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Simple Summary: Post-scratching locomotion in cats refers to the spontaneous occurrence of an
episode of locomotion generated after an event of scratching. This phenomenon suggests the potential
existence of shared neurons in the spinal cord mediating the transition from one rhythmic motor
task to another. Here, we examine this possibility with a mathematical model, reproducing the
experimental observations. Our findings reveal a possible mechanism in which the central nervous
system could share neuronal circuits from two central pattern generators to produce a sequence of
different rhythmic motor actions.

Abstract: This study aimed to present a model of post-scratching locomotion with two intermixed
central pattern generator (CPG) networks, one for scratching and another for locomotion. We
hypothesized that the rhythm generator layers for each CPG are different, with the condition that
both CPGs share their supraspinal circuits and their motor outputs at the level of their pattern
formation networks. We show that the model reproduces the post-scratching locomotion latency of
6.2 ± 3.5 s, and the mean cycle durations for scratching and post-scratching locomotion of 0.3 ± 0.09 s
and 1.7 ± 0.6 s, respectively, which were observed in a previous experimental study. Our findings
show how the transition of two rhythmic movements could be mediated by information exchanged
between their CPG circuits through routes converging in a common pattern formation layer. This
integrated organization may provide flexible and effective connectivity despite the rigidity of the
anatomical connections in the spinal cord circuitry.

Keywords: mathematical model; movement production; movement sequence; CPG; central pattern
generator; locomotion; scratching; post-scratching locomotion

1. Introduction

The question of how a sequence of movements is generated has intrigued biologists
for years. Despite investigations during this time, advances have been scarce and have been
mainly for behavioral and modeling analysis [1–4]. This lack of advances is perhaps due to
the complex control of many neuronal variables during decision making and visuomotor
feedback in the production of movement sequences.

Though these variables appear to impose limitations, an alternative to overcome them
is to analyze movement sequences between different rhythmic motor tasks, which are per-
formed even without the brain and with the absence of sensory feedback. Rhythmic motor
tasks can be modeled by central pattern generators (CPGs) and experimentally examined
in reduced animal preparations, such as turtles and cats, among other animals. Some
relevant advances regarding CPG networks have been related to the possible functional
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architecture of two layers [5]. The two-level CPG model has a typical “rhythm generator
layer” that controls the firing of the “pattern formation layer”, which is responsible for the
final motoneuron activation in the spinal cord. This neuronal architecture was suggested
from the modeling of experimental data of fictive locomotion in decerebrate cats and has
served to interpret the physiological nature of rhythmic motor tasks.

Pioneering studies demonstrated that the turtle spinal cord contains shared neurons
to coordinate transitions between different rhythmic movements of locomotion and scratch-
ing [6] or swimming and scratching [7–11]. Similar results were found in cats [12,13],
suggesting that shared CPG neurons could have been conserved during evolution. Stud-
ies in cats showed spinal neurons rhythmically active during both scratching and loco-
motion [12,13]. For instance, spinal neurons mediating the reciprocal Ia inhibition may
contribute to motoneuron hyperpolarizations during the inactive phase of scratching and
locomotion in cats [12], hence demonstrating the existence of shared spinal neurons in both
motor tasks.

A phenomenon that is consistent with the aforementioned studies is post-scratching
locomotion in cats [13], which consists of a fictive locomotion episode, produced 6.2 ±
3.5 s after an event of fictive scratching. Spinal neurons firing during scratching and post-
scratching locomotion keep their firing phase during the flexor or extensor stages of both
rhythmic movements. This finding suggests the existence of shared spinal neurons related
to both motor tasks [13]. In this context, the present study aimed to develop a computational
model to explain the experimental observations of cycle durations and switching delays in
the spontaneous transition from scratching to post-scratching locomotion in the cat.

We hypothesized that such shared spinal neurons could belong to the pattern forma-
tion network located in the two-layer architecture of central pattern generators. We also
hypothesized that a descending input to the rhythm generator layers of these CPGs could
be associated with the switching from scratching to post-scratching locomotion. Here, we
show that the model reproduces the experimental observations [13] and sheds light on
the functional organization of spinal circuits active in the generation and transition of two
different rhythmic movements.

2. Materials and Methods
Model Equations

This model is based on a series of modified Morris–Lecar equations [14,15], the synap-
tic currents equation [16], and the two-layer CPG model [17,18]. The set of differential
equations was solved in Matlab using a 4th-order Runge–Kutta method. We constructed
the model based on experimental observations of the post-scratching locomotion phe-
nomenon. The model consisted of four hypothetical half centers (Figure 1) as follows.
First, a supraspinal half center is composed of a supraspinal scratching generator (SuSG)
and a supraspinal locomotion generator (SuLG); this supraspinal half center is labeled as
SuSG-SuLG in Figure 1. Second, there is a half center consisting of the scratching rhythm
generator (SRG); third, a half center representing the locomotion rhythm generator (LRG);
and fourth, a common pattern formation layer that is labeled as PF.

Note that the SuSG-SuLG half center sends asymmetric descending inputs to the SRG
and LRG layers, which in turn send symmetric inputs to the common PF layer (Figure 1a).
The topology of our model consisted of 80 interneurons and 20 motoneurons, with a total
number of 300 synaptic connections. The half centers were made of 10 interneurons each,
with a sparse divergence of synaptic connections. Specifically, every individual presynaptic
neuron was randomly connected with 20% of the postsynaptic neurons (Figure 1b). We
used this small number of neurons and synaptic connections following a previous model
for scratching in cats. However, other models for scratching in turtles employ a larger
number of neurons in their topology (see the discussion section). The total number of
synaptic connections between neuronal groups is shown with numbers in parentheses in
Figure 1a.
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tions. Specifically, every individual presynaptic neuron in the half centers is randomly connected 
with 20% of the postsynaptic neurons. 

The SuSG-SuLG half center is responsible for the onset of fictive scratching and 
subsequent activation of post-scratching locomotion; this half center is mutually con-
nected via a set of inhibitory neurons. The SRG half center consists of two groups of 
neurons that are mutually inhibited, which receive input from the sum of the SuSG-SuLG 
half center, and in turn, reproduce frequency and duty cycles of fictive scratching. The 
LRG half center is responsible for producing locomotor frequency and duty cycles ac-
cording to experimental observations. Finally, the fourth half center, labeled as PF, is a 
common pattern formation layer that is activated by either the SRG or LRG layers to 
subsequently activate the corresponding motoneurons (labeled as MNs) in the common 
final pathway. 
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Figure 1. (a) Schematics for the proposed post-scratching locomotion model. Supraspinal scratching
generator (SuSG), supraspinal locomotion generator (SuLG), scratching rhythm generator (SRG),
locomotion rhythm generator (LRG), pattern formation (PF), motoneurons (MNs). Flexor neurons
are in blue and extensor neurons are in red. (b) The topology of the synaptic connections. The
half centers were made of 10 interneurons each, with a sparse divergence of synaptic connections.
Specifically, every individual presynaptic neuron in the half centers is randomly connected with 20%
of the postsynaptic neurons.

The SuSG-SuLG half center is responsible for the onset of fictive scratching and
subsequent activation of post-scratching locomotion; this half center is mutually connected
via a set of inhibitory neurons. The SRG half center consists of two groups of neurons
that are mutually inhibited, which receive input from the sum of the SuSG-SuLG half
center, and in turn, reproduce frequency and duty cycles of fictive scratching. The LRG
half center is responsible for producing locomotor frequency and duty cycles according
to experimental observations. Finally, the fourth half center, labeled as PF, is a common
pattern formation layer that is activated by either the SRG or LRG layers to subsequently
activate the corresponding motoneurons (labeled as MNs) in the common final pathway.

The equations employed for the implementation of this model read as follows:

C
dv
dt

= Iapp − Iionic − Isynaptic

dw
dt

= ϕτ(v)(w∞(v)− w)

dCa
dt

= ε(−µgCam∞(v)(v − VCa)− Ca)

Iionic = gCam∞(v)(v − VCa) + gKw(v − VK)− gKCaz(Ca)(v − VK)− gL(v − VL)

m∞ =
1
2

(
1 + tanh

(
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V2

))
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1
2

(
1 + tanh
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2W2
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z(Ca) =
Ca

Ca0 + Ca

Isynaptic = ∑
j

gsyn
ij rj(vi − Es)

rj = 1 − e−αt for t < ton

rj =
(
1 − e−αt)e−β(t−ton) for t > ton

The parameter ton is the time at which a neuronal membrane potential increased and
crossed a −15 mV threshold. At that time, we considered the occurrence of an action
potential. All parameters used in this simulation are summarized in Table 1. They were
modified during simulations to be consistent with the physiological findings.

Table 1. Parameters used in the numerical simulations.

Parameter Value Parameter Value

gCa 4.0 mS/cm2

ε

SuSG-SuLG 1.75 × 10–2 s−1

gK 8.0 mS/cm2 LRG 4 × 10–4 s−1

gL 2.0 mS/cm2 SRG 1.75 × 10–3 s−1

gKCa 0.25 mS/cm2 PF 4 × 10–4 s−1

VCa 120 mV MN 4 × 10–4 s−1

VK −84.0 mV
µ

All other neurons 0.2 ± 0.05
VL −60.0 ± 6 mV SRG_Flexor 0.1 ± 0.01
V1 1.2 mV SRG_Extensor 0.178 ± 0.02

V2 −18 mV IApp 45 mA/cm2 for SuSG and SuLG; 43.8 mA/cm2 for every other neuron
W1 12 mV α 0.1 ms−1

W2 17.4 mV β 0.2 ms−1

ϕ

SuSG SuLG 0.0002 s−1 ES
0 mV (Excitatory);

−80 mV (Inhibitory)

LRG 0.22 s−1
gsyn 0.1 ± 0.01 mS/cm2

SRG 0.23 s−1

All other neurons 0.20 s−1 Ca0 10 mM

3. Results

The model illustrated in Figure 1 reproduces the switching between scratching and
post-scratching locomotion as in the experimental observations [13]. In the model, this
alternation is caused by a fatigue effect in the supraspinal scratching generator (SuSG) that
connects with the scratching rhythm generator (SRG) and subsequently with the pattern
formation (PF) layer. This fatigue was a result of the modeled neurons that exhibited a
prolonged spike frequency adaptation.

Despite their slow frequency discharge, SuSG exerts a potent inhibition towards their
counterpart called the supraspinal locomotion generator (SuLG). This could be a possible
cause for the short periods of scratching activation and the delay between scratching and
locomotion. When the SuLG is released from inhibition, such neurons start firing. Then,
this activation is directed to the LRG and PF layer to produce the onset of locomotion.
Figure 2 shows the simulated electrical activity obtained from the numerical analysis of the
model illustrated in Figure 1. Note the different profiles in firing activity produced by each
central pattern generator network and the delay in post-scratching locomotion, which is
similar to experimental recordings of flexor and extensor electroneurograms obtained in
the cat (Figure 2e).
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rhythm generator (SRG) and locomotion rhythm generator (LRG). (c) Simulated firing in the pat-
tern formation (PF) layer. (d) Simulated firing in the motoneurons (MNs). Flexor activity is indi-
cated in blue and extensor activity in red. Same color code as in Figure 1. (e) Electroneurographic 
recordings of tibial anterior (TA) and medial gastrocnemius (MG) nerves during a post-scratching 
locomotion episode in the cat. 

Figure 2. Numerical results of a simulated scratching and post-scratching locomotion episode from
the model illustrated in Figure 1. (a) Simulated activity in the supraspinal scratching generator (SuSG)
and supraspinal locomotion generator (SuLG). (b) Simulated firing in the scratching rhythm generator
(SRG) and locomotion rhythm generator (LRG). (c) Simulated firing in the pattern formation (PF)
layer. (d) Simulated firing in the motoneurons (MNs). Flexor activity is indicated in blue and extensor
activity in red. Same color code as in Figure 1. (e) Electroneurographic recordings of tibial anterior
(TA) and medial gastrocnemius (MG) nerves during a post-scratching locomotion episode in the cat.

There is a long gap or latency (of several seconds) between scratching and locomotion
of 6.8 ± 3.9 s in our model and 6.2 ± 3.5 s in the experimental study. According to our
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model, a possible explanation for this long latency between scratching and locomotion
could be the time required to switch from one motor task to another, which is commanded
by the ϕ parameter in the SuSG half center. This ϕ parameter in the Morris–Lecar equations
is interpreted as a factor of temporal dynamics in the neuronal electrical activity of SuSG
and SuLG [14,15]. Once SuSG reduces its electrical firing, the selected value of 0.0002 s−1

for the ϕ parameter allows a long latency of inactivity of 6.8 ± 3.9 s until the other SuLG
half center starts to respond (see Figure 2a). Thus, the ϕ = 0.0002 s−1 parameter in the SuSG-
SuLG network is commanding the temporal dynamics for the functional reconfiguration
from scratching to locomotion in the CPG networks.

When the SuSG and SuLG populations increase their firing rates, it takes 0.98 s
and 1.01 s to recruit neurons from SRG and LRG, respectively. These latencies also are
commanded by the ϕ = 0.23 s−1 and ϕ = 0.22 s−1 parameters in the SRG and LRG half
centers, respectively.

Figure 3a,c show how the slow electrical potentials produced by the SuSG and SuLG
networks (illustrated in Figure 2a) were obtained. These slow potentials were obtained
from the electrical activity of populations of excitatory and inhibitory neurons in the SuSG
and SuLG networks, respectively. Figure 3b,d show a raster display for the firing activity
of some neurons. Since these raster graphs were constructed by changing the variability
among the µ and vL parameters, their time and phase of activation are highly variable.
Therefore, the duration of their synaptic action to their respective rhythm generator layers
(scratching and locomotion) is also highly variable, producing a wide range of scratching
and post-scratching locomotion episodes as illustrated in Figure 4. We found that the
firing patterns shown in Figure 4 are similar to the experimental results of post-scratching
locomotion in our previous report [13].

The zero on the time axis of Figure 4 represents the ending of different scratching
episodes, indicated by the beginning of the arrow in Figure 2d. With this zero, we can
compare the latencies between the end of each simulated scratching and the beginning
of locomotion.

The high level of variability observed in Figures 3 and 4 comes from the random
variability assigned to the VL and µ parameters (note the standard deviation of these
parameters in Table 1). We adjusted the standard deviation of these parameters to obtain a
random effect on the scratching duration, latency duration, and the scratching and post-
scratching locomotion frequencies illustrated in Figure 4. This variability in our numerical
results resembles the variability observed in previous experiments [13].
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Figure 4. Numerical results of scratching and post-scratching locomotion obtained with the model
illustrated in Figure 1. (a) Time distribution histogram of flexor bursts during the simulated scratching
and post-scratching locomotion. (b) Raster display of 100 trials for the burst ending of the summed
activity obtained from the entire simulated flexor motoneuron group, during scratching and post-
scratching locomotion. Every horizontally aligned set of points in the y-axis represent a single
simulation (a trial) of scratching followed by post-scratching locomotion. These numerical results
are consistent with previous experimental results [13], specifically because there is not a statistically
significant difference between the post-scratching locomotion latency of 6.8 ± 3.9 s obtained from
this figure and the latency found in the experiments of 6.2 ± 3.5 s. Other specific criteria to justify our
theoretical-experimental comparisons are that the cycle duration for scratching and locomotion in
our simulation (0.2 ± 0.04 s and 1.6 ± 0.7 s) were not statistically different from those cycle durations
observed in the experiments (0.3 ± 0.09 s and 1.7 ± 0.6 s, respectively).
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We calculated the mean post-scratching locomotion latency, i.e., the mean latency
from the end of the scratching episodes to the beginning of post-scratching locomotion
in Figure 4. We obtained a mean post-scratching locomotion latency of 6.8 ± 3.9 s, which
is similar to the latency found in the experimental study [13] of 6.2 ± 3.5 s. We did not
find statistically significant differences between these theoretical and experimental values
(p > 0.5, Student’s t-test).

We also calculated the mean cycle duration of the firing activity in our numerical
model during scratching and post-scratching locomotion. We found a mean cycle duration
for scratching of 0.2 ± 0.04 s and a mean cycle duration for post-scratching locomotion of
1.6 ± 0.7 s. These values are also similar to those obtained in the experimental study [13],
0.3 ± 0.09 s of cycle duration for scratching and 1.7 ± 0.6 s of cycle duration for post-
scratching locomotion. We did not find statistically significant differences between these
theoretical and experimental values (p > 0.5, Student’s t-test).

Based on the analysis of the Morris–Lecar model by Rinzel and Ermentrout [14], both
the µ and ε parameters govern the calcium-dependent channel dynamics, which reproduces
a bursting behavior. Specifically, µ is determined by the ratio between the surface of the
cell and the total calcium near the membrane. The parameter ε is the product of the
calcium degradation rate and the ratio of free to total calcium. Both parameters control
the duration of the bursts and the duty cycle between flexor-extensor cycles for scratching
and locomotion. As explained in Figure 2, the ϕ parameter in the SuSG-SuLG network is
commanding the temporal dynamics for the functional reconfiguration from scratching
to locomotion in the CPG networks and allows the long delay between scratching and
locomotion. Therefore, systematic variations in some of these parameters affect the burst
duration, burst frequency, and delay between scratching and locomotion and would lead
to a testable hypothesis. For instance, the application of direct current (DC) stimulation
of 47 µA/cm2 (during 16.6 s) to the SuSG and eliminating the parameters for the SuLG
induces only a scratching behavior as illustrated in Figure 5a.
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Figure 5. Predictions obtained from the model illustrated in Figure 1. (a) A selective sustained
electrical stimulation of the SuSG, with a lesion in the SuLG region, will produce scratching episodes
with an absence of post-scratching locomotion. (b) Conversely, a selective sustained electrical
stimulation of the SuLG, with a lesion of the SuSG region, will only produce locomotion episodes with
an absence of scratching. These predictions could be verified by the selective electrical stimulation to
the brainstem at the obex level in animals with a lesion of the mesencephalic locomotor region (MLR)
or selective stimulation of the MLR in animals with a lesion at the obex level. The direct current (DC)
stimulation pulse consisted of 47 µA/cm2 and 16.6 s.

We also explored two predictions from this model to test its validity. The first pre-
diction shown in Figure 5a suggests that a lesion of the SuLG and the direct current (DC)
stimulation to the SuSG will only produce scratching episodes in the cat spinal cord. Note
how the fast alternating activity of flexor and extensor motoneurons (blue and red traces
in Figure 5a) during scratching occurs during the DC stimulation. In contrast, the second
prediction shown in Figure 5b reveals that a lesion of the SuSG and the DC stimulation of
SuLG will only evoke locomotion in the cat spinal cord. Again, note the slow alternating
activity of flexor and extensor motoneurons (blue and red traces in Figure 5b) typical
of locomotion.

4. Discussion

We developed a CPG computational model to explain a possible mechanism for the
switching between scratching to post-scratching locomotion in the cat. In this model,
we propose that there is a half center array presumably located at the supraspinal level.
It is formed by one group associated with the onset of scratching and one related to
the beginning of locomotion. Each group provides input to a spinal rhythm generator
producing scratching and another producing locomotion. Both rhythm generators have an
output to a common pattern formation.

4.1. Descending Drives to Produce Different Motor Behaviors

Our model is consistent with previous studies suggesting that different descending
pathways from supraspinal structures mediate distinct motor tasks. For instance, in
the hatching tadpole, some motoneurons and inhibitory interneurons are active during
swimming and struggling. It was suggested that the switching could be commanded by
descending inputs [19]. Furthermore, a small region of the caudal hindbrain and rostral
spinal cord was described that is sufficient to generate prolonged swimming in response to
a brief stimulus [20]. As in our model, the neurons located in this region make reciprocal
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excitatory connections with each other and have ipsilateral descending axons and long-
duration action potentials. Interestingly, these neurons are weakly active or even silent
during struggling. On the other hand, different types of descending neurons located in
the same regions (hindbrain and rostral spinal cord) are only active during a struggle but
have a shorter duration action potential and fire repetitively when depolarized by current
injection [19].

Experimental evidence that rhythmic movements can be induced by electrical stimula-
tion of the mesencephalic locomotor region (MLR) and ventromedial medulla (VMM) [21,22]
inspired the schematic design of our model. In a similar way, there are command neurons
that initiate scratching in the brainstem at the obex level [23]. With this in mind, we suggest
that descending inputs from the MLR or VMM could resemble descending inputs from
the SuLG in our model. On the other hand, descending inputs from the same area in the
midbrain could also generate the transition from one rhythmic motor task to another. For
instance, there is experimental evidence that low-intensity electrical stimulation to the
MLR in the salamander induces a walking gait. In contrast, higher stimulation intensities
cause a rapid switch to swimming [24]. A limitation of our study is that we did not explore
this possibility in our model.

However, other studies suggest that the descending inputs are unnecessary to allow
switching between rhythmic motor tasks. For example, it was found that simultaneous
and segmental swim-evoking and scratch-evoking stimulation in the turtle preparation
results in interactions of scratch inputs with subthreshold swim inputs. It produces normal
swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete
cessation of the rhythm [6]. It was suggested that switching from one motor task to another
underlies a functional reconfiguration of the network. That is, one motor task does not
overlap the next. This reconfiguration takes place by recruiting neurons, changing the
properties of active neurons, or silencing them. This involves continuous shifts in the set of
active excitatory and inhibitory interneurons, as reviewed in [25].

The switch from one rhythmic motor task to another has also been explained by
using robot models without the assumption of descending inputs [26]. In this context, it is
possible that our model could be adapted to design bioinspired robots that could change
from one rhythmic task to another but including the action of descending inputs to control
the transition between such rhythmic motor tasks.

4.2. Multifunctional Interneurons

In the present study, we proposed two different rhythm generators (for scratching and
locomotion) that share the same pattern formation network (Figure 1). This suggests that
such a pattern formation network serves as a multifunctional set of interneurons to produce
scratching or post-scratching locomotion. This theoretical possibility sheds light on the
open question of whether the locomotion and scratching CPG architectures constitute
separate spinal cord networks dedicated to producing only one behavior or, in the opposite
case, they conform to only one neuronal group of shared elements. Future experiments
will be necessary to examine our hypothesis in detail.

Consistent with our proposal of a shared pattern formation and two different rhythm
generators, some reports have shown that other neuronal populations can be used to
generate a specific motor task. An example of this is seen in a report on the locus, in
which the motoneurons innervating bifunctional muscles are active during walking and
flight. Still, these patterns are produced by two distinct interneuronal networks [27]. All
flight interneurons are inactive or tonically inhibited during walking. Additionally, all the
interneurons that are modulated during walking are inactive, inhibited, or only weakly
modulated during flight. Similar results were found in the zebrafish larva; by using calcium
imaging, it was found that two different sets of interneurons drive swimming and escape
tasks [28]. Additional evidence supports the idea of multifunctional interneurons and
circuitry reconfiguration during the performance of different motor behaviors [29–33].
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Different studies suggest that vertebrate limb movements are produced by spinal cord
networks that share interneuron components. The turtle spinal cord can generate three
distinct forms of scratching in three adjacent body regions when mechanical stimulation is
applied [34]. Some neurons may contribute to the generation of the hip rhythm for all three
forms of scratching, strengthening the case that vertebrate pattern-generating circuitry
for distinct behaviors can be overlapping [35]. Along with these findings, many spinal
interneurons are rhythmically active during ipsilateral and contralateral scratching [7,35].
Similarly, many spinal neurons are active during contralateral fictive scratching, ipsilateral
fictive hindlimb withdrawal [8], or during scratching, fictive forward swimming, and
fictive hindlimb withdrawal [7]. At the same time, a minority of spinal neurons are
activated during scratching but silenced during swimming [7]. This last observation
shows that even though there are neurons activated in scratching and other motor tasks,
not all of the network generating scratching and locomotion is shared. In this context,
evidence in the cat indicates a different regulation of the cycle period, phase durations, and
phase transitions during fictive locomotion compared to scratching, providing evidence
of specialized rhythm-generating mechanisms in each motor task [36]. In contrast, other
investigations stated a similarity of effects from extensor group I input on the rhythmicity
during scratching and locomotion, supporting the idea of a shared network [37].

4.3. Neuronal Topology

The rationale for using only 10 neurons per half-center group (100 neurons in total),
as well as the divergence between groups of 20% (300 synaptic connections in total) is
that these numbers were consistent with the number of neurons and synaptic connections
employed in our previous model for scratching in cats [15]. Furthermore, we explored
the minimal size of the total neuronal population to optimize our simulations, given that
we simulated the neuronal electrical activity up to 35 s and employed several parameters
(see Table 1). The selection of these 100 neurons and 300 synaptic connections allowed
stable simulations according to our computational resources. However, in future studies, it
will be necessary to examine other topologies of convergence and divergence with a more
significant number of neurons and synaptic connections, as in the modeling of scratching
CPG networks in the turtle [38].

4.4. Predictions

Several predictions could emerge from our model and could be tested in future experi-
ments. First, the existence of two mutually inhibited bursting neuronal populations (termed
here SuSG and SuLG) possibly located at the lower brainstem (SuSG) and MLR (SuLG)
could be tested experimentally. The existence of these bursting neurons is supported by a
previous experimental study from our laboratory [23]. The presence of bulbar interneurons
in the obex region that exhibit on-off and off-on firing patterns before, during, and after fic-
tive scratching was documented [23]. It could be interesting to verify through experiments
the role of these bursting neurons during fictive scratching and post-scratching locomotion
and determine if these neurons have any synaptic connections with bursting neurons at the
level of the MLR. The simultaneous microstimulation and recording of bulbar and MLR
neurons with bursting behavior could help to elucidate this possibility. Second, because
specific values of parameters ε, µ, and ϕ (Table 1) are required to recreate the experimental
findings, such numerical values may reflect the existence of particular intrinsic properties
of supraspinal and spinal neurons. In this context, a detailed characterization of SRG,
LRG, and PF neurons will be necessary to compare them with the model. Biologically,
cells belonging to the supraspinal structures may have different channel densities or even
different nonlinear dynamics regarding the various ionic channels producing the action
potentials. Hence, this could be explored experimentally with the analysis of the intrinsic
properties of these types of cells. Third, as Figure 5 illustrates, our model predicts that a
lesion of the SuLG (i.e., the MLR) and the concomitant DC-stimulation to the SuSG (obex
bulbar region) will only produce scratching episodes in the cat spinal cord. Conversely,
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a lesion of the SuSG (i.e., obex in the bulbar region) and the DC-stimulation of the SuLG
(MLR) will only evoke locomotion in the cat spinal cord. These predictions derived from
our model could be examined in the cat or other animal models.

4.5. Lateralization

Lateralization in the brain is the tendency for some neural processes to be specialized
to one side of the brain or the other. Left-right asymmetries in the brain and in behavior
have been described in diverse motor, sensory, cognitive, and affective conditions [39].
This lateralization is widespread among vertebrates and invertebrates [39] and has been
credited for individuals outperforming their non-lateralized counterparts, increasing in-
dividual efficiency, and suggesting a solid contribution to biological fitness [40,41]. Brain
asymmetries might prevent unnecessary duplication of neural circuitry, reduce interference
between functions, and avoid the simultaneous initiation of incompatible responses by
permitting only one hemisphere to control the responses [41]. In this context, scratching is
a lateralized motor behavior that is generated by CPG circuits either active on the left or
right side of the spinal cord. In contrast, the bilateral and alternating motor output between
the two sides of the spinal cord during locomotion is mainly due to the inhibitory and
excitatory balance over the midline. A limitation of our model is that we did not examine
the differences in the lateralized behavior of scratching and locomotion. However, in future
modeling studies, it will be interesting to investigate these critical differences. For example,
it will be interesting to examine whether a bilateral distribution of SuSG-SuLG networks
could allow left or right-lateralized scratching behavior. On the other hand, it is tempting
to speculate that the symmetric organization of the locomotion CPG networks could be
evolved to reduce interferences with the asymmetric scratching CPGs.

5. Conclusions

We conclude that the CPG model proposed in this study reproduces the main features
of scratching and post-scratching locomotion. In particular, we conclude that these findings
show how the transition of two rhythmic movements could be mediated by information
exchange between their CPG circuits through routes converging in a common pattern for-
mation layer. This integrated organization may provide flexible and effective connectivity
despite the rigidity of the anatomical connections in the spinal cord circuitry.
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