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inverse covariances
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INTRODUCTION

The organization of protein structures into discrete

structural domains was observed when only a few struc-

tures had been solved. For example, the structures of

chymotrypsin,1 trypsin,2 elastase,3 papain,4 lysozyme,5

lactate and malate dehydrogenase,6,7 phosphoglycerate

kinase,8 and thermolysin9 all showed multiple ‘‘continu-

ous regions,’’ in the terminology of Wetlaufer’s 1973

summary in which the notion of domains was first pre-

sented in a unified way.10

Since that point there have been many substantial

advances in the analysis, delineation, and classification of

protein domains using sequence (SMART11; PFam12)

and structure (SCOP13; CATH14), with important

insights into their functional promiscuity and evolu-

tion15,16 as well as the folding of individual domains

and multidomain proteins.17

Identification of structural domains from unannotated

sequences is a problem of great importance in structural

biology: NMR spectroscopy, crystallization, and biophysi-

cal analyses of proteins are made significantly more trac-

table if domains can be identified prior to expression.

Computational analyses are also substantially improved

after domain identification: iterated homology searches,

for example, are considerably less prone to profile drift

leading to inclusion of unrelated sequences and a lack of

profile information when single domains are used as

queries18 and many more computationally intensive

methods (e.g. ab initio structure predictions) have high-

order time complexity dependence on the length of

the protein chain and are impractical for longer

proteins.19,20

Given the great interest in this problem there has,

naturally, been substantial effort directed toward compu-

tational methods for domain identification. Principal
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ABSTRACT

It has been known even since relatively few structures had been solved that longer protein chains often contain multiple

domains, which may fold separately and play the role of reusable functional modules found in many contexts. In many

structural biology tasks, in particular structure prediction, it is of great use to be able to identify domains within the struc-

ture and analyze these regions separately. However, when using sequence data alone this task has proven exceptionally diffi-

cult, with relatively little improvement over the naive method of choosing boundaries based on size distributions of observed

domains. The recent significant improvement in contact prediction provides a new source of information for domain predic-

tion. We test several methods for using this information including a kernel smoothing-based approach and methods based

on building alpha-carbon models and compare performance with a length-based predictor, a homology search method and

four published sequence-based predictors: DOMCUT, DomPRO, DLP-SVM, and SCOOBY-DOmain. We show that the

kernel-smoothing method is significantly better than the other ab initio predictors when both single-domain and multido-

main targets are considered and is not significantly different to the homology-based method. Considering only multidomain

targets the kernel-smoothing method outperforms all of the published methods except DLP-SVM. The kernel smoothing

method therefore represents a potentially useful improvement to ab initio domain prediction.
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sources of information which have been exploited are do-

main length distributions,21 information from sequence

similarity searches,22 and hydrophobicity taken either

from single sequences or sequence profiles.23,24 The

main conclusion which must be drawn from these studies

is that domain prediction is extremely difficult, a conclu-

sion also reached during the earlier CASP competitions,

in which domain prediction was assessed as a separate

category.25,26 Consequently, the state of the art is not

significantly advanced from the naive approach. One

source of the difficulty is the ambiguity in domain pars-

ing, as identified by comparison of structural domain

classifications27 and discussed at length by Holland

et al.28

Recently, the application of sparse inverse covariance

matrices to contact prediction has led to a significant

improvement in the accuracy of such predictions,29–34

raising the possibility of using such predictions as a

source of information on possible domain boundaries, an

earlier study of which was performed by Rigden.35 In

this article, we explore a number of methods to exploit

this new information and show that a simple kernel-

smoothing predictor can provide accurate information of

use in domain prediction with an improvement of

between 8 and 20% over other ab initio predictors.

METHODS

Predicting domains from contact data

The use of predicted contacts for domain prediction

gives us the advantage of being able to apply techniques

previously developed for parsing domains from structures

by reconstructing rough CA models using distance-geom-

etry methods such as FT-COMAR.36 While a substantial

number of such approaches have been developed37–43

our preliminary tests quickly found that most methods

would not accept the rough models produced by FT-

COMAR, while others were no longer available. Three

approaches which required only alpha-carbon models

were therefore tested: PDP,38 Taylor’s dom method,39

and domain1.2,37 developed by the Sternberg group.

These particular methods were the only three readily

available methods which use only a-carbon features to

determine domain cuts and which are therefore suitable

for use with FT-COMAR models.

Each method has essentially two parameters: the size

of contact list used to make a prediction (N above) and

the contact distance, D, a parameter for FT-COMAR.

Testing with real contact data demonstrated that high

values of N were undesirable, as were high values of D.

The explanation for this is that large numbers of (noisy)

contacts produce models which are roughly spherical,

leading to predictions of only single domains, while the

D parameter needs to approximate the characteristic

length scale expected by the domain parsers. For all

methods values of 2000 for N and 8 for D were found to

perform best (data not shown) and are used in the

results presented here. Domain parsing methods were

used with default settings. In the case of dom and

domain1.2, which make multiple predictions, only the

final prediction was used.

We also developed a faster method based on kernel

density estimation (KDE). Following Rigden,35 we imple-

mented a method for estimating the likely positions of

domain boundaries based on contact density without con-

structing models. The premiss of the method is that there

will be more predicted contacts for residues within the

same domain than for residues in different domains,

with noise being distributed at random intervals and

intradomain contacts generally fewer in number than

interdomain contacts. The method therefore assigns the

probability of each residue position being within a domain

by determining how many predicted contacts would be

broken if the chain were to be split at that point. A

smoothed PDF of the cut points is derived using Gaussian

kernel density estimation44,45 as follows: for each pre-

dicted contact we iterate over the residues between those

in contact, placing a Gaussian with a particular standard

deviation (the bandwidth parameter) centered on each

residue. The cumulative density across the whole sequence

is then summed and normalized to define a smoothed

PDF representing the probability of disrupting a (pre-

dicted) contact if a domain boundary is predicted at that

point. To make a prediction, local minima in the

smoothed PDF are found by estimating the first derivative

of the curve at each position using a window of 5 residues

either side. Each minimum is then defined as a cut-point.

For all domain targets, the highest scoring 1000 pre-

dicted contacts (filtered to a minimum sequence distance

of 5 residues) were used as inputs to the method. A vari-

ety of functions for setting the bandwidth parameter

were tested using fixed values and linear, logarithmic,

and fractional power functions of the sequence length

with parameters as follows: L/n for values of n 5 1, 5,

10, 15, 20, 30 for the linear estimator; logk (L) for k 5

1–9 inclusive for the logarithmic function and L1/x for x

5 2–9 inclusive. Fixed values of 1, 5, 10, 20, 30, 40, and

50 were tested. We also used the asymptotic mean square

error (AMISE) optimal bandwidth calculated using the

secant method. The KDE method was implemented in

PERL, using the CPAN module Statistics::KernelEstima-

tion–0.05 for kernel density estimation. Source code for

all new methods is available for download from: math-

bio.nimr.mrc.ac.uk/wiki/Software.

Domain prediction targets, contact
predictions, and structural contact
definition

We used data from two sources to test the methods. The

153-protein set defined by Holland et al.28 for testing
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domain parsers (we refer to this as ‘‘the Bourne set’’) and

the set of 221 targets from the CASP 7 and 8 experiments.

For comparison purposes, we pooled the data into a set of

374 proteins, referred to as the ‘‘full dataset.’’

Contact predictions were made as follows: the sequence

of each chain in the set was used as a query to search Uni-

ref100 using the jackhmmer method from the HMMer 3.0

package46 with three iterations, all other parameters

default. Contact predictions were made using the ranked

results of sparse inverse covariance matrix estimation with

the graphical lasso.30,47 Our implementation of this

predictor was based on the PSICOV method30 with the

minor difference that q parameters were set at 1 for diago-

nal elements, 0.001 otherwise.37 Briefly, the method works

as follows: the alignment is used to derive a symmetric

L 3 L 3 21 3 21 matrix (L being the length of the target

sequence) where each entry Mab
ij is defined as the covari-

ance between amino acids i and j in the alignment col-

umns corresponding to positions a and b in the sequence,

gaps being treated as a 21st amino acid character. This has

the following equation:

Mab
ij ¼ PabðijÞ � PaðiÞPbðjÞ

The graphical lasso method47 is an efficient way of

inverting this matrix, which is very large for long sequen-

ces. Finding the inverse has the effect of reducing the

covariance signals to only those resulting from direct

contacts between amino acids, removing a significant

portion of the noise, and substantially improving contact

prediction.30

Contacts were derived from real structures by finding

a pseudo-Cb based on the a-carbon coordinates as fol-

lows: for three consecutive Cas C1, C2,C3 find the image

B of C2 in the line C1–C3 and define the pseudo-Cb as

the point 2 Å from C2 along the line from B to C2.48

Inter-residue distances were defined as the distance

between these pseudo-Cb atoms for all residue types and

contacts were defined for distances of � 8 Å.

Other domain predictors

As comparison measures we implemented two alterna-

tive methods of domain prediction which have previously

been shown to perform well: a naive predictor using only

length information inspired by the DGS method21 and a

homology search-based method which identified end-

points of alignments to CATH domain HMMs (v. 3.2)14

and used a simple smoothing protocol to derive predic-

tions.

The naive predictor was a simple Bayesian method

using KDE to determine PDFs for the probability of a

chain having a particular length given that it has 1, 2, 3,

or 41 domains. This was then used to find P(N|L), N

being the number of domains and L the chain length.

For each value of N we found the length-independent

probability of a domain boundary at each location in a

sequence, all sequences being scaled to length 1000. Frac-

tional parts of the profile were summed when making

predictions (e.g. for a protein of length 100, the density

for cell 0 would be the sum of cells 0–9 in the profile,

cell 1 would be the sum of cells 10–19, etc.). The proba-

bility of each residue being a domain boundary was mul-

tiplied with the probability of the corresponding value of

N to produce a final prediction. Cuts were then made

wherever peaks were found in the profile using the esti-

mated first derivative calculated as for the KDE method.

The method was parameterized using domain length

distributions and cut points derived from the CATH

database (v3.2).14

The homology-based predictor used HMMER3.0 to

search the CATH Gene3D HMM library (v 3.2). Endpoints

of alignments were then assembled into a profile which

was smoothed by repeated averaging. Domain boundaries

were predicted based on the positions of local peaks

within the endpoint profile, forbidding boundaries closer

than 60 amino acids to one another or to the sequence ter-

mini. See Supporting Information for further details.

To further assess the performance of the methods, we

compared them to four published domain boundary pre-

diction methods: DOMCUT,49 DomPRO,50 DLP-SVM,51

and SCOOBY-Domain.25,26 The DOMCUT and DVLP-

SVM methods were accessed using the servers provided by

the authors at http://www.bork.embl-heidelberg.de/Docu/

mikita/domplot.cgi and http://www.tuat.ac.jp/�domserv/

cgi-bin/DLP-SVM.cgi, respectively. DLP-SVM predictions

were taken from the SVM-ALL category of server results.

DomPRO and SCOOBY-DOmain were run locally using

default parameters. Full details of the methods can be

found in Supporting Information.

Assessment of domain predictions and
domain prediction methods

Following the assessment of domains in earlier CASP

experiments, we used the normalized domain overlap

(NDO) score to determine the accuracy of predictions.25

The score algorithm worked as follows: for each domain

the relevant annotations were used to define domain seg-

ments labeled 1, 2, 3, etc., according to the positioning

of their first residue. Each residue was labeled with its

appropriate state. In the same fashion, predicted domain

segments were given ordinal labels based on the location

of the first residue of each segment. The NDO score is

then simply

100

l

Xl

i¼1

1 if Pi ¼ Qi

�1 otherwise

� �

where l is the number of labeled residues and Pi (Qi) is

the label of the protein (prediction) at residue i. Scores
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were truncated at 0 to produce values in the interval [0–

100]. Predicted linker elements were given no label and

as such were ignored, thus l is equal to the length of the

protein minus the number of unlabeled residues.

To avoid over-zealous penalties from label mismatches

(i.e. where a short discontinuous segment occurred early

in the chain) label matching was optimized using the sta-

ble marriage algorithm52 with preferences determined by

the size of the overlap between each label type. Briefly,

this algorithm seeks to find the best pairings for mem-

bers of two sets given a matrix of preferences, therefore

finding the optimal match between predicted domain

labels and the annotated correct labeling. Thus in this

case if a discontinuous domain is labeled as occupying

position 1 and positions 100–200 and the correct answer

has no discontinuities the large overlap between pre-

dicted domain 1 and actual domain 2 would lead to the

labels being swapped. This prevents trivial mistakes from

reducing the NDO score artificially since the labeling is

arbitrary.

To determine whether the results were statistically

robust, we performed all-v-all paired-samples Wilcoxon

signed-rank tests. The rationale behind using a nonpara-

metric test is that the underlying data do not fulfill the

strict requirements for a t-test as the data are not nor-

mally distributed. 45 such tests were performed both on

the full dataset and on the subset of multidomain pro-

teins to separately assess the ability of the methods to

make predictions in a realistic situation and to predict

domain boundaries. The resulting p-values were cor-

rected for multiple testing using the Bonferroni correc-

tion and significant differences were assessed using criti-

cal values for a two-tailed test at 5% significance after

applying the multiple testing correction.

RESULTS

Optimizing bandwidth for KDE

The single parameter for the KDE method is the band-

width used in the kernel density estimation step. For

Gaussian kernels as used here this controls the standard

deviation of the kernels used, r, and therefore produces

smoother profiles for larger values of r. Consequently,

low bandwidths produce undersmoothed PDFs which

lead in many cases to overprediction while high band-

widths lead to oversmoothed PDFs and underprediction,

favoring single-domain cases. Figure 1 depicts the pre-

dicted contact profile for a two-domain protein to show

the effect of smoothing. Tests were performed using real

contact data with pseudo-Cb atoms and a threshold of

8 Å with the Bourne set.

Optimal bandwidths can be estimated from the data

by minimizing the estimated asymptotic mean integrated

square error (AMISE). The secant method was used

for this purpose to provide initial values for testing.

Observation of the profiles generated suggested that they

were somewhat oversensitive to noisy predictions and

generally resulted in overprediction of domain bounda-

ries. We therefore tested the following functions of do-

main length as bandwidth parameters: fixed bandwidths

(1, 5, 10, 20, 30, 40, 50), linear scaling (l/1, l/10, l/15, l/

20, l/30, l/40, l/50), power scaling (l^1/2, l^1/3, l^1/4,

l^1/5) and logarithmic scaling (bases 2, 3, 4, 5, 6, 7, 8, 9).

Fixed bandwidths led to the expected result that an

increase in bandwidth produced fewer domain predic-

tions and systematically favored the single-domain exam-

ples in the test set over the multidomain examples. We

found a value of 5 represented a reasonable balance for

the set in question but this still results in substantial

overprediction (data not shown). Overall the best func-

tion was linear scaling which essentially defined the

Pareto front for the method (the set of parameters for

which no other parameters are better on both criteria),

although square-root scaling was very close in perform-

ance to linear prediction with a length quotient of 15.

Figure S1 (Supporting Information) plots the mean

NDO scores for single vs. multidomain proteins for each

threshold value, with the points on the Pareto front for

the method labeled with parameter values. The best

mean prediction was found for the l/15 choice. The ker-

nel smoothing parameter was therefore chosen as l/15 for

subsequent tests.

Performance with real contacts

We ran the four contact-based predictors on the Bourne

set using the real contact data (see methods)

and determined the overall prediction accuracy for the

set as well as the comparative accuracy of single vs.

multidomain proteins using the normalized domain

Figure 1
Smoothing contact profiles with kernel density estimation. The

predicted contact profile for protein 3TF4 is shown before (black line)

and after (blue line) kernel density estimation smoothing with a

bandwidth of 40. Red lines show the positions of the real and

predicted domain boundaries. A PyMol53 ribbon diagram of the

structure colored blue–red N–C is shown above the line.
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overlap (NDO) measure, following the CASP assess-

ments.25

Figure 2 shows the mean NDO scores for the contact-

based methods using the top 2000 contacts derived from

the structures with the pseudo-Cb based contact method

and setting the FT-COMAR threshold parameter to 12 Å

(the top 1000 predicted contacts were used for the KDE

method). This is a demonstration of the performance of

each of the methods where the contact predictions to be

perfectly accurate. On this set the Taylor method is

clearly best, with the KDE-based method and Islam

methods performing similarly. Examining only the per-

formance on multidomain targets shows that the KDE

method is almost identical to the Taylor method, show-

ing that the slight improvement in performance is the

result of an improvement on single-domain targets.

Removing discontinuous domains (which the KDE

method does not predict) improves the performance of

the KDE method marginally with respect to the Taylor

method but does not significantly change the result (data

not shown).

Performance with predicted contacts

The four contact-based predictors were then run with

predicted contact data from our implementation of the

PSICOV method,33 otherwise in the same way as above,

using the full dataset comprising CASP 7/8 targets and

the Bourne sequences. For comparison we also ran the

SCOOBY-DOmain method, the methods DOMCUT,

DomPRO, and DLP-SVM, our homology-based predictor

and the naive length-based predictor. Figure 3 shows the

performance of the seven methods with predicted con-

tacts rather than those taken from the structures. Taylor’s

dom method performs excellently for multidomain pro-

teins; however, the noise in the predicted contacts leads

to overprediction of the single-domain proteins. By con-

trast the KDE-based method performs extremely well for

single-domain proteins with only marginally worse accu-

racy for multidomain boundaries. Both homology-based

predictors are very accurate for multidomain boundaries

but are less effective than the KDE method for single-do-

main proteins. The sequence-based predictor, SCOOBY-

DOmain, performs poorly by comparison with these

other methods, overpredicting on single-domain proteins

with moderate performance for multidomain proteins.

The naive predictor is only moderately worse for multi-

domain proteins while being substantially better for

single-domain proteins. PDP does not work well with

FT-COMAR models, performing worst of all the methods

in this instance.

To determine the significance of these differences we

performed pairwise Wilcoxon signed-rank tests for paired

data between each pair of methods. Tables I and II show

the results of this on the full dataset (including both sin-

gle-domain and multidomain proteins) and the subset of

multidomain proteins, respectively. Significant differences

were assessed at the 5% level for a two-tailed test after

Bonferroni correction of the P-values (n 5 45 tests).

Tests which showed significant differences are highlighted

in the tables in red and blue.

From these results, it can be seen that the KDE

method is significantly better than all of the other meth-

ods except the naive and homology-based predictors

when the full dataset is considered. The mean differences

range between 6 and 19.8 increases in NDO scores across

all methods, 8.49 and 19.8 when compared to the other

four published predictors. Using PDP to parse domains

is inferior to seven of the nine other methods, suggesting

Figure 2
Domain prediction accuracy using real contacts. The three methods

using 3D data (Taylor, domain1.2, PDP) and the kernel-smoothing

method (KDE) are plotted.

Figure 3
Domain prediction accuracy. The 10 methods are compared based on

the mean NDO scores for the single-domain and multidomain targets

from the combined CASP and Bourne datasets. Error bars indicate

standard errors.
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that it is not an appropriate method to use with FT-

COMAR’s rough models.

Although it is important not to overpredict domain

boundaries, requiring the incorporation of single-domain

proteins in the dataset, by assessing results using all data

we are implicitly assuming a given distribution of single-

domain vs. multidomain proteins. The actual distribution

might depend on the context of the predictions – Eukar-

yotes and Prokaryotes, for example, tend to have differ-

ent distributions of multidomain proteins. Therefore, it

is important to assess the quality of predictions on multi-

domain proteins only, effectively assessing the probability

of correctly predicting domain boundaries given that the

protein is multidomain.

Table II shows that when we consider only multido-

main proteins a slightly different picture emerges: the

KDE method is significantly better than the DOMCUT,

DomPRO, and SCOOBY methods but no longer provides

a significant improvement over the DLP-SVM method.

Differences in performance between KDE, DOM, and

Domain1.2 are also no longer significant while there is a

very large difference between the better methods (KDE,

Taylor, Islam, Homology) and the naive DGS predictor

which uses only length information. The ability of this

method to make good predictions across the whole data-

set is therefore attributable almost entirely to its tendency

to predict single-domain proteins accurately. DLP-SVM

is shown here to be reasonably accurate given only multi-

domain proteins but tends to substantially overpredict.

Since FT-COMAR can generate multiple models from

a single input we tested two methods for deriving a con-

sensus prediction using an ensemble of models to deter-

mine whether this could improve domain prediction. We

found that re-estimating contacts from an ensemble of

models produced a promising increase in contact predic-

tion performance (Supporting Information Fig. S2) but

that this did not generally improve domain prediction

accuracy (Supporting Information).

DISCUSSION

Prediction of domain boundaries from sequence

remains extremely challenging. Where a known structure

for a domain exists and can be aligned to the query

sequence predictions can often be quite accurate, as dem-

onstrated by our results and those of others. However,

this relies on both the existence and the detection of the

known structure and where this is not possible such

methods will fail.

We have shown that using the new, more accurate

contact predictions derived from inverse covariance

analysis can produce domain boundary predictions

which are equivalent to or slightly better than those pro-

duced by the template-based method and represent a

substantial improvement over the four ab initio predic-

tors tested here, providing similar performance to the use

of homologous templates. This therefore represents an

improvement to the state of the art in ab initio domain

prediction which will be useful in supplementing the

template-based approach.

There remain two areas in which the kernel smoothing

method could be improved: first it takes no account of

discontinuous domains, which often result in inaccurate

predictions. Using the structural domain parsers, which

already account for this feature of domains, is one way

in which this could be mitigated although our analysis

suggests that in fact the level of accuracy on discontinu-

ous domains is similar (data not shown). Regardless of

this an improved model which accounts for this might

prove very useful in improving accuracy. Second the

method is not always successful for domains which are

Table I
Statistical Comparisons Between Methods

KDE WT ISLM PDP CUT PRO DLP SCO HOM DGS

KDE 8.49 6.00 15.0 8.49 10.5 19.8 17.0 0.00 0.00
WT 3e–03 0.00 5.22 0.00 0.00 14.8 9.20 0.00 0.00
ISLM 3e–06 1.00 9.05 0.00 0.00 13.8 11.1 0.00 0.00
PDP 1e–14 2e–08 3e–05 26.55 24.51 0.00 0.00 29.08 25.12
CUT 0.006 1.00 1.00 9e–05 0.00 11.3 8.50 0.00 0.00
PRO 2e–04 1.00 1.00 2e–03 1.00 9.27 0.00 0.00 0.00
DLP 3e–12 9e–06 3e–04 1.00 4e–04 0.04 0.00 213.8 29.94
SCO 2e–11 7e–05 0.03 1.00 4e–03 0.20 1.00 211.2 27.17
HOM 0.72 1.00 1.00 4e–07 1.00 1.00 1e–07 2e–07 0.00
DGS 1.00 1.00 1.00 1e–07 1.00 1.00 0.01 2e–04 1.00

NDO scores for all 368 targets were compared using paired Wilcoxon signed-rank

tests. Entries below the diagonal show Bonferroni-corrected P-values for the test

(N 5 45 tests). Entries above the diagonal show the mean differences between the

two groups, row – column. Cells representing significantly different methods (5%

threshold) are colored red if the mean difference is positive, blue if negative. Key

to methods: KDE: kernel smoothing, WT: DOM-parsing of preliminary structures,

ISLM: Domain1.2 parsing of preliminary structures, PDP: PDP parsing of prelimi-

nary structures, CUT: DOMCUT, PRO: DomPRO, SCO: SCOOBY-DOmain,

HOM: homology method, DGS: naive length-based predictor.

Table II
Statistical Comparisons Between Methods

KDE WT ISLM PDP CUT PRO DLP SCO HOM DGS

KDE 0.00 0.00 22.1 13.7 16.0 0.00 12.4 0.00 19.7
WT 1.00 0.00 18.5 0.00 0.00 0.00 0.00 0.00 14.8
ISLM 1.00 1.00 16.8 0.00 10.7 0.00 0.00 0.00 14.7
PDP 5e–12 7e–07 3e–06 0.00 0.00 216.9 0.00 225.1 0.00
CUT 3e–03 1.00 0.540 0.07 0.00 0.00 0.00 216.7 0.00
PRO 3e–06 0.09 8e–03 0.87 1.00 210.9 0.00 219.0 0.00
DLP 1.00 1.00 1.00 3e–06 0.14 0.03 0.00 0.00 14.8
SCO 0.03 1.00 1.00 0.06 1.00 1.00 0.12 215.9 0.00
HOM 1.00 1.00 0.73 2e–11 2e–06 1e–04 0.43 2e–05 23.2
DGS 3e–07 4e–03 3e–04 1.00 1.00 1.00 2e–04 1.00 2e–09

NDO scores for the 165 multidomain targets were compared using paired Wil-

coxon signed-rank tests. Entries below the diagonal show Bonferroni-corrected

P-values for the test (N 5 45 tests). Entries above the diagonal show the mean

differences between the two groups, row – column. Cells representing significantly

different methods (5% threshold) are colored red if the mean difference is posi-

tive, blue if negative. Key to methods: KDE: kernel smoothing, WT: DOM-parsing

of preliminary structures, ISLM: Domain1.2 parsing of preliminary structures,

PDP: PDP parsing of preliminary structures, CUT: DOMCUT, PRO: DomPRO,

SCO: SCOOBY-DOmain, HOM: homology method, DGS: naive length-based

predictor.
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not fully compact, e.g. barrel structures, which are fre-

quently split in two. Although from an evolutionary

point of view the existence of half-barrels might suggest

that this is not entirely an inaccurate prediction from the

point of view of predicting structure it is undesirable to

split barrels up. Improvements to the model could also

be made to account for this.

Finally the gap between the performance of all meth-

ods with real and predicted contacts strongly suggests

that further improvements to the contact prediction

method would be an important source of increased accu-

racy in domain prediction.
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