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ABSTRACT

For years, progress in elucidating the mechanisms
underlying replication initiation and its coupling
to transcriptional activities and to local chromatin
structure has been hampered by the small number
(approximately 30) of well-established origins in the
human genome and more generally in mammalian
genomes. Recent in silico studies of compositional
strand asymmetries revealed a high level of organ-
ization of human genes around 1000 putative repli-
cation origins. Here, by comparing with recently
experimentally identified replication origins, we pro-
vide further support that these putative origins are
active in vivo. We show that regions ~300-kb wide
surrounding most of these putative replication
origins that replicate early in the S phase are hyper-
sensitive to DNase I cleavage, hypomethylated and
present a significant enrichment in genomic energy
barriers that impair nucleosome formation
(nucleosome-free regions). This suggests that
these putative replication origins are specified by
an open chromatin structure favored by the DNA
sequence. We discuss how this distinctive attribute
makes these origins, further qualified as ‘master’
replication origins, priviledged loci for future
research to decipher the human spatio-temporal
replication program. Finally, we argue that these
‘master’ origins are likely to play a key role in
genome dynamics during evolution and in patho-
logical situations.

INTRODUCTION

In eukaryotes, transmission of genetic information
requires the precise and complete duplication of genomic
DNA. A number of experimental studies have shown that
in metazoan, replication initiates from a large number of
origins according to a temporal program modulated
by the type of tissue and/or by the developmental stage
(1–4). However, our knowledge of the mechanisms that
control this program remains sparse and understanding
how these origins are distributed along the genome and
how their activation is controlled and coordinated
constitutes one of the main challenges of molecular
biology (5). For years, the small number (approximately
30) of well-established origins in the human genome and
more generally in mammalian genomes has been an
obstacle to fully appreciate the genome-wide organization
of replication in relation to gene expression and local
chromatin structure (6–8). Despite considerable experi-
mental efforts to determine origin positions at the
genome scale (9–11), much remains to be understood
about the impact of the DNA sequence on origin activity
in human cells in parallel to epigenetic controls (8,12–15).
In that context, an in silico analysis of the strand compos-
ition asymmetry (skew) profile of the human genome
allowed us to identify 1060 putative replication origins,
likely conserved in mammalian genomes, that border
678 large (mean length of 1.2Mb) genomic domains
labeled N-domains as their skew profile is shaped like an
N (Figure 1A) (16–19). These data correspond to the
largest set of origin predictions for human genome avail-
able to date. While the origin of the skew itself remains
debated (20), these domains were shown to be linked to
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the organization of replication and transcription (16,17).
Indeed, the comparison of recent high-resolution timing
data for chromosome 6 (21) with N-domains provided a
first experimental evidence for their relationship to the
replication program (16,17). A majority of N-domains
borders replicate earlier in the S phase than their
surrounding regions and are thus likely associated with
early replicating origins, while N-domain central regions
are late replicating. Hence, most N-domains correspond to
units of replication where timing decreases when going
from borders to center (17). In higher eukaryotes, exten-
sive connections have been established between replication
timing, genome organization and gene transcriptional
state; early replication tends to colocalize with active

transcription and, in mammals, with gene-dense GC-rich
isochores (21–27) and with transcription initiation early
in development (28). Interestingly, the putative origins
at N-domain borders were also shown to be at the heart
of a remarkable gene organization (16); in a close
neighborhood, genes are abundant and broadly expressed
and their transcription is mainly directed away from the
borders. This preferential orientation was interpreted in
relation to replication fork directionality (16). All these
features weaken progressively with the distance to
domain borders. Altogether, these results suggest that
N-domain borders are landmarks of the human genome
organization and possible triggers of the replication
program; they correspond to early replicating origins
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Figure 1. Open chromatin markers along N-domains. (A) Nucleotide compositional asymmetry profile S along a 19Mb long fragment of human
chromosome 6 that contains seven replication N-domains (horizontal green lines) bordered by 11 distinct putative replication origins O1 to O11

(vertical green lines). Each dot corresponds to the compositional asymmetry [Equation (1)] calculated for a window of 1 kb of repeat-masked
sequence (18). The black color corresponds to intergenic regions; red, sense (+) genes; blue, antisense (�) genes. (B) The different colored profiles
correspond to the DNase I HS score (black, resolution 1 kb), the NFR density (blue, resolution 100 kb), the CpG o/e (red, resolution 100 kb) and the
replication timing ratio tr (light blue, inhomogeneous spatial resolution �300 kb). The vertical dashed green line marks the location O0 of the closest
upward jump to the region where we observed the concomitant occurrence of a prominent burst in DNase I HS data, NFR numerical density and
CpG o/e, in a region where the replication timing ratio is high (tr � 1.6). (C) Correlation between replication timing ratio tr and DNase I HS sites
coverage (window size = 300 kb) along the 54 N-domains identified in chromosome 6 (r=0.56, P=1.3� 10�14); dots are color coded according to
CpG o/e value. (D) Correlation between replication timing ratio tr and NFR density (window size=300 kb, GC content �41%) along the 54
N-domains in chromosome 6 (r=0.41, P=1.7� 10�6); dots are color coded according to DNase I HS sites coverage. (E) Correlation between CpG
o/e and NFR density (window size=300 kb, GC content �41%) along the 678 N-domains identified along the 22 human autosomes (r=0.71,
P< 10�15); dots are color coded according to DNase I HS sites coverage. In (C,D and E) the three color code is provided as a lateral color bar; each
color corresponds to one-third of the data points.
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separated by large distance (�1Mb) around which repli-
cation and transcription are highly coordinated. Genome-
wide investigation of chromatin architecture has revealed
that, at large scales (from 100 kb to 1Mb), regions
enriched in open chromatin fibers correlate with regions
of high gene density (29); whereas, at small scales (&1 kb),
DNA accessibility, nucleosome distribution and
modifications are important determinant for transcrip-
tional activity (30–34). Moreover, there is a growing
body of evidence that transcription factors are regulators
of origin activation [reviewed in (35)]. In this context, we
ask to which extent the remarkable genome organization
observed around N-domain borders is mediated by
particular chromatin structure favorable to specification
of early replication origins (16). In particular, the recent
genome-wide mapping of DNase I hypersensitive (HS)
sites (34) provides the unprecedented opportunity
to study open chromatin in relation to the observed
nucleosome-depleted regions (30–34) that look very simi-
lar to the nucleosome-free regions (NFRs) previously
observed at yeast promoters (36,37). Here, we map experi-
mental and numerical chromatin mark data in the 678
replication N-domains and we show that a significant
subset of N-domain borders corresponds to particular
open chromatin regions, permissive to transcription,
which may have been imprinted in the DNA sequence
during evolution. Our results suggest that the putative
replication origins located at N-domain borders likely
deserve a distinctive status as ‘master’ origins of the rep-
lication program.

MATERIALS AND METHODS

Sequence and annotation data

Sequence and annotation data were retrieved from the
Genome Browsers of the University of California Santa
Cruz (UCSC) (38). Analyses were performed using the
human genome assembly of May 2004 (NCBI35 or
hg17) except when specified otherwise. As human gene
coordinates, we used the UCSC Known Genes table.
When several genes presenting the same orientation
overlapped, they were merged into one gene whose
coordinates corresponded to the union of all the
overlapping gene coordinates. This resulted in 19 543
distinct genes over the 22 human autosomes (where repli-
cation N-domain data were available; see below). We used
CpG islands (CGIs) annotation provided in UCSC table
‘cpgIslandExt’.

GC content

GC content was computed over the native sequence. We
checked whether the results remained qualitatively similar
when considering the GC content computed over the
repeat-masked sequence or when masking CGIs.

CpG observed/expected ratio

CpG observed/expected ratio (CpG o/e) was computed as
nCpG
L�l �

L2

nCnG
, where nC, nG and nCpG are the number of C, G

and dinucleotides CG, respectively, counted along the

sequence, L is the number of nonmasked nucleotides of
the sequence and l is the number of masked nucleotide
gaps plus one, i.e. L�l is the number of dinucleotide
sites. The CpG o/e was computed over the sequence
after masking annotated CGIs. We checked that the
results remained qualitatively similar while also masking
the repeat sequences.

Replication domains and putative replication origins

The detection of human replication N-domains is based
on the mammalian replication domain model that imposes
an N-shaped profile for the nucleotide compositional
strand asymmetry

S ¼
G� C

Gþ C
þ
T� A

Tþ A
1

between two successive fixed replication origins (18,19).
Using the wavelet transform as a multi-scale (the distance
between origins is highly variable) shape detector, the
human genome was segmented into candidate replica-
tion domains where the skew S (when calculated in
nonoverlapping 1-kb windows) displays the characteristic
N-shaped pattern (16). Note that this segmentation strat-
egy is less efficient in GC-rich regions of the genome.
Indeed, the smaller N-domain size and the high gene
density in these regions make it difficult to distinguish
replication-related from transcription-related strand
asymmetry (16).

The coordinates of the 678 human replication
N-domains were obtained directly from the authors (16).
There are 1060 N-domain borders since in 296 cases, a
border is shared by two consecutive domains. N-domain
detection was performed for the 22 human autosomes,
where they cover 30% of the sequenced genome length
and 18% of the genes (3431 gene starts are in an
N-domain).

Genome coordinates

We used the LiftOver coordinate conversion tool from the
UCSC website to map N-domains determined on Human
May 2004 (hg17) assembly to Human March 2006 (hg18)
coordinates and we kept only the N-domains that had
exactly the same size before and after conversion. This
resulted in 663 unambiguous N-domain assignments on
hg18. The analyses of genomic data available for the
hg18 assembly were then performed using this hg18
N-domain database.

Correlation analysis

For the correlation analyses, we reported the Pearson’s
product moment correlation coefficient r and the
associated P-value for no association (r=0). In every
case, we checked that Kendall tau rank correlation
coefficient provided the same statistical diagnosis.
All statistical computations were performed using the R
software (http://www.r-project.org/).
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DNase I HS site data

The 95 723 experimental DNase I HS site data (UCSC
‘dukeDnaseCd4Sites’ track) correspond to genome-wide
DNase I HS sites as determined for human CD4+ T
cells using DNase sequencing and DNase chip (34). A
total of 21 066 (22%) DNase HS sites overlap with a rep-
lication N-domain.

Replication timing data

We used the high-resolution timing ratio data obtained
with a lymphoblastoid cell line using an array of
overlapping tile path clones for human chromosome 6
(21). Data for clones completely included in another
clone were removed after checking for timing ratio value
consistency, leaving 1648 data points. The timing ratio
value at each point was chosen as the median over the
four closest data points to remove noisy fluctuations, so
that the spatial resolution is �300 kb.

Genome-wide nucleosome positioning data

We used the genome-wide map of nucleosome positioning
in resting human CD4+ T cells obtained from direct
sequencing of nucleosome ends using the Solexa high-
throughput sequencing technique (32). Nucleosome score
profiles for human genome assembly hg18 were down-
loaded from http://dir.nhlbi.nih.gov/papers/lmi/epigeno
mes/hgtcellnucleosomes.html.

Chromatin fiber density data

We used open over input chromatin ratio data obtained
by co-hybridization to a genomic microarray of open
chromatin purified using sucrose gradient fractionation
and of input chromatin from human lymphobastoid cells
(29). Data were obtained directly from the authors.

Genome-wide maps of Pol II binding and
tri-methylation of histone 3 lysine 4

We used Pol II binding and H3K4me3 data for human
CD4+ T cells obtained using direct sequencing analysis
of ChIP DNA samples using Solexa 1G genome analyzer
(ChIP-Seq) (33). Summary Bed files for hg18 assembly
with tag counts in 400-bp windows were downloaded
from http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgt
cell.html.

RESULTS AND DISCUSSION

N-domain borders correspond to experimental replication
origins mapped on ENCODE regions

Previous analyses of nucleotide strand compositional
asymmetries have shown that, out of the nine experimen-
tally identified replication origins, seven (78%) presented
an upward jump in the asymmetry profile analog to those
bordering N-domains (18,19). Recently, the localization of
replication origins has been experimentally investigated
along 1% of the human genome (ENCODE regions) by
hybridization to Affymetrix ENCODE tiling arrays of
purified small nascent DNA strands and of restriction

fragments containing small replication bubble (9,10).
Out of the seven N-domain borders that reside within
an ENCODE region, four match with an experimental
replication origin (P=4� 10�3): three to the bubble
trapping dataset (Bubble-HL, P=0.017) and one to a
nascent strand purification dataset (NS-HL-2, P=0.09)
(Table 1). Actually, as previously noted (9), a second
N-domain border is located within 1 kb of a NS-HL-2
origin (Table 1). Hence, there is direct experimental evi-
dence that 5/7 (71%) N-domain borders correspond
to active replication origins at a few kb resolution.
These results are all the more significant considering
rather low overlap between the experimental datasets.
For example, only 69 (25%) of the NS-HL-2 origins over-
lap with a Bubble-HL origin, only 4 (1.4%) with the
second nascent strand dataset in HeLa cells (NS-HL-1)
and only 12 (4.3%) even when extending NS-HL-1 and
NS-HL-2 origins by 1-kb on both sides.

N-domain borders are HS to DNase I digestion

By combining DNase sequencing and DNase tiled micro-
array strategies, high-resolution DNase I HS sites were
identified in human primary CD4+ T cells as markers of
open chromatin across the genome (34). The resulting
library contains 94 925 DNase I HS sites covering
60Mb (2.1%) of the human genome. We first observed
that only 22.7% of the autosomal DNase I HS sites fall
within an N-domain, whereas replication N-domains
cover 30% of the human autosomes. This is significantly
lower than expected if the DNase I HS sites were uni-
formly distributed along the human genome (P< 10�15

using a binomial test). When mapping DNase I HS
sites inside the 678 replication N-domains previously

Table 1. Correspondence between N-domain borders and experimental

replication origins datasets along ENCODE regions a binomial test

(P-values <0.02 are in bold)

Method Number Coverage
(%)

Match with
N-domain

Reference

borders (P-value)

Bubble-HL 234 8.6 3 (0.017) (10)
NS-GM 758 1.0 0 (10)
NS-HL-1 434 0.6 0 (10)
NS-HL-2 282 1.4 1 (0.093) (9)
All 11 4 (0.004)
NS+1kb-HL-2 3.2 2 (0.019)
+Bublle-HL 11.2 5 (0.0003)

Main characteristics of replication origin prediction along ENCODE
regions based on purified restriction fragments containing replica-
tion bubble (Bubble) (11) or purified small nascent strands (NS) (58).
First column indicates the experimental method (Bubble or NS)
and the cell type (HL: HeLa cells and GM: GM06990 cell lines).
They are two independent NS-HL datasets labeled 1 and 2. ‘All’
corresponds to the four initial datasets considered together.
NS+1kb-HL-2 corresponds to the NS-HL-2 dataset when extending
replication origins by 1 kb on both sides. +Bublle-HL corresponds to
merging the NS+1kb-HL-2 and Bubble-HL datasets. We provide
the number of replication origins, their total coverage of ENCODE
regions, the number of N-domain borders out of seven within
ENCODE regions that match with one of the experimental replication
origins and the corresponding P-value using a binomial test.
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identified in the human autosomes (16), we observed that
the mean site coverage is maximum at the N-domain
extremities and decreases significantly from the extremities
to the center that is rather insensitive to DNase I cleavage
(Figure 2A). This decrease extends over �150 kb
suggesting that N-domain extremities are at the center of
an open chromatin region of �300 kb. This is illustrated
by a 19Mb long fragment of human chromosome 6
containing seven N-domains (Figure 1B) and showing
peaks of DNase I hypersensitivity that colocalize within
3 kb for seven (O1,O3,O6,O7,O8,O10 and O11) out of
the 11 distinct N-domain borders (from O1 to O11).
Similar observations were made for each of the 22
human autosomes (Supplementary Figure S1).
When examining high-resolution replication timing

data previously measured in chromosome 6 (21), we
observed a significant correlation between DNase I HS

sites coverage and the replication timing ratio showing
that DNase I HS sites are preferentially located in early
replicating regions (r=0.56, P=1.3� 10�14, Figure 1C).
We then compared the mean DNase I HS sites coverage
profiles computed around (i) the 25 earliest replicating
(tr> 1.51) and the 25 latest replicating (tr< 1.4)
N-domain borders among the 83 putative replication
origins that border the 54 N-domains predicted along
chromosome 6 (17) (Figure 2A). In contrast to the earliest
borders located within �150 kb regions characterized
by a high sensitivity to DNase I cleavage, the regions
around the 25 latest borders do not display such an enrich-
ment in DNase I HS sites. This suggests that these puta-
tive origins lie in a less accessible chromatin environment
similar to the one observed at the N-domains centers
which replicate late and where genes are rare and
expressed in a few tissues (16,17). This was further

A B

C D

Figure 2. Over representation of DNase I HS sites and in silico NFRs at N-domain borders. Mean profiles of DNase I HS sites coverage (A and B)
and NFR density (GC content <41%) (C and D) over the 678 replication N-domains identified in the human genome (16,17) as a function of the
distance to the closest N-domain border. Black lines in (A and C) correspond to the overall average; orange (resp. light blue) line in (A) corresponds
to the average over the half N-domains bordered by the 25 earliest (resp. the 25 latest) chromosome 6 putative replication origins (out of a total of
83); brown (resp. purple) line in (C) corresponds to the average over loci presenting a high DNase I HS sites coverage >1% (resp. low <0.2%). In (B
and D), color lines correspond to the average over loci belonging to different isochores—blue lines: GC< 37% (L1), green lines: 37<GC< 41% (L2)
and red lines GC> 41% (H1–3).
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illustrated by the observation that among the 11
N-domain borders predicted in the human chromosome
6 fragment previously examined (Figure 1A), only two
(O2 and O9) that were found without any DNase I HS
site in a close neighborhood presented low timing ratios
(tr=1.2 and 1.25, respectively), as the signature of late
replication. For comparison, the seven putative origins
that turned out to be HS to DNase I cleavage are all
early replicating with tr * 1.5.

Recently, it was observed that the density of DNase I
HS sites is positively correlated with the GC content,
indicating a significant compositional preference in the
accessibility of chromatin to DNase I (39). We examined
the DNase I HS site coverage around the set of putative
replication origins when conditioning the analysis by
the GC content, 100 kb windows being grouped into
three classes according to their GC level (Figure 2B).
Consistently with previous results (39), we observed an
overall increase of DNase I HS sites coverage with the
GC content. Yet, whatever the GC class, a significant
decrease of the DNase I HS sites coverage with the dis-
tance to the N-domain borders is robustly observed over a
similar �150 kb distance around the putative replication
origins bordering the replication N-domains. This obser-
vation demonstrates that DNase I HS at putative replica-
tion origins is not a simple consequence of sequence
composition.

DNA sequence codes for the accumulation of NFRs
around N-domain borders

Previous analysis revealed that promoter regions for
protein-coding genes are extremely HS to DNase I diges-
tion (34). These regions were shown to be nucleosome
depleted (30–34), very much like the NFRs observed at
yeast promoters (36,37). Recent numerical studies
revealed that, to a large extent, these NFRs are coded
in the DNA sequence via high-energy barriers that
impair nucleosome formation (40–42). Furthermore,
these excluding genomic energy barriers were shown to

play a fundamental role in the collective nucleosomal
organization observed over rather large distances along
the chromatin fiber (40). Here we used the same phys-
ical modeling of nucleosome formation energy based
on sequence-dependent bending properties as previ-
ously introduced for modeling nucleosome occupancy
profiles in the yeast genome (Supplementary Data,
Physical Modeling) (40,42). Since the GC content of
Saccharomyces cerevisiae is rather homogeneous around
39% as compared with the heterogeneous isochore struc-
ture of the human genome (43), we restricted our modeling
of nucleosome positioning to the light isochores L1 and
L2 (GC< 41%). Combining the nucleosome occupancy
probability profile and the original energy profile, we
identified nucleosomeNFRs as the genomic energy barriers
that are high enough to induce a nucleosome depleted
region in the nucleosome occupancy profile (Supplemen-
taryData, PhysicalModeling).When averaging the nucleo-
some occupancy profiles around the predicted NFR
positions along human light isochores, we observed a
striking correlation between the profiles obtained using
our physical modeling and an experimental genome-wide
nucleosome mapping (32), which confirms the relevance of
our physical nucleosome modeling to the human genome
(Figure 3). Moreover, the concomitant observation of
_-shape experimental occupancy profiles coinciding with
high energy barriers in the sequence-derived nucleosomal
formation energy landscape indicates that the regions
depleted in nucleosome in vivo are likely to be encoded,
at least to some extent, in the DNA sequence.
The distribution of NFRs along the 678 N-domains

shows a mean density profile that is maximum at
N-domain extremities (�0.7 NFR/kb) and that decreases
from extremities to center where some NFR depletion
is observed (�0.62 NFR/kb) (Figure 2C). This decay
over a characteristic length scale �150 kb is strikingly
similar to that displayed by DNase I HS sites coverage
(Figure 2A). The excess of NFRs at putative replication
origins is robustly observed when conditioning the

A B

Figure 3. Nucleosome occupancy profiles around in silico NFRs. (A) and (B) Average theoretical nucleosome occupancy probability (green)
and experimental nucleosome score (32) (purple) around the 1 017 747 predicted NFRs in low GC content regions (�41%) when aligned on their
50 (resp. 30) borders. The blue bars represent the theoretical NFR predictions (Supplementary Data).
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analysis by the GC content but to a lesser extent in the
neighborhood of the GC-poorest origins that likely repli-
cate late in S phase (Figure 2D). Indeed, very much like
the DNase I HS sites coverage (Figure 1C), the in silico
NFR density displays strong correlation with the replica-
tion timing ratio data in human chromosome 6 (r=0.41,
P=1.7� 10�6, Figure 1D). This is in agreement with the
fact that no excess of NFRs was observed at the putative
replication origins O2 and O9 that fire late in the S phase
(tr=1.2 and 1.25, respectively) and where no DNase I HS
sites was found in a close neighborhood (Figure 1B).
Altogether, these results show that the NFR density

profile displays the same characteristic increase around
N-domain borders, as the experimental DNase I HS
sites coverage profile. In fact, when comparing the NFR
density profiles obtained over loci presenting high
(resp. low) DNase I HS sites coverage, we confirmed
that NFR enrichment is correlated to higher sensitivity
to DNase I (Figure 2C). If this correlation was expected,
the fact that we recovered it using a sequence-based
modeling of nucleosome occupancy suggests that putative
replication origins that border the N-domains are located
within regions of accessible open chromatin state that
are likely to be encoded in the DNA sequence via
excluding energy barriers that inhibit nucleosome for-
mation and participate to the collective ordering of the
nucleosome array (40).

DNA hypomethylation is associated with N-domain borders

Cytosine DNA methylation is a mediator of gene silencing
in repressed heterochromatic regions, while in potentially
active open chromatin regions, DNA is essentially
unmethylated (44). DNA methylation is continuously
distributed in mammalian genomes with the notable
exceptions of CGIs, short unmethylated regions rich
in CpGs and of certain promoters and transcription
start sites (TSSs) (45). Since there was no genome-wide
map of DNA methylation available, we investigated the

distribution of DNA methylation using instead indirect
estimators calculated directly from the genomic sequence.
Methyl-cytosines being hypermutable, prone to deamin-
ation to thymines, we considered the CpG o/e ratio as
an estimator of DNA methylation (46). Using data from
the Human Epigenome Project (47), we confirmed that
hypomethylation in sperm corresponded to high values
of the CpG o/e outside CGIs (Supplementary Data,
Cytosine Methylation). We also observed that the
hypomethylation level of CGI’s extends to about 1 kb in
flanking regions (Supplementary Figure S5), so that the
sequence coverage by CGIs enlarged 1 kb at both
extremities provided a complementary marker for
hypomethylated regions.

When computing CpG o/e after removing CGIs from
the analysis along the 19Mb long reference fragment of
human chromosome 6, we found that 9 out of the 11
putative replication origins that border the seven
N-domains correspond to a well-defined local maximum
of the CpG o/e profile (Figure 1B). Since CpG o/e values
are known to be positively correlated with the GC con-
tent (48), we determined the CpG o/e profiles for fixed
GC content. When averaging over the 678 N-domains,
the overall mean CpG o/e profile (Figure 4A), as well as
the mean CpG o/e profiles obtained for each class of GC
content (Figure 4B), present a maximum at origin
positions, as the signature of hypomethylation, and
decrease over a characteristic distance �150 kb, similar
to the one found for DNase I HS sites coverage and
NFR density profiles (Figure 2), from the extremities
to the center of N-domains where a minimal level of
CpG o/e is attained. These data show that the peak of
CpG o/e observed around the putative replication origins,
even when CGIs were removed from the genome, cannot
be attributed to some peculiar GC-content environment
but more likely to a hypomethylated open chromatin
state where CpG o/e is correlated with DNase I HS
sites coverage (r=0.35, P< 10�15) and NFR density
(r=0.71, P< 10�15) (Figure 1E). The decrease of the
CpG o/e with the distance to N-domain border was
robustly observed when considering separately NFR and
non-NFR regions (Figure 4A) showing that the gradient
of hypomethylation over �150 kb around N-domain
borders is not specific to either of these regions. The cor-
relation measured between CpG o/e and replication
timing (r=0.30, P=1.1� 10�4, Figure 1C) further
indicates that this property is significantly associated
with the putative replication origins located in early-
replicating regions. The complementary analysis using
the 1-kb-enlarged CGI coverage as hypomethylation
marker provided exactly the same diagnosis (Supple-
mentary Figure S4). We observed that each of the 11
N-domain borders presented in Figure 1B corresponds
to a peak in the 1-kb-enlarged CGI coverage profile
(data not shown) and that the average over the 678
N-domains decreases from borders to center over a similar
characteristic distance �150 kb. These observations are
consistent with the hypothesis (49) that CGIs are
protected from methylation due to the colocalization
with replication origins.

A B

Figure 4. N-domain borders are hypomethylated. Mean profiles of the
CpG o/e over the 678 replication N-domains identified in the human
genome (16,17) as a function of the distance to the closest N-domain
border. In (A), black line corresponds to the overall average; blue (resp.
green) line corresponds to the average over NFR (resp. non-NFR) loci.
In (B), colors have the same meaning as in Figure 2B and D.
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Open chromatin regions around N-domain borders have a
characteristic size

The decreasing behavior over a characteristic distance of
�150 kb from N-domain borders common to the mean
DNase I HS site coverage profile, the mean NFR density
profile, the mean CpG o/e profile and the average
1-kb-enlarged CGI coverage was observed whatever the
size of the replication N-domains (Figure 5A,B and C;
Supplementary Figure S4A). This contrasts with the
GC-content profile that behaves quite differently (Figure
5D). For small N-domains of size (L< 0.8Mb), the GC
profile is rather flat all along the domains, whereas for
the larger sizes (L> 0.8Mb), it decreases very slowly
toward the N-domain center. These results confirm that
the excess of CpG o/e observed around the putative rep-
lication origins does not simply reflect some localized
high-GC environment but more likely some open chro-
matin state with a �300 kb mean characteristic size.
Chromatin structure has also been analyzed at the fiber
level using separation by sucrose gradient sedimentation

(29). We observed that the proportion of microarray
clones presenting an open/input ratio >1.5 decreased
5-fold from N-domain borders to centers (Figure 6B).
This result provides additional support for the peculiar
property of chromatin in the neighborhood of N-domain
borders.

Both intergenes and TSSs present active open chromatin
marks close to N-domain borders

It was previously reported that N-domain borders corres-
pond to a high gene concentration (16), TSS density
profiles presenting, as expected, a strong similarity with
1-kb-enlarged CGI coverage (Supplementary Figure S4A
and B). We observed a concomitant increase in the
proportion of small genes and small intergenes in prox-
imity of N-domain borders (Supplementary Figure S4C
and D). Since the previous open chromatin markers
have been associated, at least to some extent, with genes
[e.g. 16% of all DNase I HS sites are in the first exon or at
the TSS of a gene, and 42% are found inside a gene (34)],

A

C

B

D

Figure 5. Open chromatin regions around N-domain borders have a characteristic size. Mean profiles of DNase I HS sites coverage (A), NFR
density (GC content <41%) (B), CpG o/e (C) and GC content (D) as a function of the distance to the closest N-domain border over the 678
replication N-domains identified in the human genome (16,17) for three N-domain size categories: L< 0.8Mb (red), 0.8<L< 1.5Mb (green) and
L> 1.5Mb (blue).
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we reproduced the analysis of their distribution along the
N-domains after masking the genes extended by 2 kb
at both extremities and the CGIs (Figure 6A). The fact
that the mean DNase I HS sites coverage, NFR density
and CpG o/e profiles still present the decaying behavior
over �150 kb demonstrates that the excess observed
around the putative replication origins does not simply
reflect the rather packed gene organization at the
N-domain borders. Additionally, we assessed the tran-
scriptional potential of genes as a function of their
distance to N-domain borders. We observed that Pol II
binding and H3K4me3 Chip-Seq tag density �2 kb
around TSS also presents a strongly decaying mean pro-
file over a length of �150 kb from N-domain borders
to center (5- and 3-fold, respectively, Figure 6C and D).
The presence of these two marks at the TSS have

been shown to correlate with gene activity (33). These
results thus indicate that the open chromatin regions
around putative replication origins are prone to transcrip-
tion, whereas N-domain central regions appear transcrip-
tionally silent.

Open chromatin around N-domain borders are potentially
fragile regions involved in chromosome instability

Since chromatin accessibility and openness are possible
factors responsible for fragility and instability,
N-domain borders could also play a key role in genome
dynamics during evolution and genome instability in
pathologic situations like cancer. A study of evolutionary
breakpoint regions (breakage of synteny) along human
chromosomes (50) shows that they appear more

A B

C D

Figure 6. Both intergenes and TSSs present open chromatin marks close to N-domain borders. (A) Mean profiles of DNase I HS sites coverage
(black), NFR density (GC content <41%, blue) and CpG o/e (red) as a function of the distance to the closest N-domain border after masking CGIs
and genes extended by 2 kb at both extremities. (B) Proportion of clones presenting a ratio of ‘open’ over input chromatin >1.5 versus the distance to
the closest N-domain border. (C and D) Mean profile of Pol II and H3K4me3 Chip-Seq tag density �2 kb around TSS versus the distance to the
closest N-domain border. In (B, C and D) colors correspond to three N-domain size categories: L< 0.8Mb (red), 0.8<L< 1.5Mb (green) and
L> 1.5Mb (blue).

6072 Nucleic Acids Research, 2009, Vol. 37, No. 18



frequently near N-domain borders than in their central
regions (51), suggesting that the distribution of large-
scale rearrangements in mammals reflects a mutational
bias toward regions of high transcriptional activity and
replication initiation (Supplementary Figure S6). Further-
more, the fact that chromosome anomalies involved in the
tumoral process like at the RUNX1T1 oncogene locus
(Supplementary Figure S6) coincide with replication
N-domain extremities raises the possibility that the repli-
cation origins detected in silico are potential candidate loci
susceptible to breakage in some cancer cell types.

N-domain borders: a subset of ‘master’ replication origins

Comparison to experimentally identified replication
origins provided further support that most N-domain
borders are replication origins active early in S-phase.
Our findings show that these putative replication origins
are located within a �300 kb region extremely sensitive to
DNase I cleavage, presenting hypomethylation marks and
enriched in open chromatin fibers, suggesting that these
regions present an open chromatin structure. This access-
ible chromatin organization is to some extent encoded in
the DNA sequence via an enrichment in nucleosome
excluding energy barriers (NFRs). The additional obser-
vation that the densities of Pol II binding and H3K4me3
around TSSs (�2 kb) close to N-domain borders signifi-
cantly exceeds the density found around TSSs in
N-domain central regions (Figure 6C and D), suggesting
that this local chromatin structure is associated with
transcriptional activity. However, the fact that some
N-domain borders (like O2) neither present an open chro-
matin signature nor an early replication timing in the
cell line used experimentally, but still exhibit a sharp
upward jump in the skew profile, raises the question of
whether they have a different status or are associated with
open chromatin and early replication only in the germline.

Are these traits shared by many other replication
origins? In metazoans, recognition of replication origins
by the origin recognition complex (ORC) does not involve
simple consensus DNA sequence. Initiation sites do not
share common genetic entities but seem to be favored by
various factors that can differ from one origin to another
and be required or dispensable under different conditions
(4). Specification of initiation sites can be favored by nega-
tively supercoiled DNA (52) (possibly resulting from the
removal or displacement of nucleosomes), interacting
proteins that chaperone ORC to specific chromatin sites
(53), by the transcriptional activity (54) or open chromatin
to which ORC might bind in a nonspecific way (55). A
recent study performed on 283 replication origins
identified in the ENCODE regions showed that, besides
a strong association with CGIs, only 29% overlap a
DNase I HS site and that half of these origins do not
present open chromatin epigenetic marks and are not
associated with active transcription (9). The particular
open chromatin state associated with N-domain borders
suggest that these putative early replication origins present
properties that are only shared by a subset of origins.
These properties likely contribute to the specification of

this peculiar subset of origins that will be further qualified
as ‘master’ replication origins.
In conclusion, analyses of experimental and numerical

open chromatin markers suggest the existence of ‘master’
replication origins likely to be active in germline as well
as somatic human cells. These privileged loci were
identified as upward jumps in the strand asymmetry
profiles accumulated during evolution, which attest that
they are well positioned in the germline. We show that
they are located within a �300 kb wide region of open
chromatin, encoded in the DNA sequence via an enrich-
ment of nucleosome excluding energy barriers.
Interestingly, location O0 that was not identified as an
N-domain border (16) but displays all these open chro-
matin characteristics (Figure 1B) actually corresponds to
a sharp upward jump in the skew profile (Figure 1A), as
the hallmark of the presence of a ‘master’ replication
origin. Such a strong gradient of accessible and open chro-
matin environment is not observed around a large fraction
of the replication origins experimentally identified along
ENCODE regions (9). The typical inter-origin distance in
the human somatic cells has been estimated to be of the
order of 50–100 kb (9,56), a value significantly smaller that
the typical size (1Mb) of N-domains. We propose that
replication would initiate in early S phase at these
privileged open chromatin locations and that the replica-
tion timing gradients observed from ‘master’ origins (17)
would correspond to the diverging replication forks
progression triggering secondary origins that supress in a
‘domino’ cascade manner. As structural defects (bursts of
‘openness’) in the chromatin fiber, these ‘master’ replica-
tion origins might also be central to the tertiary structure
of eukaryotic chromatin into rosette-like structures (57).
The present data suggest that they are likely to be
associated with structuring chromatin elements playing
an essential role in the spatio-temporal replication
program.
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26. Schübeler,D., Scalzo,D., Kooperberg,C., vanSteensel,B., Delrow,J.
and Groudine,M. (2002) Genome-wide DNA replication profile for
Drosophila melanogaster: a link between transcription and
replication timing. Nat. Genet., 32, 438–442.

27. Goldman,M.A., Holmquist,G.P., Gray,M.C., Caston,L.A. and
Nag,A. (1984) Replication timing of genes and middle repetitive
sequences. Science, 224, 686–692.

28. Sequeira-Mendes,J., Diaz-Uriarte,R., Apedaile,A., Huntley,D.,
Brockdorff,N. and Gomez,M. (2009) Transcription initiation
activity sets replication origin efficiency in mammalian cells. PLoS
Genet., 5, e1000446.

29. Gilbert,N., Boyle,S., Fiegler,H., Woodfine,K., Carter,N.P. and
Bickmore,W.A. (2004) Chromatin architecture of the human
genome: gene-rich domains are enriched in open chromatin fibers.
Cell, 118, 555–566.

30. Heintzman,N.D., Stuart,R.K., Hon,G., Fu,Y., Ching,C.W.,
Hawkins,R.D., Barrera,L.O., Calcar,S.V., Qu,C., Ching,K.A. et al.
(2007) Distinct and predictive chromatin signatures of
transcriptional promoters and enhancers in the human genome.
Nat. Genet., 39, 311–318.

31. Ozsolak,F., Song,J.S., Liu,X.S. and Fisher,D.E. (2007)
High-throughput mapping of the chromatin structure of human
promoters. Nat. Biotechnol., 25, 244–248.

32. Schones,D.E., Cui,K., Cuddapah,S., Roh,T.-Y., Barski,A.,
Wang,Z., Wei,G. and Zhao,K. (2008) Dynamic regulation of
nucleosome positioning in the human genome. Cell, 132, 887–898.

33. Barski,A., Cuddapah,S., Cui,K., Roh,T.-Y., Schones,D.E.,
Wang,Z., Wei,G., Chepelev,I. and Zhao,K. (2007) High-resolution
profiling of histone methylations in the human genome. Cell, 129,
823–837.

34. Boyle,A.P., Davis,S., Shulha,H.P., Meltzer,P., Margulies,E.H.,
Weng,Z., Furey,T.S. and Crawford,G.E. (2008) High-resolution
mapping and characterization of open chromatin across the
genome. Cell, 132, 311–322.

35. Kohzaki,H. and Murakami,Y. (2005) Transcription factors and
DNA replication origin selection. Bioessays, 27, 1107–1116.

36. Lee,W., Tillo,D., Bray,N., Morse,R.H., Davis,R.W., Hughes,T.R.
and Nislow,C. (2007) A high-resolution atlas of nucleosome
occupancy in yeast. Nat. Genet., 39, 1235–1244.

37. Yuan,G.-C., Liu,Y.-J., Dion,M.F., Slack,M.D., Wu,L.F.,
Altschuler,S.J. and Rando,O.J. (2005) Genome-scale identification
of nucleosome positions in S. cerevisiae. Science, 309, 626–630.

38. Karolchik,D., Baertsch,R., Diekhans,M., Furey,T.S., Hinrichs,A.,
Lu,Y.T., Roskin,K.M., Schwartz,M., Sugnet,C.W., Thomas,D.J.
et al. (2003) The UCSC genome browser database. Nucleic Acids
Res., 31, 51–54.

39. Di Filippo,M. and Bernardi,G. (2008) Mapping DNase-I
hypersensitive sites on human isochores. Gene, 419, 62–65.

40. Vaillant,C., Audit,B. and Arneodo,A. (2007) Experiments confirm
the influence of genome long-range correlations on nucleosome
positioning. Phys. Rev. Lett., 99, 218103.

41. Mavrich,T.N., Ioshikhes,I.P., Venters,B.J., Jiang,C., Tomsho,L.P.,
Qi,J., Schuster,S.C., Albert,I. and Pugh,B.F. (2008) A barrier
nucleosome model for statistical positioning of nucleosomes
throughout the yeast genome. Genome Res., 18, 1073–1083.

42. Miele,V., Vaillant,C., d’Aubenton-Carafa,Y., Thermes,C. and
Grange,T. (2008) DNA physical properties determine
nucleosome occupancy from yeast to fly. Nucleic Acids Res., 36,
3746–3756.

43. Bernardi,G. (2001) Misunderstandings about isochores. Part 1.
Gene, 276, 3–13.

44. Bird,A.P. and Wolffe,A.P. (1999) Methylation-induced repression–
belts, braces, and chromatin. Cell, 99, 451–454.

45. Suzuki,M.M. and Bird,A. (2008) DNA methylation landscapes:
provocative insights from epigenomics. Nat. Rev. Genet., 9,
465–476.

46. Bird,A. (2002) DNA methylation patterns and epigenetic memory.
Genes Dev., 16, 6–21.

6074 Nucleic Acids Research, 2009, Vol. 37, No. 18



47. Eckhardt,F., Lewin,J., Cortese,R., Rakyan,V.K., Attwood,J.,
Burger,M., Burton,J., Cox,T.V., Davies,R., Down,T.A. et al. (2006)
DNA methylation profiling of human chromosomes 6, 20 and 22.
Nat. Genet., 38, 1378–1385.

48. Duret,L. and Galtier,N. (2000) The covariation between TpA
deficiency, CpG deficiency, and G+C content of human
isochores is due to a mathematical artifact. Mol. Biol. Evol., 17,
1620–1625.

49. Antequera,F. and Bird,A. (1999) CpG islands as genomic footprints
of promoters that are associated with replication origins. Curr.
Biol., 9, R661–R667.

50. Lemaitre,C., Tannier,E., Gautier,C. and Sagot,M.-F. (2008) Precise
detection of rearrangement breakpoints in mammalian
chromosomes. BMC Bioinformatics, 9, 286.

51. Lemaitre,C., Zaghloul,L., Sagot,M.-F., Gautier,C., Arneodo,A.,
Tannier,E. and Audit,B. (2009) Analysis of fine-scale mammalian
evolutionary breakpoints provides new insight into their relations
to genome organisation. BMC Genomics, 10, 335.

52. Remus,D., Beall,E.L. and Botchan,M.R. (2004) DNA topology, not
DNA sequence, is a critical determinant for Drosophila ORC-DNA
binding. EMBO J., 23, 897–907.

53. Schepers,A., Ritzi,M., Bousset,K., Kremmer,E., Yates,J.L.,
Harwood,J., Diffley,J.F. and Hammerschmidt,W. (2001) Human
origin recognition complex binds to the region of the latent
origin of DNA replication of epstein-barr virus. EMBO J., 20,
4588–4602.

54. Danis,E., Brodolin,K., Menut,S., Maiorano,D., Girard-Reydet,C.
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