
Integrin b3 Crosstalk with VEGFR Accommodating
Tyrosine Phosphorylation as a Regulatory Switch
Xiaoxia Z. West1., Nahum Meller1., Nikolay L. Malinin1, Lalit Deshmukh2,3, Julia Meller1, Ganapati H.

Mahabeleshwar1,4, Malory E. Weber1, Bethany A. Kerr1, Olga Vinogradova2*, Tatiana V. Byzova1*

1 Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America, 2 Department of Pharmaceutical Sciences,

School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America, 3 Laboratory of Chemical Physics, National Institute of Diabetes and

Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America, 4 University Hospitals Harrington-McLaughlin Heart & Vascular

Institute and Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America

Abstract

Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding
extracellular matrix. Previous studies demonstrated the importance of the interaction between b3 integrin and VEGF type 2
receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the
cytoplasmic tails (CTs) of b3 and VEGFR2. Specifically, the membrane-proximal motif around 801YLSI in VEGFR2 mediates its
binding to non-phosphorylated b3CT, accommodating an a-helical turn in integrin bound conformation. We also show that
Y747 phosphorylation of b3 enhances the above interaction. To demonstrate the importance of b3 phosphorylation in
endothelial cell functions, we synthesized b3CT-mimicking Y747 phosphorylated and unphosphorylated membrane
permeable peptides. We show that a peptide containing phospho-Y747 but not F747 significantly inhibits VEGF-induced
signaling and angiogenesis. Moreover, phospho-Y747 peptide exhibits inhibitory effect only in WT but not in b3 integrin
knock-out or b3 integrin knock-in cells expressing b3 with two tyrosines substituted for phenylalanines, demonstrating its
specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data
provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2.
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Introduction

Integrins are a family of transmembrane, heterodimeric

glycoproteins composed of alpha and beta subunits. Each integrin

subunit contains a large extracellular ligand-binding portion, a

single membrane-spanning region, and a short cytoplasmic tail

devoid of any enzymatic activity [1]. A crucial characteristic of all

integrins, and particularly of the two members of the b3 subfamily,

aIIbb3 and avb3, is their ability to become activated upon cell

stimulation due to agonists or growth factors, a process termed

‘inside-out’ signaling. Activated integrins can bind to extracellular

matrix components with high affinity and mediate, through

‘outside-in’ signaling events, many vital cellular processes such as

adhesion, migration, and proliferation [2].

The b subunits’ CTs include two tyrosine phosphorylation sites,

located within NPxY and/or NPxY-like motifs, and are known to

interact with phosphotyrosine binding (PTB) domains of intracel-

lular signaling mediators [3]. These interactions can regulate

integrin activation states differentially. For example, talin serves as

a major activator for non-phosphorylated b3 [4,5], while Dok1

binds to b3 phosphorylated at Y747 with a higher affinity and thus,

by replacing talin, favors the latent state of the receptor [6]. For

aIIbb3, the biochemical studies suggest that phosphorylation of

both tyrosines (Y747 and Y759) is required for the recruitment of

myosin, while phosphorylation of Y759 alone is sufficient for

interaction with the adapter protein Shc [7,8]. Our recent

structural investigation established the underlying molecular

mechanism behind the interaction between the Shc PTB domain

and tyrosines phosphorylated (Y747, Y759) on the b3CT [9]. In

addition, several studies have demonstrated that tyrosine phos-

phorylation of b3 is involved in the regulation of aVb3 integrin-

dependent adhesion, specifically under conditions of cell activa-

tion, and that Y747F mutation diminished the stimulation-induced

cell adhesion to vitronectin (VN), suggesting that phosphorylation

is necessary for a fully functional avb3 [10,11,12,13]. In addition,

increases in the strength of the avb3-VN interaction were shown to

be dependent on phosphorylation of b3CT [11]. In contrast, avb3

mediated adhesion to fibronectin was shown to be abolished with

increased b3 phosphorylation [14]. Thus, several studies have

demonstrated that tyrosine phosphorylation of b3 integrin might

support different aspects of integrin function. Consequences of

integrin phosphorylation might be further modulated by interac-
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tions between integrin and intracellular mediators, the presence of

which depends upon the cell type and the stage of cell adhesion

and spreading.

We have previously demonstrated that avb3 function on the

endothelium depends on its cross-talk with VEGF type receptor

(VEGFR2) [15]. Endothelial cell (EC) stimulation by VEGF

promotes a complex formation between avb3 and VEGFR2, as

well as a conformational change of avb3 to a high affinity state

[16]. VEGF treatment triggers phosphorylation of b3CT on Y747

and Y759, which are located within the NPxY and NxxY motifs,

respectively [16,17]. Mutations of these residues to phenylalanines

inhibit the complex formation between VEGFR2 and b3 integrin

and VEGF-induced angiogenic responses [16,17,18]. The rela-

tionship between VEGFR2 and b3 appears to be of a reciprocal

nature, as b3 phosphorylation also leads to enhanced phosphor-

ylation and activation of VEGFR2 [16]. In the presence of normal

b3 expression, the interplay between the two receptors regulates a

number of cellular responses underlying angiogenesis, including

EC adhesion, migration, and formation of endothelial tube

networks [19,20]. Based on our and others’ findings that Y747F-

Y759F substitutions diminish adhesion to VN and integrin activity,

we suggest that phosphorylation of these residues must play a

pivotal role in regulation of integrin function [10,11,12,13,16]. In

this study we have defined one of the VEGFR2 binding to b3

motifs corresponding to its membrane-proximal region, we have

shown that tyrosine-phosphorylation promotes the above interac-

tion between b3 and VEGFR2 CTs, and we have proved

physiological significance of this interaction by confirming that

b3 derived Y747 containing inhibitory peptide diminishes EC tube

formation and angiogenesis. Overall, these data provide novel

molecular and mechanistic insights into phosphorylation depen-

dent cross-talk between integrins and VEGF receptors.

Results

VEGFR2 interacts with b3CT in a phosphorylation
dependent manner

Based on our findings that VEGFR2 regulates integrin

activation and signaling [21] and that b3 tyrosine phosphorylation

is crucial for VEGF-induced tyrosine phosphorylation of VEGFR2

[22], we assessed whether the cytoplasmic portion of VEGFR2

binds directly to b3CT and how tyrosine phosphorylation affects

this interaction. Unlabeled synthetic peptide VpepA (sequence

shown in Materials and Methods), representing the thirty

membrane proximal residues of VEGFR2 cytoplasmic domain,

was titrated into the solution of 15N-labeled b3NP (non-

phosphorylated CT) and 15N-labeled b3MP (mono-Y747-phos-

phorylated CT). Associated chemical shift perturbations were

monitored (Figure 1a and 1b). Chemical shift changes, plotted as a

function of the residue number in b3CT, are shown in Figure 1c

for b3NP and Figure 1d for b3MP. For non-phosphorylated b3CT,

maximal perturbations occur near the membrane proximal region

(residues 716KLLITIHDRK725), which might represent the

primary binding site for VEGFR2. However, upon phosphoryla-

tion, in addition to the above region, maximal perturbations were

recorded near the Y747 phosphorylation site (744NPLYKEA750).

This finding represents the second binding site and, possibly,

increased affinity. Although the chemical shift perturbations were

rather modest, they were reproducible and concentration

dependent, and reached saturation at a peptide to protein ratio

of 3 to 1, indicating the low affinity but specific nature of the

observed interaction. Our attempts to calculate the dissociation

constants from these titration series were unsuccessful due to low

solubility and high tendency of the both VpepA and b3CT to

precipitate while forming the complex.

Thus, to further confirm and characterize the weak binding of

VEGFR2-CTderived peptides to non-phosphorylated b3, we have

employed an additional trNOE-based approach. b3CT was

coupled to glutathione S-transferase (GST-b3) and two smaller

VEGFR2 peptides were synthesized (VpepB and VpepC; see

Materials and Methods). TrNOE experiments, the method of

choice for studying ultra-weak ligand-receptor pairs [23], were

performed and the ratios of peptides to GST-b3 were optimized

for the most favorable NOE transfer (appeared to happen at a 50

to 1 ratio). The patterns of additional peaks observed for both

VpepB and VpepC peptides when mixed with GST-b3 were

similar (Figure 1e and 1f, respectively), confirming the interaction

between peptides and GST-b3. However, since more trNOEs were

detected for VpepB, this peptide was chosen for further structural

analysis. The majority of the additional NOE peaks characterize

residues of the region surrounding 801YLSI804, indicating that this

area assumes a bound conformation upon interaction with b3NP.

It is imperative, however, for the ultra-weak interactions, such as

described above, to confirm their specificity. For this reason, we

performed negative control experiments. There were no additional

peaks in NOESY spectra of GST-VpepB mixtures (data not

shown) and thus we can confidently use this system for structural

characterization of VEGFR2-derived peptides.

While the structural analysis was reported for extracellular

ligand binding [24] and cytoplasmic kinase domains of VEGFR2

[25], no structural information is available regarding the

membrane proximal region of VEGFR2. Accordingly, we

performed structural calculations for VpepB bound to GST-b3.

VpepB exhibits a well defined C-terminal region (801YLSIV805),

forming an a-helical turn and an additional loop surrounding two

Gly residues (792ANGGE796), whereas the remaining parts are

unstructured. Figure 1g shows a ribbon representation of VpepB

along with ball and stick representation for residues 801YLSI804.

Figure 1h illuminates backbone superposition of the 15 lowest

energy conformers. Statistics for this ensemble are presented in

Table 1 and the sequential connectivity map is shown in Figure

S1. The NMR data has been deposited to BMRB (access code

18148).

Collectively, our data demonstrate that non-phosphorylated

b3CT interacts with VEGFR2, and this interaction involves the

membrane proximal region within b3CT and 801YLSI804 motif

within VEGFR2. b3 Y747 phosphorylation generates an additional

VEGFR2 binding site within the 744NPLYKEA750 region of

b3CT, which is not susceptible to structural characterization using

the approach employed for the non-phosphorylated b3 (as we were

unable to purify GST-fused mono-Y747-phosphorylated b3CT)

and awaits the development of novel strategy for further

investigation.

b3CT tyrosine phosphorylation and its consequences in
endothelial cells

Since our recent results [26,27] indicate that phosphorylation of

Y747 might stabilize the integrin activated state, and the data

presented above show that Y747 phosphorylation also promotes

b3CT binding to VEGFR2, we next sought to assess the

physiological consequences of b3CT phosphorylation in ECs. To

this end, we utilized a phosphopeptide containing a 16 amino acid

sequence from b3CT encompassing the 744NPLpY747 motif [12]

(pY747 peptide; Figure 2a). The peptide is expected to compete

with endogenous binding partners for b3MP, including the

VEGFR2 cytoplasmic domain. Previous studies have utilized the

mutations of Y747 and Y759 to phenylalanines in order to simulate
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the non-phosphorylated state of b3CT. Therefore, in addition to a

peptide containing nonphosphorylated 744NPLY747 motif (Y747

peptide, we used a peptide bearing Y747F mutation (F747 peptide)

as controls in our studies (Figure 2a). The peptides were

conjugated to an HIV-TAT leader sequence to allow delivery

into cells. Indeed, the results of confocal microscopy analysis of

ECs confirmed the uptake and the presence of the peptides within

the cells and, most importantly, on the cell surface (Figure S2).

To assess the requirement of Y747 phosphorylation of b3 for

integrin-dependent angiogenic responses of ECs, three experi-

mental systems were utilized. During angiogenesis, ECs re-

organize to form a three-dimensional vessel structure [28], and

this could be modeled in vitro in tube formation assays.

Accordingly, tube formation by HUVEC treated with VEGF

was assessed in the presence of b3CT-derived pY747, Y747, or

F747 peptides. As shown in Figure 2b, VEGF-treated HUVEC

formed a robust endothelial network. The tyrosine-phosphorylated

peptide (pY747) inhibited this process, resulting in a disruption of

the network’s structure (Figure 2c). The thickness (Figure 2d), as

well as the tube length (Figure 2f), of endothelial branches formed

in the presence of pY747 peptide was significantly decreased

compared to untreated cells. In contrast, cells treated with control

F747 peptide were able to form a network of endothelial cords as

robust as seen in untreated cells (Figure 2c). Unphosphorylated

Y747 peptide exhibited only a weak or negligible effect (Figure 2c).

In a similar assay, a peptide containing pY759 sequence from the

second NPxY-like motif of b3 had no inhibitory effect, emphasiz-

ing the unique role of pY747 residue (Figure 2e). In the aortic ring

assay, pY747 was even more potent. The treatment with pY747,

but not F747 or Y747 peptide, inhibited the sprouting of ECs

stimulated by VEGF by more than 60% (Figure 3a and 3b). Next,

the effect of pY747 peptide on in vivo angiogenesis induced by

VEGF was evaluated. Matrigel containing (or lacking) VEGF and

peptides was injected subcutaneously in C57BL/6 (wild type)

mice. Seven days later, matrigel implants were removed,

sectioned, and blood vessels were stained using CD31 antibody.

The pY747 peptide inhibited VEGF-induced vascularization by

more three-fold, while the control F747 or Y747 peptides had no

effect (Figure 3c and 3d).

The pY747 peptide is predicted to mimic and compete with the

phosphorylated form of endogenous b3 integrin and, therefore, to

also inhibit b3 phosphorylation-dependent responses. Thus, this

peptide should not have any inhibitory activity in mice

characterized by the lack of b3 phosphorylation (b3 knock-out

mice or DiYF knock-in mice [29]), which, in turn, diminishes the

complex formation between b3 and VEGFR2 [16,30]. Indeed, as

shown in Figure 4a and 4b, pY747 phosphopeptide could not

effectively inhibit angiogenesis induced by VEGF in the aortic ring

from b32/2 mice, which is corroborated by the experiments with

DiYF knock-in mice (Figure 4c). In addition, pY7474 peptide

inhibition was specific to VEGF as no inhibition of basic fibroblast

growth factor (bFGF) angiogenesis occurred in wild type, b32/2,

or DiYF mice (Figure 4c). Furthermore, the results from matrigel

plug assay demonstrated that pY747 peptide resulted in inhibition

of VEGF-induced angiogenesis in wild type, but not in DiYF mice,

demonstrating the specificity of the approach (Figure 4d and 4e).

Together, these results indicate that b3CT phosphorylation at Y747

positively regulates integrin-dependent responses in angiogenesis.

VEGF-induced VEGFR2 phosphorylation and downstream
signaling are diminished by pY747 peptide

Studies from our lab and others demonstrated cross-activation

of VEGFR2 and avb3 [16]. To test whether VEGFR2 activation

and subsequent signaling were affected by pY747 peptide, we

assessed Y1175 phosphorylation of VEGFR2, a major VEGF-

dependent VEGFR2 autophosphorylation site implicated in EC

Table 1. Structural statistics for the 15 final NMR structures of
VpepB.

NMR distance constraints

Distance constraints

Total NOE 151

Intra-residue 48

Inter-residue 103

Sequential (|i2j| = 1) 72

Medium-range (|i2j,5) 31

Long-range (|i2j|. = 5) 0

Hydrogen bonds 0

Structure statistics

Violations (mean and s.d.)

Distance constraints (Å) 0.045+/20.007

Max. distance constraint violation (Å) 0.366

Deviations from idealized geometry

Bond lengths (Å) 0.012+/20.0001

Bond angles (u) 0.75+/20.039

Impropers (u) 0.36+/20.027

Average pairwise r.m.s. deviation (Å)a ordered residues 801–804

Heavy 0.5

Backbone 0.1

Ramachandran plota

Most favored 51.1%

Additionally allowed 44.4%

Generously allowed 4.4%

Disallowed regions 0.0%

a)Ordered residues (residues with sum of phi and psi order parameters ,1.8) are
considered for r.m.s.d. calculations and Ramachandran statistics.

doi:10.1371/journal.pone.0031071.t001

Figure 1. Summary of the in vitro evidence for a direct interaction between VEGFR2 and b3CTs and structure of the VEGFR2 801YLSI
motif in bound conformation. Chemical shift titrations were performed in water at 25uC at pH 6.1 with b3 concentrations of in a range of 30–
100 mM. Expanded region of 15N HSQC spectra show chemical shift perturbations for a) b3NP. b) b3MP in presence of VpepA at the ratio 1:1.
c) Chemical shift changes in 15N labeled b3NP upon addition of VpepA at the ratios of 1:1 (red) and 1:2 (green). d) Chemical shift changes in 15N
labeled b3MP upon addition of VpepA at the ratios of 1:1 (red) and 1:2 (green). Delta [ppm] refers to the combined HN and N chemical shift changes
according to the equation: Dd(HN,N) = ((DdHN

2+0.2(DdN)2)1/2, where Dd= dbound-dfree. Transferred NOEs: all the NOESY experiments were performed in
50 mM NaCl and 25 mM Na-phosphate buffer at pH 6.1 and 25uC with peptide to protein ratio of 50 to 1 and peptide concentrations of 1 mM;
e) VpepB alone is shown in black and VpepB in combination with GST-b3 is shown in green; f) VpepC alone (black) and VpepC in combination with
GST-b3 (green). g) Ribbon representation of VpepB structure. Hydrophobic residues of 801YLSI region are shown in dark gray. h) Backbone
superimposition of the 15 lowest energy conformers of VpepB. Residues used for superimposition are 801YLSI. Molecular graphics images were
produced using the UCSF Chimera package (Pettersen et al., 2004).
doi:10.1371/journal.pone.0031071.g001
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migration, along with ERK phosphorylation and subsequent DNA

synthesis [31,32]. To this end, the phosphorylation status of Y1175

of VEGFR2 and ERK1/2 was assessed in ECs, which were

treated with peptides with or without VEGF stimulation. Western

blot analysis shows that treatment of cells with pY747 peptide

resulted in inhibition of VEGFR2 and ERK1/2 phosphorylation

in a dose-dependent manner with the maximal effect occurring at

40 mM or higher concentrations; the control F747 peptide,

however, had no effect (Figure 5). Thus, interference with

intracellular signaling mediated by phosphorylated b3CT results

in impaired activation of VEGFR2 and proangiogenic signaling

events downstream of VEGFR2.

In contrast to VEGF, pY747 peptide had no effect on bFGF-

induced activation of downstream signaling molecules, represented

by phospho-ERK. As shown in Figure S3, ERK activation by

bFGF was not affected in the presence of either pY747 or control

F747 peptide. In these experiments, effects of VEGF were

neutralized by VEGFR inhibitor, AAL-993. Together with results

of NMR experiments (Figure 1) and previously published

observations [16,18], these data further emphasize the specificity

and importance of a cross-talk between VEGFR2 and b3 integrin.

Together, our findings provide a structural basis for the cross-talk

between b3CT and VEGFR2 and show that this cross-talk

mediates important cellular processes, such as VEGFR2 activa-

tion, EC tube formation, and angiogenesis.

Discussion

Over the last decade, the importance of the interplay between

integrins and growth factor receptors was demonstrated in a

number of physiologically important processes, including angio-

genesis. At the same time, tyrosine phosphorylation of b3 integrin

has been identified as a major regulatory event for the modulation

of this integrin function and its cross-talk with VEGF receptor. In

the presented work, we have focused on the intertwining of these

two processes. Using a NMR approach, we have documented a

direct interaction between VEGFR2 and b3 CTs, which appeared

to be dependent upon Y747 phosphorylation of b3.

In platelets, Y747 phosphorylation of b3 occurs as a consequence

of ligand binding and receptor clustering [33]. In this case,

tyrosine phosphorylation appears to be involved in outside-in

signaling [7,29]. In ECs, however, Y747 phosphorylation of b3

occurs in response to VEGF stimulation in the absence of ligand.

Here, we have shown that the phosphopeptide containing pY747

acts as an antagonist of VEGF-induced and integrin-mediated

responses. It inhibits cellular processes known to be dependent on

b3 integrin activation, such as VEGF-induced endothelial tube

formation, sprouting, and angiogenesis in vivo. Importantly, the

phosphopeptide containing pY747 is a highly specific inhibitor for

processes dependent on b3 and its phosphorylation, since this

peptide has no effect in DiYF knock-in mice expressing mutant b3

unable to undergo phosphorylation as well as in b3 knock-out

mice.

Previous studies using cell systems with ‘‘activatable’’ aVb3, such

as myeloid K562 cells, demonstrated that that substitution of Y747

by phenylalanine impaired agonist-induced adhesion to VN

[10,13]. A subsequent study demonstrated that firm adhesion of

K562 cells to VN proceeds through three steps, and it is the second

step characterized by a four-fold increase in receptor-ligand binding

strength that was shown to be dependent on phosphorylation of

Y747. In ECs, DiYF mutations of both Y747 and Y759 to

phenylalanines affected VEGF-induced activation of aVb3 and

endothelial responses [16]. However, in Chinese hamster ovary

(CHO) cells, expressing aVb3, a cell model generally characterized

by the lack of inside-out integrin signaling, the Y747F mutation did

not affect binding of fibrinogen-coated beads [33]. A possibility of

indirect inhibitory effect of b3 phosphorylation was reported in a

study utilizing expression of temperature-sensitive v-Src in osteo-

sarcoma cells. In this study, increased b3 phosphorylation correlated

with reduced aVb3-fibronectin binding strength, which was rescued

by the Y747F mutation [14]. However, many mutagenesis studies

using a well-defined integrin activation monitoring system, i.e.

binding of soluble monovalent ligand, demonstrate that mutations

of Y747 to F generally diminish integrin function. This effect might

also be attributed to the disruption of binding sites for key integrin

activators, such as talin and kindlin. In this regard, our data showing

differential effects of b3 phosphopeptide containing pY747 versus its

unphosphorylated form are crucial in demonstrating the role of

phosphorylation of this integrin, per se. Of particular interest is the

fact that the effect of phosphorylation may differ for other

subfamilies of b integrins. For example, in mice whose tyrosines

of the b1 tail were mutated to phenylalanines (YY783/795FF), no

obvious defects have been observed [34]. Again, use of the Y to F

mutations need to be interpreted with an understanding that these

mutations might affect events other than the direct consequences of

phosphorylation. These reservations concerning mutagenesis stud-

ies emphasize the importance of the structural analysis presented in

this study, which allowed direct comparison of phosphorylated

versus unphosphorylated form of b3.

Y747 phosphorylation in b3CT appears to promote a complex

formation with VEGFR2, and this complex is not present in DiYF

mutant cells [18]. Our data show not only the presence of the b3-

VEGFR2-CTs complex, but also the key regulatory role of the

Y747 phosphorylation site in this complex formation. Furthermore,

b3CT-derived Y747-phosphorylated peptide was able to disrupt

VEGF-induced signaling, EC tube formation, and angiogenesis, in

contrast to the unphosphorylated control. Thus, our in vitro data

supports in vivo observations that b3CT phosphorylation is crucial

for the interaction and cross-talk with VEGFR2 [16,18]. This

interaction performs a key regulatory function in pathological

angiogenesis [18], and new structural insights into this mechanism

may permit the design of novel anti-angiogenic compounds. While

we demonstrate that phosphorylation of the Y747 likely increases

the affinity of b3 for VEGFR2-derived, membrane-proximal

peptides, additional phosphorylation of Y759 might diminish this

effect (data not shown). This finding may indicate a key role for the

Figure 2. The pY747 peptide inhibits VEGFR2-induced angiogenesis in vitro. a) The amino acid sequences of VpepA, human integrin b3

cytoplasmic tail (CT), and derived peptides. The conserved YLSI (VpepA), HDRKE (Integrin b3CT) along with the two tyrosine phosphorylation motifs
are shown in orange. HIV-TAT leader sequence (shown in blue) was added to allow delivery of the peptides across the cell membrane.
b) Representative images of HUVEC tube formation in the presence with or without VEGF (20 ng/mL). c) Example images of inhibition of in vitro
endothelial tube formation by the pY747 peptide. HUVEC were plated on matrigel-coated 48 well plates in the presence of 20 ng/mL VEGF and
peptides at indicated concentrations. The cells were allowed to form tubes for 16 hours, bright field images at 2.56magnification were taken and
analyzed (using computer algorithms) for number, length, and thickness of branches. d) Quantitative result of branch thickness under different
treatments. e) Representative images of tube formation in the presence of pY747 and pY759 peptide. f) Quantitative result of tube length as
indicated.
doi:10.1371/journal.pone.0031071.g002

Integrin b3 Crosstalk with VEGFR

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31071



Figure 3. The pY747 peptide inhibits VEGFR2-induced angiogenesis in ex vivo and in vivo. a) Inhibition of ex vivo endothelial sprouting by
the pY747 peptide. Mouse aortic rings were embedded in matrigel in the presence or absence of 40 ng/mL of VEGF and peptides as indicated.
Photographs were taken at three days and the number of endothelial sprouts originating from each ring was determined. b) Quantification of aortic
ring assay as indicated in Fig. 3a. c) Inhibition of in vivo angiogenesis by pY747 peptide. Results of matrigel plug angiogenesis assay are shown. The
indicated peptides at 200 mM concentration were mixed with growth factor-reduced matrigel containing VEGF (500 ng/mL) and injected
subcutaneously into wild type mice. Seven days later, the matrigel implants were removed, sectioned, and blood vessels were stained with CD31 Ab
(red) and nuclei with DAPI (blue). Vessel area was determined using ImagePro. d) Quantified results of matrigel plug assay as indicated in Fig. 3c.
doi:10.1371/journal.pone.0031071.g003
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Figure 4. The pY747 peptide has no effect on b32/2 or DiYF mice. a) pY747 peptide does not inhibit VEGF-induced aortic ring growth from
b32/2 mice. Mouse aortic rings were embedded in matrigel in the presence of 40 ng/mL of VEGF and 40 mM of peptides as indicated.
b) Quantification of aortic ring assay as indicated in Fig. 4a. c) pY747 could not inhibit bFGF-induced aortic ring growth, Mouse aortic rings were
isolated from wild type (WT), b32/2, and DiYF mice and embedded in matrigel in the presence of 40 ng/mL of VEGF, 20 ng/mL of bFGF or pY747
peptides as indicated. Aortic rings were incubated for 3 days for wild type and b32/2 aortic rings and 4 days for DiYF aortic rings (longer incubation
was used to obtain visible aortic sprouting which is diminished in these mice). d) pY747 peptide does not inhibit angiogenesis in DiYF mice. Peptides’
effect on in vivo angiogenesis in wild type mice and DiYF mice was tested as described. e) Quantification of blood vessels in matrigel plus assay as
indicated.
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NPLY747 motif in positive regulation of the cross-talk between

VEGFR2 and b3 [30], which is in agreement with differences in

the kinetics of Y747 vs. Y759 phosphorylation in response to VEGF

in ECs [18].

To conclude, we have shown direct complex formation between

cytoplasmic tails of b3 integrin and VEGFR2 in vitro, structurally

characterized one of the VEGFR2 binding motifs, and confirmed

that the above interaction is further enhanced by Y747 phosphor-

ylation of b3 integrin. We also showed in vivo that pY747 affects b3

integrin cross-talk with VEGFR2 resulting in suppressed VEGF-

induced signaling, endothelial tube formation, and angiogenesis.

These findings identify important regulatory elements controlling

the activity of b3 integrins in ECs, which underlie a number of

more complex responses, including thrombosis/haemostasis and

pathological angiogenesis.

Materials and Methods

Peptide synthesis
Short peptides corresponding to the membrane proximal region

of VEGFR2, VpepA (786LRTVKRANGGELKTGYLSIVMDP-

DELPLDE815), VpepB (786LRTVKRANGGELKTGYLSIV805),

VpepC (791RANGGELKTGYLSIVMDPD809), and membrane-

permeable corresponding to b3CT peptides, pY747(YGRKKRR-

QRRRDTANNPLpYKEATSTFT),Y747 (YGRKKRRQRRRD-

TANNPLYKEATSTFT), and F747 (YGRKKRRQRRRDTAN-

NPLFKEATSTFT) were synthesized in the Cleveland Clinic

Molecular Biotechnology Core laboratory byFmoc chemistry

using solid phase Omega 396 synthesizer (Advanced ChemTech,

Louisville, KY). Quality analysis of the peptides was performed by

HPLC on an analytical reverse phase C-18 column and by matrix

Figure 5. pY747 peptide inhibits VEGF-induced VEGFR2 phosphorylation and ERK activation. Serum starved HUVEC were incubated
with the indicated concentrations of pY747 or F747 peptides for 3 h, then stimulated with 20 ng/mL VEGF for five min at 37uC or left unstimulated.
The cells were lysed and equal amounts of protein from total cell lysates were subjected to Western blot analysis with a) anti-p-VEGFR2 (Y1775) Ab or
b) anti-p-ERK1/2 antibodies. The blots were reprobed with a) anti-total VEGFR2 or b) anti-total ERK1/2 antibodies as loading control. Bands were
quantified by densitometric analysis and fold increase over unstimulated cells are displayed (right panels).
doi:10.1371/journal.pone.0031071.g005
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assisted laser desorption ionization time-of-flight (MALDI-TOF)

mass spectrometry (MS).

Expression and Purification
Cloning, expression, and purification of b3CT and GST-b3

have been described previously [5,35]. To produce 15N isotopi-

cally labeled b3CT cells were grown in M9 minimal medium

containing 15NH4Cl (1.1 g/L). Tyrosine phosphorylation of b3CT

has been achieved in vivo by using TKB1 bacterial cell line from

Stratagene following the manufacture’s protocol for the recombi-

nant protein induction as described elsewhere [26].

NMR Spectroscopy
1H-15N Heteronuclear single quantum correlation (HSQC)

titration experiments were performed in water at 25uC on Varian

Inova 600 MHz equipped with inverse-triple resonance cryo-

probe. Chemical shifts assignments have been determined

previously [5] and have been modified to address the effect of

phosphorylation. Transferred NOESY experiments for different

peptides were performed at pH 6.1. Different ratios of the peptides

to the binding partner were investigated to find the optimal range

for NOE transfer for each particular analysis. All the spectra were

processed with NMRPipe [36] and analyzed by CCPN software

suite [37]. The resonance assignments of unlabeled peptides were

made using conventional 2D 1H-1H TOCSY and NOESY spectra

[38] by CCPN software suite [37].

Structure Calculation
Sequence-specific assignments of integrin tails are described

elsewhere [5]. Restraints from two dimensional 1H-1H NOESY

experiment were used for the structure calculations. The structures

were calculated based on the hybrid distance geometry-dynamical

simulated annealing method using the X-PLOR-NIH [39]. The

target function minimized during simulated annealing (as well as

during conventional Powell minimization) comprises only qua-

dratic harmonic terms for covalent geometry, square-well

quadratic potentials for the experimental distance restraints. Best

structures from the ensembles have been chosen based upon

lowest Lennard–Jones potential. None of the structures have NOE

violations greater than 0.5 Å. The Protein Structure Software suite

(PSVS; courtesy of CABM Structural Bioinformatics Laboratory,

Rutgers State University of New Jersey) was used for structure

validation (http://psvs-1_3.nesg.org/).

Materials and Animals
Rabbit polyclonal anti-VEGFR2, anti-b3-integrin, and mouse

monoclonal anti-phospho tyrosine antibodies were purchased

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Anti-

ERK1/2, Anti-p-ERK1/2, and anti-phospho-VEGFR2 were

from Cell Signaling Technology (Beverly, MA). VEGF was

purchased from R&D Systems (Minneapolis, MN) and matrigel

was obtained from BD Biosciences (San Jose, CA). DiI was

obtained from Invitrogen (Carlsbad, CA). Drabkin’s reagent was

from Sigma. C57BL/6 (wild type), b3 knock-out (C57BL/6

background), and DiYF knock-in (in DiYF mice, the b3 integrin

tyrosines 747 and 759 are mutated to phenylalanine, C57BL/6

background [29]) mice were housed and treated according to

Cleveland Clinic Institutional Animal Care and Use Committee

regulations.

Cell culture
Human umbilical cord vein endothelial cells (HUVEC) were

grown in DMEM:F12 media supplemented with 15% FBS,

100 U/mL penicillin, 100 mg/mL streptomycin, 90 mg/mL hep-

arin sulfate, and 90 mg/mL endothelial cell growth factor. Lung

ECs: Mouse lungs were excised, minced, and digested using a

collagenase-dispase reagent (Roche Diagnostics, Indianapolis, IN).

Digests were strained and the resulting cell suspension was plated

on flasks coated with 10 mg/mL fibronectin in HUVEC growth

media.

Aortic ring, tube formation, and in vivo Matrigel
angiogenesis assays

The aortic ring assays were performed as described previously

[18].

The formation of vascular tube-like structures by HUVEC was

performed as described previously [40] with modification. We

coated 48-well plates with 200 mL of growth-factor reduced

Matrigel according to the manufacturer’s instructions. HUVECs

were starved 3 h in DMEM:F12, 1% FBS, and 90 mg/mL

heparin. The cells were collected by trypsinization, suspended in

starvation media, and 60,000 cells were plated per well in the

presence or absence of the indicated peptides or VEGF at the

indicated concentrations. 16 h later, the cells were washed 26 in

PBS, fixed with 2% formaldehyde, and bright field images of the

wells were taken.

Matrigel angiogenesis assays were done as described [41].

Growth factor-reduced matrigel was mixed with 500 ng/mL

VEGF and 200 mM of peptides, and 400 mL injected into mice

subcutaneously. At seven days, the matrigel implants were

surgically removed in OCT freezing medium and 7 mm thick

sections were prepared. Sections were fixed with 4% paraformal-

dehyde, incubated with Rat anti-mouse CD31 (BioLegend), and

exposed to anti-rat Alexa Fluor568 (Invitrogen). The slides were

mounted with medium (DakoCytomation) and images were taken

by a TCS-SP (Leica) microscope. For quantification, the images

were analyzed with ImagePro software (Media Cybernetics).

Immunocytochemistry Analysis
HUVEC were grown in monolayer on glass slides and then

treated with fluorescein-labeled peptides for the indicated time

periods. The cells were further stained with the lipophilic tracer

DiI to stain the cell membrane following the manufacturer’s

instructions, then fixed with 2% paraformaldehyde for 10 min,

washed, mounted with cover slips, and analyzed by confocal

microscopy (Leica).

Tube Formation Analysis
Network analysis of tube forming HUVEC was performed in an

automated fashion using customized visual basic macros devel-

oped within Image-Pro Plus (v6.2, Media Cybernetics, Silver

Spring, MD). Bright-field images were imported into Image-Pro

one-by-one, in batch mode. A high-pass spectral filter was applied

to each image to enhance/equalize intensity; enabling application

of a fixed threshold to segment the cell network (will be referred to

as the ‘‘tube mask’’). Since branches were sometimes thin (1 pixel

thick), node to node branches were often disconnected following

segmentation, even though visual observation confirmed continu-

ity. To resolve this issue, a second approach was applied to

preserve continuity. A top-hat morphological filter was applied to

the original image to enhance the appearance of low intensity

signal, and segmented using a fixed intensity and area threshold.

This image was then ‘‘added’’ to the tube mask and inverted

(intensity across the tube, referred as ‘‘lumens of each tube,’’ was

converted to 255). Using Euclidean distance map (EDM)-based

background clustering, the lumen of each tube was segmented
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such that no lumen was in contact with another. This image was

then inverted and ‘‘skeletonized’’ to create continuous single pixel-

width medial lines along the entire tube network. To avoid errors

due to the ‘‘skeletonization’’ process, an additional algorithm was

applied to cluster nodes that were within a given distance (pre-

determined value confirmed visually). These nodes were then

classified as 32, 42, or 5+ branch nodes and summed for each

category for output to Microsoft Excel. In addition to incorrect

node classification, the skeletonization process can also produce

spurious branches. To eliminate these, a ‘‘pruning’’ filter was

applied to remove branches of a predefined length connected to a

single node. The total number of branches was then summed and

exported to Excel. To determine mean node and branch thickness,

a Euclidean distance map was generated from the tube mask and

‘‘multiplied’’ by the node and skeletal branch masks respectively.

Thickness values were calculated by summing the resulting pixels

values in each of these images, multiplying these values by a factor

of two and then by the pixel resolution, and lastly dividing by the

total number of node pixels or skeletal branch pixels.

Statistical analysis
Values were expressed as mean plus or minus standard

deviations (SD). P values were based on the paired t-test. All the

experiments were repeated at least three or more times. Results

were considered statically significant with P value less than 0.05.

Supporting Information

Figure S1 Sequential connectivity map for VpepB.
Figure is produced by CCPN Analysis 2.1.1.

(JPG)

Figure S2 Uptake of b3CT derived peptides by EC.
Peptides were labeled with fluorescein (green) at the N-
termini and added to HUVEC growth media for the
indicated times. The plasma membranes were labeled with Dil

(red) and nuclei stained with DAPI (blue). The cells were fixed and

analyzed by confocal microscopy.

(JPG)

Figure S3 bFGF induced signaling events are not
affected by F747 or pY747 peptides. HUVEC cells

pretreated with peptides as indicated and stimulated with bFGF

for 30 min. Total cell lysates were immuno-probed with anti

phospho-erk antibodies.

(JPG)
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