

COVID-19 mortality. However, due to their ecological design, based on large spatial units, 3 

they neglect the strong localised air-pollution patterns, and potentially lead to inadequate 4 

confounding adjustment.  We investigated the effect of long-term exposure to NO2 and PM2·5 5 

on COVID-19 deaths up to June 30, 2020 in England using high geographical resolution. 6 

Methods We included 38 573 COVID-19 deaths up to June 30, 2020 at the Lower Layer 7 

Super Output Area level in England (n=32 844 small areas). We retrieved averaged NO2 and 8 

PM2·5 concentration during 2014-2018 from the Pollution Climate Mapping. We used 9 

Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series 10 

of confounding and spatial autocorrelation.  11 

Findings We find a 0·5% (95% credible interval: -0·2%-1·2%) and 1·4% (-2·1%-5·1%) 12 

increase in COVID-19 mortality rate for every 1μg/m3 increase in NO2 and PM2·5 13 

respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a 14 

posterior probability of a positive effect of 0·93 and 0·78 respectively. The spatial relative risk 15 

at LSOA level revealed strong patterns, similar for the different pollutants. This potentially 16 

captures the spread of the disease during the first wave of the epidemic. 17 

Interpretation Our study provides some evidence of an effect of long-term NO2 exposure on 18 

COVID-19 mortality, while the effect of PM2·5 remains more uncertain. 19 

Funding Medical Research Council, Wellcome Trust, Environmental Protection Agency and 20 

National Institutes of Health. 21 
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Introduction  1 

As of 30th of June 2020, COVID-19 has caused more than 500 000 deaths globally, with an 2 

estimated case fatality of 1-4%.1 The UK is one of the countries most affected, with the an 3 

estimated 49 200 (44 700-53 300) more deaths than it would be expected from mid-February 4 

to 8th May 2020 had the pandemic not taken place.2 Established risk factors of COVID-19 5 

mortality include age, sex and ethnicity.3 Previous studies have observed a correlation 6 

between pre-existing conditions such as stroke, hypertension and diabetes.4,5 Long-term 7 

exposure to air-pollution has been hypothesised to worsen COVID-19 prognosis: either 8 

directly, as it can suppress early immune responses to the infection,6 or indirectly, as it can 9 

increase the risk of stroke, hypertension and other pre-existing conditions.7,8  10 

Little is known about the effect of long-term exposure to air-pollution on COVID-19 11 

mortality and evidence so far relies on ecological studies based on large areas. A study in the 12 

US, at county level, reported an 8% (95% confidence intervals: 2%-15%) increase in the 13 

COVID-19 death rate, for an increase of 1μg/m3 in the long-term exposure to PM2·5 14 

(atmospheric particulate matter that has a diameter of less than 2·5 micrometers).6 Another 15 

study in the US, at county level, examined the long-term effect of NO2, PM2·5 and O3 on 16 

COVID-19 case fatality (proportion of deaths among infected) and mortality rate and reported 17 

a 7·1% (1·2%-13·4%) and 11·2% (3·4%-19·5%) increase per 4·5ppb increase in NO2 for case 18 

fatality and mortality rate respectively.9 The same study reported weak evidence of an 19 

association between COVID-19 case fatality or mortality with long term exposure to PM2·5 20 

and O3. A study in the Netherlands using municipalities reported that every unit increase in 21 

the long-term exposure to PM2·5, NO2 and SO2 was associated with 0·35, 2·3 and 1·8 22 

additional COVID-19 deaths respectively.10 A study in England reported a significant 23 

association between long-term exposure to NO2, NO and O3 and COVID-19 deaths at Lower 24 

Tier Local Authorities (LTLA).11 25 

Several methodological shortcomings limit the interpretability of previous studies:  26 
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1)  They were based on data aggregated on large spatial units and thus suffer from ecological 1 

fallacy (grouped levels association do not reflect individual ones).12 2 

2) Air pollution is characterised by high spatial variability, making the availability of 3 

mortality data at the same high spatial resolution crucial. In addition, a coarse geographical 4 

resolution might lead to inadequate adjustment for confounders, when these are available at 5 

higher resolution.  6 

3) Most previous studies assessed cumulative deaths until mid or end of April and thus the 7 

generalisability of the results is limited to the early stages of the epidemic.6,9,11 Only one study 8 

had data available up to 5th June 2020 capturing almost the entire first wave.10  9 

In this nationwide study in England, we investigated the effect of long-term exposure to air 10 

pollution on COVID-19 mortality during the entire first wave of the epidemic, after 11 

accounting for confounding and spatial autocorrelation. We focused on exposure to NO2 and 12 

PM2·5. We downscaled the LTLA geographical information to the Lower Layer Super Output 13 

Area (LSOA) to alleviate the effect of ecological bias and exploit the variability of the 14 

exposure at high geographical resolution. We hypothesise that long-term exposure to these 15 

compounds worsens the prognosis of COVID-19 patients, as exposure to pollution can 16 

suppress early immune responses to the infection, leading to later increases in inflammation6 17 

and as it can affect the onset of pre-existing conditions.13-16 18 

Methods  19 

Study population 20 

We included all COVID-19 deaths up to June 30, 2020 in England as retrieved from Public 21 

Health England (PHE). For each death, PHE records individual data on age, sex and ethnicity, 22 

as well as the LTLA of the residential address. Information for the general population about 23 

age and sex is available from the Office of National Statistics (ONS) for 2018, whereas 24 

ethnicity is obtained from the 2011 census at the LSOA level.  25 
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We downscaled the LTLA geographical information to the LSOA level using census based 1 

weights to match the age, sex and ethnic composition of the deaths in each LTLA with that of 2 

the corresponding LSOAs. For more information about the downscaling procedure see 3 

Supplementary Material S1.1. 4 

Exposure 5 

We considered exposure to NO2 and PM2·5 as indicators of air pollution. We selected these 6 

pollutants because: 1) they reflect different sources of air-pollution (NO2 reflects traffic 7 

related air-pollution, whereas PM2·5 is a combination of traffic and non-traffic sources), 2) 8 

they were considered in previous studies6,9-11 and 3) they are responsible for the highest 9 

number of years of life lost compared to other pollutants in Europe.17 We retrieved NO2 and 10 

PM2·5 concentration in England from the Pollution Climate Mapping (PCM; https://uk-11 

air.defra.gov.uk/). The PCM produces annual estimates during 2001-2018 for NO2 and 2002-12 

2018 for PM2·5 at 1x1km resolution for the UK. The PCM model is calibrated using 13 

monitoring stations across the nation and has high predictive accuracy, R2 =0·88 for NO2 and 14 

R2
 = 0·63 for PM2·5.

18 We defined long-term exposure to these compounds as the mean of the 15 

past 5 years for which data was available, i.e. 2014-2018. We weighted the exposure using a 16 

combination of population estimates available from the fourth version of Gridded Population 17 

of the World (GPW) collection at 1x1km grid as of 202019 and from ONS at LSOA level as of 18 

2018. For more information about the population weights see Supplementary Material S1.2.  19 

Confounders 20 

We considered confounders related with meteorology, socio-demographics, disease spread, 21 

healthcare provision and health related variables (Table 1). As meteorological confounders, 22 

we considered temperature and relative humidity and calculated the mean for March-June 23 

2018 as this is the latest year with data available at 1x1km grid retrieved from the MetOffice. 24 

We weighted temperature and relative humidity using the population weights calculated for 25 

the air-pollution exposure. As socio-demographical confounders we considered age, sex, 26 
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ethnicity, deprivation, urbanicity, population density and occupation. Information on age 1 

(2018), sex (2018), ethnicity (2011), urbanicity (2011) and population density (2018) was 2 

available at the LSOA level from ONS. To adjust for deprivation, we used quintiles of the 3 

index of multiple deprivation at LSOA level in 2011 (Ministry of Housing, Communities and 4 

Local Government), excluding the dimension related to air quality. We used estimates of 5 

occupational exposures to COVID-19, as calculated by ONS, to adjust for high risk exposure 6 

to COVID-19, defined as those with a score higher than 80/100 (corresponding to at least >1 7 

per week exposed to someone infected, Supplementary Material S1.3 and Table S1). To 8 

account for disease progression, we used the number of days since the 1st reported case and 9 

the number of positive cases in each LTLA (as of 30th of June, as retrieved from PHE). For 10 

healthcare provision, we used the number of intensive care unit beds per population, in 11 

February 2020 per NHS trust, as retrieved by NHS. Last, as health-related variables, we 12 

considered smoking and obesity prevalence at the GP practice level during 2018-2019, as 13 

retrieved by PHE (Supplementary Material S1.3). 14 

Statistical methods 15 

We specified Bayesian hierarchical Poisson log-linear models to investigate the association of 16 

COVID-19 deaths and NO2 and PM2·5 independently. Spatial autocorrelation was modelled 17 

using a re-parametrisation of the Besag-York-Molliè  conditional autoregressive prior 18 

distribution.20,21 We fitted four models including: 1) each pollutant (model 1), 2) each 19 

pollutant and the spatial autocorrelation term (model 2), 3) each pollutant and all confounders 20 

(model 3) and 4) each pollutant, the spatial autocorrelation term and all confounders (model 21 

4). All models were adjusted for age, sex and ethnicity using indirect standardisation. In order 22 

to propagate the uncertainty resulted from the sampling we used for the downscaling 23 

(Supplementary Material S1.1), we fitted the models over 100 downscaled samples and then 24 

performed Bayesian model averaging to combine the estimates.22 We report results as 25 

posterior median of mortality relative risk for every 1μg/m3 increase in the air-pollutants, 95% 26 
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credibility intervals (CrI) and posterior probability that the estimated effect is positive. We 1 

also report posterior median of spatial mortality relative risks (exponential of the spatial 2 

autocorrelation term) and posterior probabilities that the spatial relative risks are larger than 1. 3 

The full model and prior specifications are given in the Supplementary Material S1.4.  4 

All models are fitted in INLA.23 Data and code are available on github 5 

(https://github.com/gkonstantinoudis/COVID19AirpollutionEn). 6 

Sensitivity analyses 7 

We performed a series of sensitivity analyses. First, we repeated the main analyses using data 8 

at the LTLA level with all exposures and confounding weighted by population. Second, we 9 

examined if there is a differential effect of long-term exposure to air-pollution at the early 10 

stages of the epidemic, considering the lockdown (23rd of March 2020) as a landmark. Third, 11 

we assessed the correlation between the latent field of the full model (model 4) with that of 12 

the model excluding or including only covariates indicating disease spread (i.e. number of 13 

tested positive cases and days since first reported cases). Fourth, we categorised pollutants 14 

into quintiles to allow more flexible fits. Fifth, we repeated the analysis using suspected cases 15 

as the outcome. 16 

Results 17 

Study Population 18 

We identified 38 573 COVID-19 deaths with a laboratory confirmed test in England between 19 

2nd March and 30th June (Figure 1). The age, sex and ethnicity distribution of the deaths 20 

follows patterns reported previously (Supplementary Material Tables S2-3).  21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 11, 2020. .https://doi.org/10.1101/2020.08.10.20171421doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171421
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Exposure 1 

Figure 2 shows the population weighted air-pollutants at LSOA level in England. We observe 2 

that the localised variation of NO2, for instance due to the highways, is adequately captured at 3 

the spatial resolution of the LSOAs. The mean of NO2 is 16·17μg/m3 and it varies from 4 

2·99μg/m3 in highly rural areas to 50·69μg/m3 in the big urban centres (Figure 2). The mean of 5 

PM2·5 is 9·84μg/m3 with a smaller variation, 5·14-14·22 μg/m3 (Figure 2). 6 

Confounders 7 

Plots and maps of the confounders can be found in Supplementary Material, Figures S1-11. 8 

NO2 9 

We observe a 2·6% (95%CrI: 2·4%-2·7%) increase in the COVID-19 mortality rate for every 10 

1μg/m3 increase in the long-term exposure to NO2, based on model 1 (Figure 3 & 11 

Supplementary Material Table S4). There is still evidence of an effect, albeit smaller, once we 12 

adjust for spatial autocorrelation or confounders, with increases in the long-term exposure to 13 

NO2 of, respectively, 1·3% (0·8% - 1·8%), 1·8% (1·5% - 2·1%) for every 1μg/m3. When we 14 

adjust for both autocorrelation and confounders the evidence is less strong, with estimates of 15 

0·5% (-0·2% - 1·2%) for every 1μg/m3 (Figure 3 & Supplementary Material Table S4) and 16 

posterior probability of a positive effect reaching 0·93. The spatial relative risk in England 17 

varies from 0·24 (0·08-0·69) to 2·09 (1·30-3·11) in model 2 and from 0·30 (0·10-0·84) to 1·87 18 

(1·18-2·93) in model 4, implying that the confounders explain very little of the observed 19 

variation (Figure 3). The variation is more pronounced in the cities and suburban areas (with 20 

posterior probability higher than 1; Figure 3).  21 

PM2·5 22 

We observe a 4·4% (3·7%-5·1%) increase in the mortality rate for every 1μg/m3 increase in 23 

the long-term exposure to PM2·5, based on model 1 (Figure 3 & Supplementary Material Table 24 

S5). When we adjust for spatial autocorrelation the effect increases slightly but the credibility 25 

intervals are wider, 5·4% (2·5%-8·4%), whereas it is similar when we adjust for confounding 26 
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4·9% (3·7%-6·2%) (Figure 3 & Supplementary Material Table S5). The effect is weak when 1 

we account for confounders and spatial autocorrelation 1·4% (-2·1%-5·1%) (Figure 3 & 2 

Supplementary Material Table S5). The posterior probability of a positive effect is lower than 3 

observed for NO2, and equal to 0·78. The spatial relative risk follows similar patterns as the 4 

one reported in the models for NO2, with the posterior median relative risk varying from 0·24 5 

(0·12-0·46) to 2·26 (1·32-3·85) in model 2 and from 0·30 (0·15-0·57) to 1·90 (1·14-3·17) in 6 

model 4 (Supplementary Material Figure S12).  7 

Sensitivity Analyses 8 

When LTLAs are the main geographical unit for analysis, the results are consistent, but higher 9 

in magnitude, potentially due to inadequate covariate and spatial autocorrelation adjustment 10 

due to the coarse geographical resolution (Supplementary Material Tables S6-7, Figures S13-11 

14). Restricting the study period to March 23, 2020 (N=698) also results in similar estimates 12 

for both pollutants, however the uncertainty is higher (Supplementary Material Tables S8-9, 13 

Figures S15-16). The latent field of model 4, with NO2 as the pollutant, is similar to the latent 14 

fields of the models with and without the disease progression variables, with a correlation 15 

coefficient of 0·94 and 0·93 respectively (Supplementary Material Figure S17). The use of 16 

quintiles of the pollutants justifies the linearity assumption (Supplementary Material Figure 17 

S18). Finally, the results are consistent, but the evidence weaker, when suspected COVID-19 18 

deaths are used instead (Supplementary Material Tables S10-11, Figures S19-20). 19 

Post-hoc analysis 20 

In a post-hoc analysis we investigated if the evidence of an effect of NO2 on COVID-19 21 

mortality can be attributed to pre-existing conditions. We selected hypertension, chronic 22 

obstructive pulmonary disease (COPD) and diabetes, because of 1) indications of previous 23 

literature that they increase the COVID-19 mortality risk,4,5 2) previous literature that suggest 24 

an effect with long-term exposure NO2
14-16 and 3) data availability. We retrieved prevalence 25 

data for these pre-existing conditions from PHE available at the GP practice level during 26 
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2018-2019 (https://fingertips.phe.org.uk/), Supplementary Material Figures S21-23. The 1 

effect of NO2 remain similar, 0·6% (-0·1% - 1·3%) with the posterior probability being 0·94 2 

whereas the spatial relative risk highlights the same geographical locations, Supplementary 3 

Material Figure S24.  4 

Discussion 5 

Main findings  6 

This is the first nationwide study in England investigating the effect of long-term exposure to 7 

NO2 and PM2·5 during 2014-2018 on COVID-19 mortality at LSOA level. The unadjusted 8 

models indicate that for every 1μg/m3 increase in the long-term exposure to NO2 and PM2·5 the 9 

COVID-19 mortality rates increase. After considering the effect of confounding and spatial 10 

autocorrelation the evidence is less strong for NO2, while for PM2.5 there is larger uncertainty. 11 

The spatial relative risk has strong spatial patterns, identical for the different pollutants, 12 

potentially highlighting the effect of disease spread. 13 

Comparison with previous studies focusing on NO2 14 

Our study is comparable with three previous studies in the US, England and the Netherlands 15 

assessing the long-term effect of NO2 in COVID-19 mortality. The study in the US focused 16 

on deaths reported by April 29, 2020, using 3 122 counties. For the exposure, they calculated 17 

the mean of daily concentrations during 2010-2016 as modelled by a previously described 18 

ensemble machine learning model (R2=0·79).25 They reported a 7·1% (1·2%-13·4%) increase 19 

in mortality per 4·5ppb (1ppb=1·25μg/m3) increase in NO2 after adjusting for confounders and 20 

spatial autocorrelation9 (that is approximately 1·3% increase per 1 μg/m3). The study in 21 

England, with partly overlapping data as in our analysis, also reported a significant 22 

association between NO2 and COVID-19 mortality (p<0·05). For the analysis they focused on 23 

COVID-19 deaths reported in England up to April 10, 2020, used 317 LTLAs, and did not 24 

account for spatial autocorrelation.11 The study in the Netherlands using 335 municipalities 25 

and mean exposure during 2015-2019 reported 0·35 (0·04-0·66) additional COVID-19 deaths 26 
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for every 1μg/m3 increase in NO2 after adjusting for confounders and certain spatial controls, 1 

such as transmission beyond the Dutch national borders10. Since the mean number of deaths in 2 

their sample is 16·86, the above estimate translates to a 2·0% increase in the COVID-19 3 

mortality for every 1μg/m3 increase in NO2. 4 

Comparison with previous studies focusing on PM2·5 5 

Our study is comparable with previous studies assessing the long-term effect of PM2·5 on 6 

COVID-19 mortality. The aforementioned study in the US also assessed the effect of PM2·5 on 7 

COVID-19 mortality.9 Their exposure model was previously validated having an R2 = 0·89 8 

for the annual estimates.26 The evidence for PM2·5 was weak, namely 10·8% (-1·1-24·1%) per 9 

3·4μg/m3 increase in PM2·5 concentration (that is approximately 3·2% increase per 1 μg/m3) 10 

after adjusting for confounding and spatial autocorrelation. Our study comes in contrast with 11 

another study in the US that used deaths reported until April 22nd, 2020 and counties as the 12 

geographical unit.6 For the exposure, they used previously validated monthly PM2·5 13 

concentrations (R2 = 0·70)27 and averaged them during 2000 and 2016. After adjusting for 14 

confounding but not for spatial autocorrelation, they found an 8% (2%-15%) increase in the 15 

COVID-19 death rate for an increase of 1μg/m3 in PM2·5 concentration. Our study comes also 16 

in contrast with the study in the Netherlands that reported 2·3 (1·3-3·0) additional COVID-19 17 

deaths for an increase of 1μg/m3 in the averaged long-term PM2·5 concentration.10 Having a 18 

mean number of deaths equal to 16·86, the above estimate translates to a 13·6% increase in 19 

the COVID-19 mortality rate for an increase of 1μg/m3 in PM2·5 concentration. 20 

Strengths and Limitations 21 

Our study is the first study that examines the association between long-term exposure to NO2 22 

and PM2·5 at very high geographical precision. The spatial unit of our analysis is LSOAs, for 23 

which there are 32 844 in England (~130 000km2), whereas previous studies have used 317 24 

LTLAs in England, counties in the US (3 122 in an area ~9·8 million km2) and municipalities 25 

in the Netherlands (334 in an area ~41 500km2). Such high-resolution allows capturing the 26 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 11, 2020. .https://doi.org/10.1101/2020.08.10.20171421doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171421
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

localised geographical patterns of the pollutants but also ensures adequate confounding and 1 

spatial autocorrelation adjustment. Our study also covers, so far, the largest temporal window 2 

of the epidemic (capturing the entire first wave, Figure S25 Supplementary Material), while 3 

most previous studies focused on the early to mid-stages of the first wave. This ensures better 4 

generalisability of the results. We also adjusted for spatial autocorrelation, which was found 5 

to be a crucial component in the model. Not accounting for spatial autocorrelation, when 6 

spatial autocorrelation is present, is expected to give rise to narrower credible intervals and 7 

false positive effects.28 8 

Our study has also some limitations. The downscaling procedure will likely inflate the 9 

reported credible intervals. However, this naturally reflects the uncertainty of the place of 10 

residence resulted from the downscaling approach. Although we consider small areas, the 11 

study is still an ecological one and thus the reported effects do not reflect individual 12 

associations.12 Case fatality might have been a more appropriate metric for the analysis, since 13 

disease spread is accounted for in the denominator. Nevertheless, given the asymptomatic 14 

infections and the fact that number of reported infections is not a random sample of the 15 

general population, the number of COVID-19 cases per LTLA is not reliable at this stage. 16 

However, part of the disease spread was captured in the spatial autocorrelation term. We did 17 

not account for population mobility during 2014-2018, and assumed constant residence and 18 

thus levels of exposure to air-pollution. We also could not account for non-residential air-19 

pollution exposure. 20 

Interpretation 21 

Compared to the previous studies, our results are the smallest in magnitude, likely because of 22 

the high geographical precision that allows more accurate confounding and spatial 23 

autocorrelation adjustment. In addition, we report the weakest evidence of an effect, which 24 

could be due to lack of power and individual exposure data. Nevertheless, as for NO2 we find 25 

a high posterior probability of an effect on mortality, we argue that a potential explanation 26 
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might be the mediation effect of pre-existing conditions. While in our analysis the inclusion of 1 

area-level prevalence of hypertension, diabetes and COPD did not change the results, the 2 

ecological nature of the pre-existing conditions data does not allow us to account for the 3 

mediation effect at the individual level. None of the previous studies have accounted for pre-4 

existing conditions. Similarly, the weak, but positive, effect observed for PM2·5 could be an 5 

attribute to pre-existing conditions, or even disease spread, as recent studies have suggested 6 

that PM2·5 can proliferate COVID-19 transmission.29  7 

Our analysis captured strong spatial autocorrelation. The observed pattern could reflect 8 

residual variation from a potential inadequate covariate adjustment (including disease spread), 9 

spatial variation of pre-existing conditions, other unknown spatial confounders or a 10 

combination from all above. In a sensitivity analysis, we observed that the factors associated 11 

with disease transmission left the latent field unchanged (Supplementary Material Figure 12 

S17), as did the inclusion of hypertension, diabetes and COPD (Supplementary Material 13 

Figure S24). When we restricted the analysis to the pre-lockdown period, the latent field for 14 

both pollutants captured London and Birmingham, i.e. the cities with the first outbreaks. 15 

Considering the above, and the fact that COVID-19 is an infectious disease, we believe that 16 

large variation of Figure 4 is likely due to disease spread, which is not adequately captured in 17 

the disease progression covariates.  18 

Conclusion  19 

Overall, this study provides some evidence of an association between averaged exposure 20 

during 2014-2018 to NO2 and COVID-19 mortality, while the role of PM2·5 remains more 21 

uncertain.  22 
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Tables 1 

Table 1. Data sources used in the analysis  2 

Confounders Source Spatial 
Resolution 

Temporal 
Resolution 

Type 

Temperature MetOffice 
https://www.metoffice.gov.uk/ 

1km2 Mar-June 
2018 

continuous 

Relative 
humidity 

MetOffice 
https://www.metoffice.gov.uk/ 

1km2 Mar-June 
2018 

continuous 

Index of 
Multiple 
Deprivation 

Ministry of Housing, 
Communities and Local 
Government 
https://www.gov.uk/  

Lower 
layer super 
output area 

2011 rank 
(quintiles) 

Urbanicity Office of National Statistics  
https://www.ons.gov.uk/ 

Lower 
layer super 
output area 

2011 urban/rural 

Days since 
1st reported 
case 

Public Health England 
 

Lower tier 
local 
authority 

Until 30th 
June 

continuous 

Number of 
positive 
cases 

Public Health England 
 

Lower tier 
local 
authority 

Until 30th 
June 

discrete 
(counts) 

Population 
density 

Office of National Statistics 
https://www.ons.gov.uk/ 

Lower 
layer super 
output area 

2018 continuous 
(log 
transformed) 

Number of 
intensive 
care unit 
beds 

National Health Service  
https://www.england.nhs.uk/ 

National 
Health 
Service 
trust 

February 
2019 

continuous 
(per 
population) 

Smoking  Public Health England 
https://fingertips.phe.org.uk/ 

General 
practitioner 
catchment 
area 

2018-2019 continuous 
(prevalence) 

Obesity  Public Health England 
https://fingertips.phe.org.uk/ 

General 
practitioner 
catchment 
area 

2018-2019 continuous 
(prevalence) 

High Risk 
Occupation  

Office of National Statistics  
https://www.ons.gov.uk/ 

Middle 
layer super 
output area 

2011 continuous 
(prevalence) 

 3 
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Figures 1 

Fig 1. Flowchart of the COVID-19 deaths. 2 

Fig 2. Population weighted exposure per LSOA.  3 

Fig 3. Density strips for the posterior of COVID-19 mortality relative risk with 1μg/m3 4 

increase in NO2 (top panel) and PM2·5 (botom panel) averaged long-term exposure. 5 

Fig 4. Median posterior spatial relative risk (exponential of the spatial autocorrelation term) 6 

and posterior probability that the spatial relative risk is larger than 1 for the models with NO2 7 

and a spatial autocorrelation term and the fully adjusted NO2 model. 8 
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Fig 3. 1 
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