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Simple Summary: The gut microbial ecosystem is affected by various factors such as lifestyle,
environment, and disease. Although gut microbiota is closely related to host health, an understanding
of the gut microbiota of dogs is still lacking. Therefore, we investigated gut microbial composition
in healthy dogs and divided them into groups according to their breed, age, or body condition
score. From our results, age is the most crucial factor driving the gut microbial community of dogs
compared to breed and body condition score (especially Fusobacterium perfoetens, which was much
more abundant in the older group). We have revealed that even in healthy dogs without any diseases,
there are differences in gut microbiota depending on individual traits. These results can be used as a
basis for improving the quality of life by managing dogs’ gut microbiota.

Abstract: Since dogs are part of many peoples’ lives, research and industry related to their health
and longevity are becoming a rising topic. Although gut microbiota (GM) is a key contributor to
host health, limited information is available for canines. Therefore, this study characterized GM
according to individual signatures (e.g., breed, age, and body condition score—BCS) of dogs living
in the same environment. Fresh fecal samples from 96 healthy dogs were analyzed by sequencing
the V3-V4 region of the 16S rRNA gene. The major microbial phyla were Firmicutes, Bacteroidetes,
Fusobacteria, Proteobacteria, and Actinobacteria. In the comparison by breeds, relative abundance
of Fusobacterium was significantly differed. Interestingly, Fusobacterium perfoetens abundance was
positively correlated with age (p = 0.018), being significantly more enriched in the 6–10-year-old group
(14.3%) than in the 0.5–1-year-old group (7.2%). Moreover, despite the healthy appearance of dogs in
all age (0.5–10 years) and BCS (3–6) groups, the gut microbial environment may be disadvantageous
in older dogs or in dogs with an abnormal BCS. These findings broaden our understanding of gut
microbial ecology according to individual characteristics of dogs and may be used as a reference for
providing customized-care to companion animals.

Keywords: gut microbiota; dog; companion animal; breed; age; body condition score; Fusobac-
terium perfoetens

1. Introduction

Most microorganisms in the mammalian body reside in the intestinal tract, and numer-
ous studies over the past decades have revealed a close relationship between gut microbiota
(GM) and a healthy life. GM supports the maintenance of the intestinal mucus layer, se-
cretes microbial compounds (e.g., bacteriocin and lactic acid) that suppress pathogens [1,2],
and meditates host metabolic capabilities with bacterial metabolites [3–5]. A well-balanced
and stabled GM greatly contributes to maintaining homeostasis and promptly responds
to infections in dogs [6], and gut microbial dysbiosis in dogs is associated with several
diseases such as metabolic disorders [7], inflammatory bowel disease [8,9], and arthri-
tis [10]. Recent works based on molecular techniques have revealed that the most identified
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bacterial sequences in the canine gastrointestinal tract are from the following five phyla;
Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria. However, even
in healthy host without diseases, GM is also affected by various factors, including birth
mode, diet, stress, as well as their geographic location [11,12]. Therefore, we hypothesized
that GM could be affected by dogs’ breed, age, or weight.

There are over 400 dog breeds, exhibiting a greater intraspecific phenotypic diversity
than any other mammal. Heavy genetical modifications over time resulted in a unique
phenotypic diversity influencing body and head shape, lifespan, and intelligence. Moreover,
a link between the predisposition to certain gastrointestinal conditions and dog breeds has
been established [13–17].

Age is one of the main factors inducing significant shifts in GM community with
a decline in microbial diversity [18]. As the organism ages and goes through immune-
senescence and inflammatory-aging, GM as well undergoes continual changes with diet,
physical activity, and drug use. In elderly people, beneficial microbes populations such as
Akkermansia muciniphila, which prevent leakage and subsequent induction of inflammation,
are decreased [19,20]. In addition, dysfunction of gut-brain axis has been associated with
neurodegenerative disorders [21,22]. In old dogs, a cognitive decline can be observed
through human-like learning and memory deficits [23].

Many studies have compared the GM composition of overweight or obese individuals
and have revealed several characteristics linked with these conditions, including the Firmi-
cutes/Bacteroidetes ratio [24]. High abundance of Bacteroidetes in the gut microbiota has
been associated with fecal concentration of short chain fatty acids (SCFAs) which interact
with G-protein coupled receptors (GPCRs) [25]. GPCRs modulate various metabolic func-
tions, including leptin secretion, which induces satiety and reduces food intake. However,
in dogs, the differences in GM between obese and normal are still controversial [26].

For these reasons, dogs’ GM characterization according to individual characteristics,
is imperative, in addition to general profiling. The present study compared the GM of
96 healthy dogs according to breed, age, and body condition score (BCS) based on 16S
rRNA sequences. All dogs examined in this study lived within the same environment
(place, lifestyle, and owner) to reduce the influence of external factors.

2. Materials and Methods
2.1. Animals

A total of 96 healthy dogs (60 females and 36 males) of 9 different breeds (2 Greyhound,
6 Dachshund, 28 Maltese, 5 Bichon, 3 Yorkshire terrier, 5 Chihuahua, 6 Pomeranian,
34 Poodle, and 7 Bulldog) were enrolled. Dogs were fed with a commercial diet (30% crude
protein, 17% crude fat, 6% crude fiber, 10% crude ash, 1% calcium, 0.6% phosphorus, and
12% moisture) and always had access to water. Each dog was housed in a single cage under
the same environment by one owner, who is professional breeder (Gwangju, South Korea).
Dogs were maintained routinely before and after experiment, and there was no additional
treatment for this study. No dog presented a history of medication, neutralization, or
diarrhea in the past four months. All experimental procedures in this study were approved
by the Committee for Accreditation of Laboratory Animal Care and the Guideline for the
Care and Use of Laboratory Animals of Seoul National University (approval number is
SNU-200424-4).

2.2. Experimental Design

For the comparison by breed, dogs were divided into nine groups; Greyhound,
Dachshund, Maltese, Bichon, Yorkshire Terrier, Chihuahua, Pomeranian, Poodle, and
Bulldog. In the comparison by age, they were divided into three age groups; 0.5–1, 2–5,
and 6–10 years old, corresponding to adolescence, adulthood, and old adults, respectively.
For the comparison by obesity status, dogs were divided into three groups according to
their body condition score (BCS). BCS was estimated by a veterinarian based on a 9-point
scale, which is the clinical method of assessing body fat accumulation [27,28]. Three BCS
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groups consisted of BCS 3, BCS 4–5, and BCS 6–8 each corresponding to lean, normal/ideal,
and overweight. Briefly, 16, 63, and 17 dogs were enrolled in 0.5–1-, 2–5-, and 6–10-year-
old group, and 7, 84, and 5 dogs were enrolled in BCS 3, BCS 4–5, and BCS 6–8 group,
respectively. The dogs’ GM were compared according to breed, age, and BCS based on 16S
rRNA sequences.

2.3. Sample Collection and DNA Extraction

Rectal swab samples from dogs were collected using N-SWAB TRANSPORT (No-
ble Bio, Hwaseong, Korea) and transported to the laboratory at 4 ◦C within 2 h. All
samples were stored at −80 ◦C until further experiments. Genomic DNA was extracted
using the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) following the manufacturer’s
instructions and quantified using Quant-iT PicoGreen (Invitrogen, Waltham, MA, USA).

2.4. Library Construction and Sequencing

DNA libraries were constructed using Illumina 16S Metagenomic Sequencing Library
Prep Guide to amplify the V3-V4 region. gDNA (2 ng) was amplified with 5× reaction
buffer, 1 mM dNTP mix, 500 nM each of the universal F/R primers, and Herculase II fusion
DNA polymerase (Agilent Technologies, Santa Clara, CA, USA). The amplification condi-
tions were as follows: heat activation at 95 ◦C for 3 min; 25 cycles of 95 ◦C for 30 s, 55 ◦C
for 30 s, and 72 ◦C for 30 s; and final extension at 72 ◦C for 5 min. The following universal
primers with adapter overhang sequences (Illumina, San Diego, CA, USA) were used:
V3-F, 5′-CGTCGGCAGCGTCAGATGTGTATAAGAGA CAGCCTACGGGNGGCWGCAG-
3′, and V4-R, 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAG ACAGGACTACHVGG
GTATCTAATCC-3′. The polymerase chain reaction (PCR) product was purified using AM-
Pure beads (Agencourt Bioscience, Essex County, MA, USA). Following purification, the
PCR product (2 µL) was amplified for final library construction using Nextera XT Indexed
Primer. The cycling conditions and purification steps for this PCR were the same as above,
except the use of 10 cycles. The final purified product was quantified using the qPCR
Quantification Protocol Guide (KAPA Library Quantification Kit Illumina Platforms, Cape
town, South Africa) and qualified using the Agilent D1000 ScreenTape System (Agilent
Technologies, Waldbronn, Germany). Paired-end (2 × 300 bp) sequencing was performed
by Macrogen (Seoul, Korea) using the MiSeq™ platform (Illumina, San Diego, CA, USA).

2.5. Gut Microbial Analysis

The MiSeq result was converted to FASTQ files based on Illumina index sequences.
The adapter sequences were trimmed using FASTP [29], and overlapping regions were
demultiplexed. Sufficiently short reads were extended by overlapping paired-end reads
FLASH v1.2.11 [30]. After removing the < 400 or > 500 bp sequences, the remaining reads
were clustered into operational taxonomic units (OTUs) with 97% sequence similarity
using CD-HIT-OTU [31]. Taxonomic assignment was performed using BLASTN 2.4.0,
with ≥ 85% query coverage and identity score [32]. The observed OTUs were used for
microbial community analysis using QIIME 1.9 [33].

2.6. Statistical Analysis

Alpha diversity was evaluated by calculating Observed OTUs, Chao1, the Shannon
index, and the Inversed Simpson index using QIIME 1.9 to measure within groups micro-
bial diversity. To compare of microbial composition between groups, beta diversity was
estimated based on unweighted and weighted UniFrac distances and visualized using
principal coordinate analysis (PCoA). All other analyses and visualizations were performed
with R software version 3.0.1. and the boxplot package. For all statistical analyses, p < 0.05
was statistically significant. In the comparison of microbial diversity index and relative
abundance, the Kruskal–Wallis test or Wilcoxon rank sum test were used depending
on the number of compared groups to determine significantly (p < 0.05) varied among
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groups [34,35]. Linear discriminant analysis (LDA) effect size (LEfSe) [36] was used to
compare the abundance distribution among taxa (p < 0.05, with LDA score > 2.0 or 3.0).

3. Results
3.1. Overall GM of Healthy Dogs

A total of 3,553,326 high-quality reads were obtained from the 96 healthy dogs enrolled.
We analyzed fecal samples from dogs of nine breeds, aged 0.5 to 10 years and with a BCS
of 3 to 8. A total of 1254 bacterial OTUs classified into 14 phyla, 27 classes, 56 orders,
106 families, 286 genera, and 533 species were obtained.

The following five phyla were predominant (≥1% of total sequences), accounting for
over 98% of total 16S rRNA sequences in the dog GM: Firmicutes (44.8%), Bacteroidetes
(27.7%), Fusobacteria (14.2%), Proteobacteria (8.8%), and Actinobacteria (3.4% of total
average abundance) (Figure 1). At the genus and species level, respectively, 20 and 28 taxa
were predominant (≥1% of the total sequences). The predominant species included Fu-
sobacterium perfoetens (0–59%), Mediterranea massiliensis (0–22%), Prevotella copri (0–38%),
and Romboutsia timonensis (0–36%) (Table S1).
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Figure 1. Overall gut microbial composition of 96 healthy dogs. Relative abundances of (a) phyla
(≥0.01% of the total sequences) and (b) genera (≥1% of the total sequences) from the five major phyla.

3.2. Breed

Among 9 breeds Greyhound breed was excluded from the comparison as there were
only two individuals. Microbial richness (observed OTUs) was significantly higher in
Bulldog (p = 0.04), but microbial evenness (Shannon index) did not differ by breed (p = 0.17).
Samples were not clustered by breed in PCoA based on unweighted (Figure S1) and
weighted UniFrac distances (Figure 2b).
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was measured based on observed OTUs. (b) PCoA was performed based on weighted UniFrac distances. (c) Relative
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Phylum Fusobacteria was significantly differed according to breed (p = 0.01) (Figure 2d).
Twenty-one genus and twenty-six species showed significant differences (p < 0.05), espe-
cially three species (Fusobacterium perfoetens, Romboutsia timonensis, and Sutterella stercorica-
nis) among them had an abundance of over 5.0% (Table S2).

According to LEfSe results performed between the Maltese and Poodle groups, which
had the highest number of samples, showed that the abundance distribution of taxa
was clearly differed between the two groups (p < 0.05 and LDA > 3.0) (Figure S2). In
Malteses, Fusobacteria were abundant, whereas in Poodles, Firmicutes and Actinobacteria
were abundant. The results for all taxonomic levels are presented as an LDA bar graph.
Moreover, there were significant differences in the abundance of four phyla and sixteen
species between these two breeds (p < 0.05). The number of shared and unique OTUs
between the two breeds were visualized via Venn diagram (Figure S7).
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3.3. Age

No age-related differences were found in alpha and beta diversity (Figure 3 and
Figure S3), but several bacterial groups showed different abundances.
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Phylum Fusobacteria (p = 0.05), genus Jeotgalicoccus (p = 0.02), Faecalibaculum (p = 0.03),
and Fusobacterium (p = 0.04) were significant differed. Seven species showed age-dependent
differences (p < 0.05) (Table S3). Specifically, Fusobacterium perfoetens was the most sig-
nificantly affected species by dog age (Figure 4). Figure 5 indicates the distribution of
forty-five core species according to age. LEfSe analysis revealed similar trends (p < 0.05,
LDA score > 3.0) (Figure S4).

According to Wilcoxon rank sum test, respectively 12, 4, and 8 species significantly
differed between the 0.5–1- and 2–5-year-old groups, between the 2–5- and 6–10-year-old
groups, and between the 0.5–1- and 6–10-year-old groups. F. perfoetens was approximately
two times more abundant in the 6–10-year-old group than in the 0.5–1-year-old group
(14.3% vs. 7.2%).

3.4. BCS

There were no significantly differences in alpha and beta diversity according to BCS
(Figure 6 and Figure S5). At the phylum level, Actinobacteria was significantly more
abundant in the overweight group than in the other groups (Figure 7). At the genus and
species level, several taxa showed significant differences among the three BCS groups,
but their average abundance was < 0.1% of the total 16S rRNA sequences (Table S4).
Although there was no statistical significance, the abundance of Romboutsia timonensis and
Lactobacillus animalis tended to decrease with increasing BCS, and Prevotella copri increase
(Figure 7). Forty-three core species were obtained between different BCS groups, and the
distribution was showed in Figure 8.
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When comparing the two of the three groups, the difference at the phylum level ex-
isted only in the comparison of the normal vs. overweight group. The overweight group
showed higher Actinobaceria and Deferribacteres than the normal group. Also, six
species (Enterococcus cecorum, Peptostreptococcus russellii, Bacteroides fragilis, Bacteroides
massiliensis, Bacteroides thetaiotaomicron, and Corynebacterium lactis) showed higher levels
in the overweight group, whereas three species (Anaerobiospirillum succiniciproducens,
Sutterella stercoricanis, and Mucispirillum schaedleri) had lower. In the comparison of
lean vs. normal group, the lean group showed higher abundance of Streptococcus equi-
nus, Peptostreptococcus russellii and Beduini massiliensis. In the comparison of lean vs.
overweight group, Anaerobiospirillum succiniciproducens, Beduini massiliensis, Roubout-
sia timonensis, and Streptococcus equins showed higher levels in the lean group (data
not shown).

In LEfSe analysis of the three groups, the overweight group was enriched in
Peptostreptococcus russellii, Schaalia cardiffensis, and Enterococcus cocerum; the lean group
in Fenollaria; and the normal group in Cellulosilyticum ruminicola (Figure S6).
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4. Discussion

In humans, gut microbial community composition greatly varies according to indi-
vidual traits and environmental condition [12,37,38]. Similarly, in dogs, gut microbial
composition may vary according to breed, age, or other conditions. Here, we character-
ized the GM of 96 healthy dogs, who belonged to nine different breeds, aged between
0.5 to 10 years, with a BCS ranging from 3 to 8, and living under the same environmental
conditions. The predominant phyla in this study were consistent with previous reports in
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canines: Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria [37–39].
Except for Greyhounds, Bulldogs showed a higher number of obtained OTUs than the other
breeds. Bulldogs are classified as medium-sized dogs, and all other breeds are small-sized
dogs, but no study has yet reported this association. When Poodle and Maltese groups
result were compared, there was a clear difference in microbial composition between the
two breeds (Figure S2). Furthermore, similar to our study, a previous study comparing
three breeds (Maltese, Poodle, and Miniature Schnauzer) showed phylum Fusobacterium
was differed by breed, and the levels of Firmicutes were significantly lower in Maltese
dogs [40]. These results suggest that there may be differences in the GM composition
depending on the dog breeds. Further research with a bigger sample size per breed, would
allow for a more precise comparison of GM by breed and body size in dogs.

Age groups were divided according to human years corresponding to adolescence,
adulthood, and old adults [41]. In humans, gut microbial diversity decreases with aging.
However, we found no such trend in the present study. Meanwhile, like in humans, we
observed drastic age-related changes in the gut microbial composition from 0.5–1 years of
age onward in dogs. Adolescence a period to occur physical and emotional changes with
rapid growth. Many human studies have suggested that the gut microbial composition in
early life affects the immune system and health in the future [42,43]. Our results suggest
that the management of GM during the growing period is also important in dogs. In
addition, bacteria that are more abundant in older adults may be age-dependent.

F. perfoetens abundance was positively correlated with age. Consistent with our
results, Xu et al. reported that F. perfoetens was significantly more abundant in dogs
aged 60–156 months than in younger ones (age < 8 months) [44]. Fusobacterium is a
commensal bacterium living in healthy humans and dogs’ guts. However, several studies
have reported that Fusobacterium was enriched in diverse models of intestinal diseases,
including colorectal cancers and tumors [45–47]. We also found that this species may
be associated with intestinal diseases. In a preliminary study, we compared samples
from bloody stool and normal feces of the same individual. However, this result was
obtained from one individual only, and further evidence are still needed, F. perfoetens
was the bacterium with the greatest difference between bloody and normal stool sample.
F. perfoetens was the most dominant bacterium in the bloody stool sample (46.9%), with low
abundance in the normal stool sample (19.5%) (Data not shown). Although Fusobacterium
is a commensal turned pathogen, previous studies have only focused on F. nucleatum.
Our observations suggest that F. perfoetens is an aging-related or opportunistic pathogen,
although in-depth studies of F. perfoetens including metabolic pathway, metabolites, and
their associations with older dogs (more than 10 years-old) are needed.

In humans and mice, obesity is associated with decreased microbial diversity and an
increased Firmicutes/Bacteroidetes (F/B) ratio [24,48–50]. However, no differences in the
alpha and beta diversity or F/B ratio according to BCS were obtained in this study, similar
to a previous study [26]. Actinobacteria was significantly enriched in the overweight group
compared to the others. A higher proportion of Actinobacteria has been observed in obese
individuals [48,51]. Actinobacteria is a saccharolytic bacteria, whose main metabolic end
products are SCFAs [52], such as Bacteroidetes, and the fecal SCFA content was higher in
obese individuals than in lean ones [53]. SCFAs production increases energy harvesting
from diet and interferes with energy homoeostasis of the host [54]. Thus, Actinobacteria
may be associated with obesity in dogs, as reported by many studies in humans. Some
bacterial groups associated with disease or obesity showed higher levels in the overweight
group than in the normal group. Among them, Deferribactere is related to intestinal iron
metabolism, and higher levels of Deferribacteres increases iron metabolism. Abnormal
iron metabolism could be promotes tumor growth or risk of cancer [55]. Bacteroides fragilis,
Bacteroides massiliensis, and Bacteroides thetaiotaomicron are a group of Bacteroides, and are
known to be positively correlated with obesity [50,56], showed more abundant in the
overweight group.
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At the species level, P. russellii showed a lower abundance in the normal group than
in the other groups. This species reduces susceptibility to intestinal injury via the action
of a cluster of genes encoding phenylacetate dehydratase [57,58]. Therefore, an ideal
BCS (4–5) would be more conducive to the response and recovery of intestinal damage
than BCS associated with under- or overweight conditions. P. copri showed a tendency
to increase as BCS increased, and L. animalis showed the opposite trend. The beneficial
effects of P. copri may be diet-dependent [59–61], but there was no dietary factor as all
dogs in the present study received the same diet. Since P. copri is both beneficial and
harmful, its effects on and reasons for its abundance in obese dogs should be examined.
Oral administration of L. animalis to dogs increased fecal Lactobacillus abundance [62–64],
while in dogs < 24 months of age, the abundance of L. animalis was negatively correlated
with the level of TNF-α, which is related to obesity [44]. Therefore, we suggested that even
in healthy individuals, a higher BCS may suppress some beneficial bacteria and promote
opportunistic pathogens.

5. Conclusions

Our findings contribute to the understanding of canine GM which has not yet been
fully refined and suggest variability according to individual traits. In healthy dogs, Fusobac-
terium suggests the potential to be an indicator of dog breeds characteristic. Additionally,
regulating F. perfoetens, which is positively correlated with older dogs, might help promot-
ing a healthy aging process in dogs. Finally, maintaining an ideal BCS not only prevents
disease but also inhibits opportunistic pathogens. These findings can serve as a reference
for ensuring companion animals’ well-being.
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