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Identification of Key Modules
and Hub Genes Involved in Esophageal
Squamous Cell Carcinoma
Tumorigenesis Using WCGNA
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Abstract

Introduction: The mechanistic basis for the development of esophageal squamous cell carcinoma (ESCC) remains poorly
understood. The goal of the present study was thus to characterize mRNA and long noncoding RNA (lncRNA) expression
profiles associated with ESCC in order to identify key hub genes associated with the pathogenesis of this cancer.

Materials and Methods: The GSE26866 and GSE45670 datasets from the Gene Expression Omnibus (GEO) database were
used to conduct a weighted gene co-expression network analysis (WGCNA), after which Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Cytoscape was additionally used to
construct lncRNA-mRNA networks, after which hub genes were identified and validated through the assessment of TCGA
datasets and clinical samples.

Results: Two gene modules were found to be closely linked to ESCC tumorigenesis. These genes were enriched in cell cycle,
MAPK signaling, JAK-STAT signaling, pyrimidine metabolism, arachidonic acid metabolism, and P53 signaling pathway activity, all of
which are directly linked with the development of cancer. In total, we identified and validated 9 hub genes associated with ESCC
(DDX18, DNMT1, NCAPG, WDHD1, PRR11, VOPP1, ZKSCAN5, LC35C2, and PHACTR2).

Conclusion: In summary, we identified key gene modules and hub genes associated with ESCC development, and we
constructed a lncRNA-mRNA network pertaining to this cancer type. These results provide a foundation for future research
regarding the mechanistic basis of ESCC.
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Introduction

Esophageal squamous cell carcinoma (ESCC) is a highly

aggressive form of cancer with a poor prognosis. While many

advances in the treatment of ESCC have been made in recent

years, patient prognosis remains poor. Understanding the

mechanistic basis for this disease has the potential to signifi-

cantly improve patient outcomes.1 As the mechanistic basis for

ESCC pathogenesis remains incompletely understood,
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however, developing novel treatments for this disease remains

challenging. To improve treatment efficacy in ESCC patients,

it is thus essential that the molecular mechanisms governing

ESCC development be clarified.

Many bioinformatics techniques have been developed to

effectively analyze high-throughput data. Weighted gene

co-expression network analysis (WGCNA) approaches are a

particularly powerful means of exploring system-level func-

tionality corresponding to a given transcriptome.2 In prior stud-

ies, WGCNA strategies have been employed to identify highly

co-expressed genes within a given biological context in order

to identify key hub genes associated with a particular condition

of interest.3-5

Herein, we therefore conducted a WGCNA-based analysis

in order to identify key modules and hub genes associated with

ESCC pathogenesis. We additionally analyzed the pathways

enriched for genes in 2 key ESCC-related modules, validated

these hub genes, and constructed a lncRNA-mRNA network in

an effort to gain functional insights into the molecular basis for

this cancer type. Together, our study has the potential to serve

as a foundation for future research regarding the molecular

mechanisms governing ESCC tumorigenesis while highlight-

ing potential diagnostic or therapeutic targets associated with

this disease.

Patients and Methods

Gene Expression Data and Preprocessing

The GSE26866 and GSE45670 microarray datasets were

downloaded from the NCBI Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/). The GSE26866 dataset

included 9 ESSC and 19 normal samples, while the GSE45670

dataset contained 28 ESCC and 10 normal samples. The

[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus

2.0 Array platform was used for both datasets. The affy and

annotate R packages were used for data processing and

analysis.

Differentially Expressed lncRNA and mRNA Identification

The edgeR package was employed to detect lncRNAs and

mRNAs that were differentially expressed when comparing

tumor and control tissue samples,6 using |log2(fold change

[FC]) |>1 and a false discovery rate (FDR) < 0.01 as cutoff

criteria.

WGCNA Construction

Those lncRNAs and mRNAs that were differentially expressed

between tumor and control tissue types in the GSE26866 and

GSE45670 datasets were utilized for WGCNA. The

R WGCNA package was used for this analysis, with the pick-

SoftThreshold function being utilized to calculate the power

parameter. Co-expressed gene modules were identified via the

dynamic tree cut method, where a hierarchical clustering

approach was used to produce a dendrogram of genes based

upon the corresponding dissimilarity of TOM. Genes with

comparable expression profiles were grouped into modules.

Clinically Significant Module Identification

Correlations between clinical features and module eigengenes

(MES) were determined in order to identify clinically relevant

modules by utilizing the MES function in the WGCNA pack-

age. Gene significance (GS) and module significance (MS)

were respectively defined as the correlation between genes and

clinical features and the average GS for all genes in a given

module. Following calculations of the association between MS

and GS, the module exhibiting the top-ranked MS was identi-

fied as the module most closely linked to ESCC-related clinical

features.

Functional Enrichment Analyses

Gene Ontology (GO) enrichment analyses were conducted

using the DAVID platform (DAVID; https://david.ncifcrf.

gov/summary.jsp).7,8 Gene lists corresponding to the identified

key modules were uploaded and biological processes (BPs),

cellular components (CCs), molecular functions (MFs), and

KEGG pathways for which these genes were enriched were

identified,9 with P < 0.05 as the significance threshold.

Construction of a lncRNA-mRNA Co-expression Network

Those mRNAs and lncRNAs that exhibited the highest degree

of interconnectivity within a given module were considered to

be hub genes, and were screened based on degree values in

2 key ESCC-related modules identified in the present study

using Cytoscape (https://cytoscape.org).10 The top 100 hub

genes were identified based upon maximal clique centrality

(MCC), with the top 200 paired lncRNA-mRNA and

mRNA-mRNA interactions being incorporated into Cytoscape

to construct a regulatory network.

TCGA-Mediated Validation of Hub lncRNAs and mRNAs
in Key ESCC-Related Modules

The top 50 hub lncRNAs and mRNAs identified in the above

module network analyses were selected as candidates for sub-

sequent validation. The R Survival package was used to

conduct Kaplan-Meier analyses in order to assess the prognos-

tic relevance of these hub genes using TCGA patient survival

data, with log-rank p < 0.05 being indicative of significance.

The top 4 genes per module yielding significant results in these

survival analyses were then ranked according to node degree

and were considered to be hub genes associated with the devel-

opment of ESCC.

qRT-PCR

To further validate our findings, 10 ESCC patient tumor and

matched paracancerous tissue samples were obtained from

patients undergoing tumor resection at the Affiliated Hospital
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of Xi’an Jiaotong University. The institutional review board of

the Affiliated Hospital of Xi’an Jiaotong University approved

this study, and all patients provided informed consent to par-

ticipate. RNA was isolated from these samples and used for

qRT-PCR analyses as in prior studies.11 Briefly, an RNA-

fast2000 Total RNA Extraction Kit (Fastgene, Shanghai,

China) was used to extract RNA from patient samples, after

which a RevertAid First Strand cDNA Synthesis Kit (Thermo

Fisher Scientific, MA, USA) was used based on provided direc-

tions to prepare cDNA. All qRT-PCR reactions were then con-

ducted using SYBR green using an appropriate instrument

(Bio-Rad, CA, USA), with changes in gene expression being

calculated via the comparative CT (2-CT) approach. Primers

used in the present study are shown in Table 1.

Results

Differentially Expressed lncRNA and mRNA Identification

The overall design of the present study is shown in Figure 1.

First, we downloaded the raw GSE26866 and GSE45670 data

from the GEO database, after which data pre-processing and

Table 1. Primers for Validated Genes.

Gene name

Prime sequence (50-30)

Forward Reverse

DNMT1 CCATCAGGCATTCTACCA CGTTCTCCTTGTCTTCTCT
MPRIP CTCTCCACACACGAGCTGAC TCTTCTGGTGCGTTTCTTCC
NCAPG GGCTGCTGTCGATTAAGGAG TTATCATCCATCGTGCGGTA
PHACTR2 AACCTCGGCAGTATTAGAAAGGA CCTCTCCGATGGGTATCATGTG
PRR11 AAAGATGGACCCATGCAGATAAC TGCTTTCGGCGATGGTATAAG
VOPP1 TCGAGGAGCCAGCCTTCAA TCCTGGGTCGGTGTAATAGGG
WDHD1 GCTCGGTCACCCGGTTTTAT GGGGCATCATGTCCTCGAAA
ZKSCAN5 TGACCGAATCCCGAGAAGTTA GCGGGTTGTACTCCTGCAT
DDX18 ATGTCACACCTGCCGATGAAA CCCTGAAACTTTAGGTTCCGC
SLC35C2 CTCGTTCATCGGTGGCATTC CCCAGGAACATGAGTGGCTG

Figure 1. Flowchart of the study. Abbreviations: DE mRNA, differentially expressed mRNA; DE IncRNA, differentially expressed IncRNA.
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normalization were conducted using R. When we compared

ESCC tumor and control tissue samples, we identified 1333

and 6344 differentially expressed lncRNAs and mRNAs,

respectively, in the GSE26866 dataset, of which 905 lncRNAs

and 3863 mRNAs were upregulated in tumor samples and

428 lncRNAs and 2481 mRNAs were downregulated in tumor

samples. In addition, 982 lncRNAs and 5091 mRNAs were

found to be differentially regulated in the GSE45670 dataset,

of which 472 lncRNAs and 2605 mRNAs were upregulated in

ESCC samples and 510 lncRNAs and 2489 mRNAs were

downregulated in tumor samples. These 2 datasets were then

merged, leading to the identification of 211 lncRNAs and

1535 mRNAs that were differentially expressed in both data-

sets when comparing ESCC tumor tissues to normal esopha-

geal squamous epithelium samples (Figure 2).

Weighted Co-Expression Construction and Key
Module Identification

An initial soft-threshold approach was used to implement our

WGCNA approach. We first assessed the reliability of the

network but detected no outlier samples in need of deletion

(Figure 3A). After testing thresholding powers from 1-20, a

power value of 9 was selected as at this value the connectivity

between genes in the network was consistent with a scale-free

network distribution (Figure 3B), leading to the generation of

7 modules (Figure 3C). These modules were designated using

colors, with 518, 348, 29, 50, 13, 732, and 54 genes in the blue,

brown, green, yellow, red, turquoise, and gray modules, respec-

tively. Genes that were not successfully incorporated into any

other modules were incorporated into the gray module, and

were omitted from downstream analyses.

Key Module Identification and Analysis of Relationships
between Modules

To explore module co-expression similarity, eigengenes were

calculated and clustered based upon correlations. Seven modules

were found to be in the same cluster, and an adjacency-based

heatmap yielded similar findings (Figure 3D). Following ME

calculations, the MEs of the yellow and turquoise modules were

found to be more highly correlated with ESCC than were those of

the other modules (Figure 3E). Specifically, the yellow module

was negatively correlated with ESCC, whereas the turquoise

module was positively correlated with ESCC. This suggested that

the turquoise module may be associated with ESCC tumorigen-

esis, whereas the yellow module may be related to the suppression

of tumor growth or formation.

Function Enrichment Analyses of Key
ESCC-Related Modules

Putative roles of genes within these 2 key modules were next

explored through functional enrichment analyses. Genes in the

turquoise module were found to be primarily associated with

pro-tumorigenic activities including cell division, proliferation,

signal transduction, and the suppression of apoptosis

(Figure 4A and C). In contrast, genes in the yellow module

were closely linked to the induction of apoptosis, which would

in turn suppress tumorigenesis.

KEGG pathway analyses were additionally conducted to

explore the functional pathways in which these key module

genes were enriched. Genes in the turquoise module were

enriched in pro-tumorigenic pathways such as MAPK signal-

ing, JAK/STAT signaling, and metabolic pathways (Figure 4B

and D).12-14 In contrast, genes in the yellow module were

enriched in key pro-apoptotic pathways including the P53, ara-

chidonic acid metabolism, and pyrimidine metabolism path-

ways, all of which can suppress oncogenesis.15,16

Preparation of a lncRNA-mRNA Network

We next leveraged Cytoscape to prepare a lncRNA-mRNA net-

work based on the lncRNAs and mRNAs incorporated into the

turquoise and yellow modules. The resultant networks are

shown in Figure 5, wherein node sizes correspond to degree

values and node color corresponds to expression (green: down-

regulated; red: upregulated). The turquoise module network was

composed of 2 lncRNAs and 98mRNAs, whereas the yellow

module network was composed of 3 lncRNAs and 97mRNAs.

Figure 2. Co-expressed DE mRNAs and DE IncRNAs were identified in datasets GSE26866 and GSE45670. Abbreviations: DE mRNA,
differentially expressed mRNA; DE IncRNA, differentially expressed IncRNA.
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TCGA-Mediated Validation of Hub ESCC-related
lncRNAs and mRNAs in Key Modules

The top 50 lncRNAs and mRNAs in these key module networks

were next selected for subsequent validation. The TCGA database

was used to assess the relationship between these genes and ESCC

patient survival, leading to the identification of the top 5

prognosis-related genes in each of these modules, which were

designated as hub genes (Figure 6). The hub genes within the

turquoise module included DDX18, DNMT1, NCAPG, WDHD1,

and PRR11, whereas in the yellow module they included MPRIP,

PHACTR2, VOPP1, ZKSCAN5, and SLC35C2.

Figure 3. Construction of co-expression modules by WGCNA package. (A) The clustering was based on the co-expressed data of GSE26866
and GSE45670. (B) Analysis of the scale-free fit index for various soft-thresholding powers (b) and analysis of the mean connectivity for various
soft-thresholding powers. In all, 9 was the most fit power value. (C) The cluster dendrogram of co-expressed DE mRNAs and DE IncRNAs
identified in datasets GSE26866 and GSE45670. Each branch in the figure represents 1 gene, and every color below represents 1 co-expression
module. (D) Hierarchical clustering of module hub genes that summarize the modules yielded in the clustering analysis and heatmap plot of the
adjacencies in the hub gene network. (E) Heatmap of the correlation between module eigengenes and the tissue type. The turquoise module was
the most positively correlated with ESCC, and the yellow module was the most negatively correlated with ESCC. Abbreviations: ESCC,
Esophageal squamous cell carcinoma; WGCNA, weighted gene co-expression network analysis.
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Validation of Differential Hub mRNA Expression in ESCC
Tumor Samples Via qRT-PCR

To directly validate a subset of these bioinformatics results, we

assessed hub mRNA expression levels in a distinct cohort of

ESCC and normal tissue samples via qRT-PCR. This analysis

revealed that the expression of DDX18, DNMT1, NCAPG,

WDHD1, PRR11, VOPP1, ZKSCAN5, and LC35C2 was sig-

nificantly elevated in ESCC tissues relative to control tissue

samples, whereas PHACTR2 expression was reduced in these

ESCC tissues (Figure 7). In contrast, no significant differences

in MPRIP expression were detected when comparing these 2

sample types (Figure 7).

Discussion

ESCC is a common form of cancer that is highly prevalent in

China and other countries. While several therapeutic advances

have improved ESCC patient prognosis, this has not corre-

sponded with any significant improvement in patient 5-year

survival rate. Prior research has shown that abnormal gene

expression is an important regulator of ESCC development,17

emphasizing the value of molecular studies aimed at exploring

the etiological basis of this cancer type.

Data mining strategies can be used to explore key biological

phenotypes associated with high-dimensional datasets.

The advent of microarray and high-throughput sequencing

technologies has led to the discovery of myriad genes

and expression patterns linked to oncogenesis and tumor

progression.5,18,19 Herein, we downloaded 2 extant datasets

containing data pertaining to ESCC tumor and non-tumor

tissues from the GEO database, after which we analyzed

differential patterns of lncRNA and mRNA expression when

comparing ESCC and normal tissues.

A WGCNA approach was then leveraged to detect 2 key gene

modules associated with ESCC development. WGCNA strate-

gies facilitate systems biology approaches to exploring transcrip-

tomic functionality.20 In a WGCNA analysis, gene networks are

constructed based upon correlations among genes across sam-

ples, such that modules are formed by grouping genes which are

strongly co-expressed. Genes within a given module are more

likely to play similar functional or regulatory roles in a given

pathological or physiological context, with the most central

genes in a given module functioning as hub genes that are likely

to be important regulators of overall module functionality. This

analytical strategy also assesses the relationship between mod-

ules and clinical characteristics, enabling researchers to assess

the relationship between patterns of mRNA, miRNA, or lncRNA

Figure 4. GO and KEGG analysis. Top 20 terms from a GO analysis of molecular function, biological process and cellular component in the
turquoise module (A) and yellow module (C); DE mRNAs were clustered by KEGG analysis, and the top 20 pathways in the turquoise module
(B) and yellow module (D) are shown.
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expression and cancer.21 Herein, we performed WGCNA by

assessing co-expressed gene networks in the GSE26866 and

GSE45670 datasets, leading to the identification of 7 gene

co-expression modules. Of these modules, the yellow and tur-

quoise modules were most closely linked to ESCC, being nega-

tively and positively correlated with ESCC development,

respectively. These 2 modules were thus speculated to be key

regulators of ESCC, and were therefore analyzed further.

GO and KEGG enrichment analyses were employed to assess

the potential functional roles of these gene modules in the con-

text of ESCC. Genes in the turquoise module were primarily

associated with the positive regulation of cellular proliferation,

signal transduction, division, and the inhibition of apoptosis, all

of which are involved in promoting cancer development. These

turquoise module genes were also enriched for MAPK signaling,

JAK/STAT signaling, and metabolic pathway activity, poten-

tially thereby driving ESCC. Genes in the yellow modules were

primarily enriched for the positive regulation of apoptosis, pyr-

imidine metabolism, arachidonic acid metabolism, cell cycle

regulation, and P53 signaling, all of which can constrain tumor

development. This suggests that genes in the yellow module may

serve antitumor functions.

Long non-coding RNAs (lncRNAs) are > 200 nucleotides in

length, and function as key epigenetic regulators of cellular

physiology.22,23 Prior work has highlighted a role for lncRNAs

in the regulation of ESCC development.24 The specific

relationship between lncRNAs and mRNAs in the context of

ESCC, however, remains to be defined. As such, we explored

the potential post-transcriptional crosstalk between lncRNAs

and mRNAs in this oncogenic context, generating an integrated

lncRNA-mRNA regulatory network based upon the hub genes

identified within the yellow and turquoise module hub genes.

Only the top 100 mRNAs and lncRNAs from these 2 modules

were selected to ensure accuracy, and the network was com-

posed of the top 200 lncRNA-mRNA and mRNA-mRNA pairs.

Future work will be essential, however, in order to establish the

functional roles of these genes in ESCC.

Given that the turquoise and yellow gene modules were

found to be closely associated with the development of ESCC,

we next screened for hub genes within these modules that were

closely associated with patient survival and that were validated

in an independent sample cohort. We first identified DDX18,

DNMT1, NCAPG, WDHD1, and PRR11 as hub genes within

the turquoise module, and MPRIP, PHACTR2, VOPP1,

ZKSCAN5, and SLC35C2 as hub genes within the yellow

module. We then assessed the expression of these genes via

qRT-PCR in a separate set of ESCC patient clinical samples,

confirming that DDX18, DNMT1, NCAPG, WDHD1, PRR11,

VOPP1, ZKSCAN5, and SLC35C2 expression levels were

increased in ESCC tumor tissue samples whereas PHACTR2

expression was reduced in these samples relative to normal

control tissue levels. Several of these hub genes have been

Figure 5. The long noncoding RNA-mRNA biomolecular network in the turquoise module (A) and yellow module (B). The nodes represent
different molecules and the edges represent connections between the nodes. The size of the node stands for the number of interactions
between different molecules. The node color represented the regulation of the genes (Red indicated upregulated genes, and green indicated
downregulated genes).
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previously linked to oncogenesis including VOPP1, WDHD1,

PRR11, DNMT1, and NCAPG. DNMT1 is a DNA methyltrans-

ferase that preserves DNA methylation patterns during DNA

replication, and that is upregulated in a range of cancer types

including colorectal cancer (CRC), gastric cancer, breast cancer,

and pancreatic cancer.25 DNMT1 is also a key regulator of

methylation status in the context of stem cell maintenance and

embryogenesis.26 NCAPG is a condensin I complex subunit that

regulates chromosome condensation and stabilization in the

context of mitosis and meiosis. NCAPG overexpression has

been detected in cancers including melanoma, lung cancer, pros-

tate cancer, and HCC, suggesting that this gene plays an impor-

tant oncogenic role.27-29 WDHD1 is a DNA-binding protein that

interacts with DNA via an HMG domain,30 controlling mitosis,

DNA damage responses, and DNA repair.31 In prior research,

WDHD1 has been closely linked to malignancies including

ESCC, lung cancer, and cervical cancer.32 PRR11, which is

encoded on chromosome 17q22, is composed of a zinc finger

domain, 2 proline-rich regions, and a bivalent nuclear localiza-

tion signal.33 PRR11 has been highlighted as a potential onco-

gene associated with HCC, ovarian cancer, breast cancer,

pancreatic cancer, and non-small cell lung cancer.34,35 VOPP1

is localized encoded by the 7p11.2 locus, and is frequently

amplified along with EGFR.36 The overexpression of VOPP1

has bene detected in glioblastoma and gastric, head and neck,

lung, and breast cancers.37 Few prior studies have identified any

relationship between DDX18, ZKSCAN5, PHACTER2,

SLC35C2, and cancers.

While the results of this study are interesting, it nonetheless

has certain limitations. For one, these results were primarily

derived from data mining and bioinformatics approaches, and

further validation is thus essential. Second, we were only able

to utilize a limited number of datasets as most studies of ESCC

samples lacked corresponding normal controls, thus constrain-

ing our findings. Third, the association between key genes and

survival outcomes in this study are not causal relationship. In

further studies, whether these relationship are causal relation-

ship still need to be explored. At the same time, the relationship

key genes and other prognostic factors such as stage, grade and

response to therapy are also need to be further studied. At last,

WCGNA approaches are inherently limited by the criteria used

for module selection and the thresholds for network culling,

potentially impacting the final study results.

Conclusion

In summary, we utilized a WGCNA approach to identify key

gene modules and hub genes linked to ESCC development. We

also constructed a lncRNA-mRNA regulatory network in an

effort to better understand the onset of this cancer type.

Together, our findings offer a foundation for future research

regarding the mechanistic basis for ESCC tumorigenesis, and

the identified hub genes may represent viable diagnostic bio-

markers or therapeutic targets that can be leveraged to treat this

deadly cancer type.
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