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The blood-brain barrier: clinical 

implications for drug delivery to the brain 

ABSTRACT?The blood-brain barrier (BBB) deter- 
mines whether or not a given drug can reach the cen- 
tral nervous system (CNS), either by passive diffusion 
or through carrier or receptor systems. Initial work 
focused on the structural and physico-chemical 
requirements favouring transport across the BBB as 
related to anatomical and physiological features. Such 
studies have had a significant effect on the design of 
CNS-active drugs with improved permeability across 
the BBB. Progress in pharmacology and neurosciences 
resulted in greater knowledge of CNS diseases and of 

potential therapies, but also created the need to devel- 

op new strategies to improve drug delivery to the 
brain. For a long time the BBB was considered to be a 

physical barrier, mainly represented by the cerebrovas- 
cular endothelium; however, transport of drugs to the 
brain may be limited by the metabolic activity of the 
BBB. The BBB should be regarded as a dynamic rather 
than a rigid barrier; it can be influenced by astrocytes 
and probably also by neuronal and hormonal stimuli, 
and its properties are also affected by diseases of the 
CNS. This may offer new strategies for targeting drugs 
to the brain. 

Anatomy and physiology of the BBB 

The concept of the blood-brain barrier (BBB) devel- 

oped from the end of the nineteenth century onwards, 
starting with the German pharmacologist and physiol- 
ogist Paul Ehrlich [1], and later Goldmann [2,3], 

Spatz and Walter [4,5]. The latter made a distinction 
between the BBB and the choroid plexus, whereas 

Krogh focused on active transport processes at the 
BBB [6]. At that time it was generally believed that the 
barrier function of the BBB was exerted by the glial 
sheets surrounding the entire surface of the neuronal 

capillaries [7]. However, in the mid-1960s Crone 
showed that Pappenheimer's pore theory for the filtra- 
tion of substances by peripheral capillaries could also 
be extended to the BBB, implying an important func- 
tional role for the neuronal capillaries [8,9]. Subse- 

quently Reese and Karnovsky, and Brightman and 
Reese, demonstrated that following intravenous injec- 
tion of the electron-dense marker horseradish peroxi- 

dase, extravasation of this compound was indeed con- 
fined by the cerebrovascular endothelial cells, imply- 
ing that these cells constitute the principal anatomical 
basis of the BBB [10,11]. 
As early as 1930 Spatz and Walter [4,5] suggested 

that the endothelial and epithelial lining of the 
choroid plexus also comprises a blood-cerebrospinal 
fluid (CSF) barrier, while the ependyma, which lines 
the brain tissue and bears a close morphological rela- 

tionship to renal tubular epithelium, represents the 
brain-CSF barrier. An overview of all these barriers is 

given in Fig 1 [12]. 
Substances which do not pass the BBB may never- 

theless reach the CNS by extravasation in the choroid 
plexus and the circumventricular organs such as the 
area postrema or median eminence because of their 
leakier endothelium, and subsequently by trans- 
ependymal transport into the CSF [13,14]. 
The surface area available for exchange at the 

blood-CSF barrier is approximately 5,000 times less 
than that of the blood-brain barrier [15]. The BBB's 

large surface area makes it the most important barrier 
for drug delivery to the brain. Besides its main func- 
tion of maintaining homeostasis in the CNS, the CSF is 
an important factor in the kinetics of substances in the 
CNS. 

Peripheral and cerebrovascular endothelial cells 

The endothelium of the microvessels in the brain 

shows various structural differences compared with 
other organs (Fig 2) [16]. Peripheral endothelial 
microvessels have fenestrations of approximately 50nm 
diameter between the endothelial cells, large enough 
to allow free exchange of water and solutes with the 
extracellular fluid. These fenestrations are not found 

in brain endothelial cells [17] and there are almost no 

pinocytotic vesicles in brain microvessel endothelium 
[18]. The transport of large proteins and colloidal lan- 
thanum is effectively blocked by the presence of very 
tight junctions [10,11]. These tight junctions are a 

highly dynamic and heterogeneous system which regu- 
lates paracellular permeability [19]; in bovine brain 
microvessel endothelial cells they appear as 80 

Angstrom rectangular pores with a fractional pore area 
of 0.01% [20]. 
The endothelial cells representing the BBB contain 

many mitochondria, indicating that in addition to its 

physical barrier properties, the BBB may also function 
as a metabolic barrier. The upregulation of the P-gly- 
coprotein efflux pump at the BBB in multi-drug resis- 
tance is further evidence of its barrier function [21]. 
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Other cell types present in and surrounding the BBB 
may influence its permeability and functionality. Astro- 
cytes [22,23,24] influence the tightness of the tight 
junction when co-cultured with cerebrovascular cells 
[25], while neurons also seem to have an effect on 
BBB function [26]. 
The BBB is not a homogeneous system. Due to fen- 

estrations, the endothelium of the circumventricular 

organs, such as the area postrema or the median 

eminence [14], is leakier than in other parts of the 

brain and is therefore not representative of the whole 
brain. Similarly, the bloodflow to the various brain 

regions may differ considerably, which suggests that 
there may be quantitative differences in drug trans- 

port across the BBB [14]. 
Anatomically the BBB is clearly not a static, homoge- 

neous, impermeable barrier. Its permeability is dynam- 
ically regulated with special features (physical and 
metabolic) arising from the absence of fenestrations, 

the relative lack of pinocytotic vesicles, the presence of 

tight junctions and mitochondria, and from the influ- 
ence of astrocytes, pericytes and neurons, and of blood 
constituents such as hormones. These regulatory sys- 
tems may have some influence on permeability and so 
affect drug delivery to the CNS. 

Implications for drug delivery to the brain 

Drugs that have their site of action in the brain should 
in general enter the brain across the BBB. Drug 
delivery to the brain may be enhanced by: 
? increasing the lipophilicity of the drug; 
? using prodrugs that are dissociated into the active 

substance and the prodrug moiety after passing the 
BBB; 

? using carrier/receptor systems present at the BBB 
(passive drug targeting); 

Fig 1. Schematic representation of the 
anatomical barriers for drug transport to 
the brain and relationship between blood- 
brain barrier and blood-CSF barrier. 
Arrows indicate possibilities for solute 
exchange and transport (redrawn 
from Bradbury) [12]. 

Fig 2. Schematic representation of some of 
the relevant anatomical characteristics of 
neural and non-neural microvessels. The 
neural microvessel differs from the 
non-neural one by the presence of 
very tight junctions, the absence of 
pinocytotic vesicles and fenestrations, 
and the relatively high number of 
mitochondria (redrawn from Reed 
et at) [18]. 
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? identifying and using upregulated transport 
systems at the BBB in disease states (active drug 
targeting). 

Lipophilic drug delivery 

Lipophilic drugs enter the brain relatively easily by 
passive transcellular diffusion. This mechanism applies 
to most psychopharmacological drugs used clinically; 
an example is the induction anaesthetic thiopentone 
[27]. However, the uptake of these drugs is not 
restricted to the brain alone but occurs also in most 

peripheral tissues. Therefore peripheral side-effects 

may occur in addition to effects on the central ner- 

vous system (CNS). 

Prodrug delivery 

A prodrug of a CNS-active compound consists of the 
attachment of a chemical moiety to the parent drug, 
usually to render the combined molecule more 

lipophilic. These prodrugs (eg esters) may be hydro- 
lysed in the target tissues (but also in blood) by various 
esterases. The delivery of prodrugs is affected by varia- 
tions in protein binding (only the unbound fraction is 
available for transport to the target tissue), in ionisa- 
tion (ionised drugs pass through membranes poorly), 
and in the pharmacokinetics of the prodrug. These 
factors may greatly change the amount of the parent 
compound that is retrieved from the prodrug and con- 

sequently affect its concentration in the target organ. 
Nevertheless, an interesting approach has been the 

development of prodrugs coupled to sterically hin- 
dered esters with good stability in plasma and with a 

degree of lipophilicity that did not reduce their trans- 

Table 1. Blood-brain barrier transport systems* 

Transport Substrate Kd Km Vmax 

system (ml/min g) (mM) (nmol/ 
min g) 

Hexose 

Monocarboxylic 
acid 

Large neutral 
amino-acid 

Basic 

amino-acid 

Acidic 

amino-acid 

Amine 

Purine 

Nucleoside 

Thiamine 

Thyroid 

Glucose 0.023 

Lactate 0.028 

Phenyl- 
alanine 0.018 

Lysine 0.007 

Glutamate 0.002 

Choline 0.003 

Adenine 0.006 

Adenosine 0.001 

Thiamine 0.029 

T3 

9 1600 

1.9 120 

0.12 30 

0.10 6 

0.22 6 

0.027 1 

0.018 0.7 

0.004 0.03 

0.001 0.1 

*Data from references 34, 35, 36, 37, 38. 

port to the brain by restrictive protein binding 
[28,29]; they also entered the brain readily and high 
concentrations were maintained in the brain while 

plasma concentrations decreased rapidly. 
Other approaches to prodrug delivery are the so- 

called double ester prodrugs [30], and the dihydropy- 
ridine/pyridinium salt redox-type reactions 

[31,32,33]. The former implies the application of a 

special double ester that avoids the problems that 
occur with the sterical hindrance esters when the pro- 

drug has to be hydrolysed again. This procedure can 
be applied to create lipophilic prodrugs that can enter 
the brain and are relatively quickly hydrolysed. The 
latter approach employs the dihydropyridine form of 
the drug which is lipophilic enough to enter the brain 
and which will subsequently be oxidised by NADH- 
linked dehydrogenases to the charged and therefore 

hydrophilic pyridinium compound. This 'traps' the 

compound in the brain, because its diffusion out of 
the brain will be slow. 

Carrier/receptor mediated drug delivery 

The CNS requires an adequate supply of nutrients and 
other factors to function properly. These are often 
hydrophilic substances that need to be transported 
across the BBB and the blood-CSF barrier by 
specialised carrier/receptor systems, each responsible 
for blood-to-brain transport of a group of closely relat- 
ed substrates. An overview of the values of the main 

kinetic parameters of several of these transport systems 
with their substrates is given in Table 1 [34,35,36, 
37,38]. 
Probably the most successful use of a carrier for 

drug delivery to the brain is the use of L-dopa in 
Parkinson's disease. L-dopa is transported into the 
CNS by the large neutral amino-acid carrier and is 
then decarboxylated to yield dopamine, the active 

moiety. Since the enzyme decarboxylase, responsible 
for conversion to the active drug, is not solely located 
in the CNS, peripherally acting decarboxylase 
inhibitors which do not penetrate the BBB have to be 
administered concurrently. Bodor et al have proposed 
the use of a general dihydropyridine promoiety which 
uses the pyridinium carrier for transport, after which it 
is oxidatively cleft in the CNS and the drug released 
[39]. This so-called chemical delivery system (CDS) 
has been applied with variable results. Examples 
include the transport of gamma aminobutyric acid 
(GABA) [40] and estradiol [41] across the BBB. It 
seems that the use of the dihydropyridine-CDS 
depends on the structure of the drug to which it is 
linked and that linkage to larger drugs could hinder 
the enzymatic cleavage of the prodrug [42]. 
Another interesting example is the transport into 

the brain of alkylating drugs like melphalan [43] and 
d,l-NAM [44] (both are nitrogen mustard amino-acid 
derivatives) by the large neutral amino-acid carrier. 
Other drugs like baclofen, a centrally acting muscle- 
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relaxing agent, are stereoselectively transported to the 
brain [45] presumably by the large neutral amino-acid 
carrier, while AZT is passively transported across the 
BBB and actively into and out of the CSF by the 
choroid plexus [46,47]. In addition, various peptides 
are transported to the brain by passive or active 
(peptide) transport systems [48,49]. 
The so-called chimaeric peptide approach has also 

gained considerable attention. It comprises the cova- 
lent binding of a peptide to another peptide that is 
transported across the BBB by a receptor system, eg 
transferrin or insulin [50]. Although it increased the 

transport of these chimaeric peptides into the brain, 
the absolute amount of drug uptake was quite small. 

Similarly, the transport of liposomes coupled to the 
Fab fragment of the OX-26 monoclonal antitransferrin 

receptor antibody seems to exhibit an increased bind- 
ing or uptake by the brain and/or endothelium [51]. 
However, the amounts taken up in the brain were 
again quite small, while the presence of a relatively 
high density of transferrin receptors in the spleen and 
red blood cells resulted in a significant uptake of the 
liposomes in these tissues. 

Upregulated transport systems at the BBB in disease state 
(active drug targeting) 

The BBB functions as an interface between blood and 
the brain. Its function can be influenced by astrocytes, 
pericytes, neurons, and many substances in the blood 
such as hormones. Little is known about the changes 
in BBB function in disease state, in particular in 
diseases of the CNS. Several processes may be altered 
in such circumstances, eg protein binding capacity and 
blood flow [52,53]. In addition the BBB may be 

'opened' in inflammation or by tumours. Preliminary 
results in rats indicated that in inflammation the trans- 

port of hydrophilic compounds across the BBB is 
increased, possibly because of their changed plasma 
kinetics [54]. Less is known about the up- or down-reg- 
ulation of transport systems at the BBB in disease 
states. There are indications that this may occur, eg the 

expression of ICAM-1 and ICAM-2 was down-regulated 
in a mammary adenocarcinoma in rats [55], while in 
inflammation these molecules were up-regulated [56]. 
Following stimulation with lipopolysaccharide and 
interleukin-1 and 6, lymphocyte binding was increased 
three-fold and could be blocked by monoclonal anti- 
VLA4 and anti-CD 11 a/CD 18 (LFA-1) antibodies [57]. 
Thus disease states may yield important pointers 
towards achieving selectivity in BBB transport by iden- 

tifying up-regulated transport systems at the BBB. 

General remarks 

When an endogenous carrier or receptor is being 
used, interactions between endogenous ligands and 
the drug may be prominent. The endogenous ligands 
often have a higher affinity for the carrier. Drug deliv- 

ery is therefore dependent on and complementary to 
ligand kinetics. Predictable and reproducible trans- 
port into the CNS can be difficult in such a situation. 

Clinically relevant interactions between dietary amino- 
acids and L-dopa therapy, resulting in the 'on-off syn- 
drome in Parkinson's disease, have been reported 
[58]. On the other hand, drug interaction with the 
carrier may interfere with the transport of endoge- 
nous ligands, especially by drugs with a high affinity 
for the carrier system, and may lead to unphysiological 
situations. 

Modifications of drug transport across the BBB can 
be satisfactorily accomplished only by designing 
methodologies which specifically modify the transport 
profile of the compound in question. Since general 
modification of permeability is not possible, a specific 
approach is necessary for each drug [59,60]. This 
implies that in designing new drugs for optimal CNS 
delivery with minimal peripheral side-effects, careful 
attention should be given to the 'delivery system' in 
combination with a particular BBB transport system. 
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