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Abstract

Background: In children born prematurely and those surviving cerebral ischemia there are white matter abnormalities that
correlate with neurological dysfunction. Since this injury occurs in the immature brain, when the majority of subventricular
zone (SVZ) cells generate white matter oligodendrocytes, we sought to study the effect this injury has on gliogenesis from
the SVZ. We hypothesized that there is aberrant glial cell generation from the SVZ after neonatal hypoxia ischemia (H/I) that
contributes to an increased astrogliogenesis with concomitant oligodendroglial insufficiency. Mechanistically we
hypothesized that an increase in specific locally produced cytokines during recovery from injury were modifying the
differentiation of glial progenitors towards astrocytes at the expense of the more developmentally-appropriate
oligodendrocytes.

Methodology/Principal Finding: For these studies we used the Vannucci H/I rat model where P6 rats are subjected to
unilateral common carotid ligation followed by 75 min of systemic hypoxia. Retroviral lineage tracing studies combined
with morphological and immunohistochemical analyses revealed the preferential generation of SVZ-derived white matter
astrocytes instead of oligodendrocytes post hypoxia/ischemia. Microarray and QRT-PCR analyses of the damaged SVZ
showed increased expression of several cytokines and receptors that are known to promote astrocyte differentiation, such
as EGF, LIF and TGFß signaling components. Using gliospheres to model the neonatal SVZ, we evaluated the effects of these
cytokines on signal transduction pathways regulating astrocyte generation, proliferation and differentiation. These studies
demonstrated that combinations of EGF, LIF and TGFß1 reconstituted the increased astrogliogenesis. TGFß1-induced Smad
2/3 phosphorylation and the combination of EGF, LIF and TGFß1 synergistically increased STAT3 phosphorylation over
single or double cytokine combinations. Pharmacologically inhibiting ALK5 signaling in vitro antagonized the TGFß1-
induced increase in astrocyte generation and antagonizing ALK5 signaling in vivo similarly inhibited astrogliogenesis within
the SVZ during recovery from H/I.

Conclusion/Significance: Altogether, these data indicate that there is aberrant specification of glial precursors within the
neonatal SVZ during recovery from neonatal H/I that is a consequence of altered cytokine signaling. Our studies further
suggest that antagonizing the ALK5 receptor will restore the normal pattern of cell differentiation after injury to the
immature brain.
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Introduction

Neonatal hypoxia/ischemia (H/I) is a major cause of morbidity

resulting from complications during the birthing process that leads

to cognitive, sensory and motor deficits in approximately 25% of

affected infants. Accumulating evidence has demonstrated that

immature oligodendrocytes are extremely sensitive to hypoxia,

oxidative stress and glutamate, which are thought to contribute to

the focal cystic degeneration as well as to diffuse injury seen in the

periventricular white matter. Investigators are also beginning to

appreciate the impact of this injury on the SVZ, which is the

region of the immature brain that harbors multipotential neural

stem/progenitors, endowed with the ability to regenerate neurons,

astrocytes and oligodendrocytes. Using the classic Vannucci H/I

animal model [1,2,3,4], we have previously demonstrated that

neonatal white matter immature oligodendrocytes undergo acute

excitotoxic cell death as do progenitors in the SVZ following H/I,

while the stem cells are resilient to death effectors [5,6,7,8]. Not
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only are the stem cells resilient, but several studies have shown that

they expand subsequent to H/I and can regenerate neurons and

possibly some oligodendrocytes [9,10,11,12,13]. Since the stem

cells in the SVZ are resilient to H/I and in fact participate in CNS

regeneration, the failure of the white matter to regenerate is not

easily reconciled.

Studies characterizing the cells in the neonatal SVZ have

demonstrated that in addition to the tripotential stem/progenitors

there are more restricted bipotential glial progenitors (BGP) that

are capable of producing oligodendrocytes or astrocytes develop-

mentally [14,15,16,17,18,19]. The decision to produce one cell

type versus the other appears to be dictated by signals that the

progenitors receive from their local environment [20]. In the adult

brain, mature resting astrocytes can be induced to become

reactive, a process known as reactive gliosis, as a consequence of

cytokines produced by damaged neurons and reactive microglia.

Histopathologic studies on the brains of infants who have expired

after neonatal H/I have shown similar gliosis in affected regions

[21,22]. However, astrocyte generation in the neonatal brain is

incomplete at the time of injury, thus the reactive astrocytes in the

neonatal brain may have a different origin than those in the adult

brain. Accordingly, we hypothesized that the gliosis in the infant

brain and the failure of oligodendrocyte regeneration after

neonatal H/I may be linked and that the extrinsic signals that

determine sequential cell fate specification within the postnatal

SVZ during normal development are disturbed following H/I thus

shifting the production in the SVZ from oligodendrocytes to

astrocytes. This mis-specification will then contribute to the

permanent deficit in periventricular white matter oligodendrocytes

subsequent to H/I. The objective of this study was to test this

hypothesis and to identify the specific signals that coordinate the

differentiation of the glial progenitors of the SVZ.

Results

Aberrant Glial Specification from the SVZ after Neonatal
H/I

We evaluated gliogenesis subsequent to H/I using immunoflu-

orescence methods as well as by evaluating cell proliferation within

the SVZ and by fate mapping SVZ cells using replication deficient

retroviruses. Using the Rip antibody to visualize immature and

mature oligodendrocytes we observed significantly less myelin and

fewer oligodendrocytes in the ipsilateral hemisphere (ILH) (Fig. 1C)

compared to the contralateral hemisphere (CLH) at 7 days of

recovery (Fig. 1B). This decrease in myelin staining was

accompanied by a dramatic increase in the number of GFAP

positive cells (Fig. 1A). At 7 days of recovery, significant increases

in immature astrocytes were observed in the ILH, as assessed by

increased vimentin, S100b and GFAP staining (Fig. 1E,G)

compared to the CLH (Fig. 1D,F). Many of these astrocytes were

newly born cells, as there was an increase in stellate BrdU+/

Vimentin+ cells around the lateral ventricles at 7 days recovery

post H/I (Fig. 1H). These observations are consistent with the

hypothesis that H/I decreases the overall population of mature

myelinating oligodendrocytes and induces astrocyte production.

To determine whether there was a shift in glial specification in

the periventricular white matter from cells with origins in the SVZ,

we performed replication-deficient retrovirus fate-mapping. Ret-

roviruses were stereotactically injected bilaterally into the lateral

ventricles 2 days after neonatal H/I. These retroviruses label

mitotically active cells, including SVZ progenitors. Indeed at 2

days of recovery almost all of the retrovirally labeled cells were

located within the SVZ (Fig. S1C,D). By 12 days of recovery from

H/I, most of the infected cells had migrated out of the SVZ and

were mostly located in the white matter of the corpus callosum

(Fig. S1B). A morphological analysis of glial phenotypes revealed

almost a doubling in the percentage of astrocytes with a

concurrent 50% decrease in both the percentage of myelinating

oligodendrocytes and total oligodendrocytes (Fig. 2A, B; p,0.05).

We also used a GFP encoding retrovirus together with

immunofluorescence for astrocytic Glial Fibrillary Acidic Protein

(GFAP) and oligodendrocytic Glutathione-s-Transferase pi

(GSTp). For these studies, we used a lower titer of retrovirus

and used DAPI to identify individual cells prior to classifying them

as GFAP+, GSTp+, weakly GSTp+, or double negative

(indeterminate) (Fig. 3A,B). Cells were evaluated at 3 weeks after

injury to enable them to more fully mature. At this time point,

majority of labeled cells were in the white matter. Confirming the

data provided in Fig. 2, which were collected at 12 days after

injury, the percentage of GFAP+ astrocytes increased from 18% to

45%, with a concomitant decrease in the percentage of GSTp+
oligodendrocytes from almost 80% in the ILH to 30% in the CLH

(Fig. 3C, p,0.05). We also found an increase in the percentage of

indeterminate cell types in the ILH (increase from 3% to 24%,

p,0.05). Moreover, there was a small population cells with the

morphology of oligodendrocytes, that only weakly stained positive

for GSTp, and these cells also increased in the ILH compared to

the CLH.

Reproducibly, in both the DAP and pNIT retrovirus experi-

ments, there were significantly fewer labeled cells in the ILH (Fig.

S1) as compared to the CLH. To determine whether this was due

to fewer cells being infected 2 days after injury when the viruses

were injected, we injected 5 uL of pNIT 2 days after H/I and the

animals sacrificed 48 h later. pNIT labeled cells were predomi-

nantly located in the SVZ, however, some cells had migrated into

the subcortical white matter. Echoing the results from the 2 and 3

week survival time points, at this earlier time point we observed

that there were few infected cells in the ILH as compared to the

CLH (Fig. S1A,C,D).

Signals Known to Induce Astrocytic Differentiation Are
Elevated in the Ipsilateral SVZ 7 Days after Injury

We hypothesized that extrinsic factors were responsible for the

aberrant production of astrocytes from the SVZ after H/I.

Therefore, to establish which genes were aberrantly expressed we

performed a gene array analysis with QRT-PCR validation. We

microdissected the SVZ and compared the RNA profiles from

ILH to the CLH using a commercially available nylon array. A

total of 11 genes were changed at least 2 fold with very few genes

showing decreased expression at 7 days of recovery from H/I (data

not shown). Of the genes whose expression were elevated in the

ipsilateral SVZ after injury on an average by at least 2-fold in three

independent experiments, 3 families caught our attention that

have previously been implicated in astrocyte specification; EGF,

LIF and TGFß. QPCR revealed no change in EGF mRNA

expression at 7 days of recovery from H/I between ILH and CLH

[23]. However, consistent with the array results, there was a 2-fold

increase in LIF and a 4-fold increase in TGFß1 (Table 1). While

there was no change in the expression of LIFR, the expression of

gp130 and EGFR were elevated by 1.5- and 1.44-fold,

respectively. The mRNA levels for the TGFb1 receptor, ALK1

was decreased by 0.6-fold, whereas levels for the ALK5 receptor

increased 1.8-fold. Other growth factors, including Notch, FGF

and BMP family members and their corresponding receptors, as

well as the cell surface glycoprotein CD44 were also increased on

the SuperArray, however, changes in their expression levels

remain to be validated (Table S1).

Neonatal Astroglial Dysgenesis
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Effects of EGF, LIF and TGFß1 on Astrocyte Production
from Gliospheres

Results from the SuperArray and QT-PCR indicated that there

were increases in astrogliogenic cytokines or their receptors in the

injured SVZ. To determine whether EGF, LIF and TGFß1 either

alone or in combination could promote astrocyte generation, we

tested their effects using an in vitro model for the glial progenitors of

the neonatal SVZ; gliospheres. Gliospheres were treated with

physiologically relevant concentrations of EGF, LIF and TGFß1

either alone or in combination and Western blots were performed

Figure 1. Over-production of astrocytes in the injured hemisphere at 7 days of recovery as a consequence of neonatal H/I. (A)
Sections from animals sacrificed at 7 days of recovery were stained with antibodies against GFAP (green) and counterstained with DAPI (blue). (B,C)
Sections were stained with Rip for oligodendrocytes and myelin in the ILH (C) compared to the CLH (B). (D,E) Sections were stained with antibodies
against GFAP (red), S100b (green) and counterstained with DAPI (blue) (E) depicts the ILH; (D) depicts the CLH (D). (F,G) The ILH SVZ (G) was stained
with antibodies against vimentin (green); (F) depicts the CLH. (H) Inset depicts BrdU+/Vim+ cells in the ILH SVZ from animals injected with BrdU (red)
at day 3 of recovery and analyzed at 7 days of recovery. Scale bar represents 100 mm (A), 50 mm (B,C,F,G), 25 mm (D,E,H).
doi:10.1371/journal.pone.0009567.g001

Neonatal Astroglial Dysgenesis
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Figure 2. SVZ cells preferentially generate white matter astrocytes rather than oligodendrocytes after H/I. Replication-incompetent
retroviruses containing the alkaline phosphatase (DAP) reporter gene were stereotactically injected at P8 into the lateral ventricles (two days after H/I).
For quantitative analysis at 10 days after DAP injection (A) cell types within the white matter (WM) were classified based upon morphological criteria as
either astrocytes (arrow), oligodendrocytes (arrowhead) or indeterminate (B). Data are averaged from 8 hypoxic sham, 8 contralateral hemispheres (CL),
and 7 ipsilateral hemispheres (IL) * indicates p,0.05 compared to CLH, ^ indicates p,0.05 compared to hypoxic sham animals as determined by ANOVA
with Fisher’s PLSD post-hoc test.
doi:10.1371/journal.pone.0009567.g002

Figure 3. SVZ cells preferentially generate GFAP+ astrocytes in white matter instead of GST p + oligodendrocytes. Two mL of pNIT
replication-incompetent retroviruses containing the GFP reporter gene were stereotactically injected at P8 into the lateral ventricles (two days after H/I).
Cryostat sections (15 mm) were prepared after sacrifice at P27. Sections were stained for GFP (A,F), GST p (B,G) and GFAP (C,H) followed by DAPI
counterstain (D,I). Merged color overlays are presented in panels E and J. Cell types within the corpus callosum (WM) were counted as GFAP +, GSTp +,
GSTp weakly + and double negative (indeterminate). Panels A–E illustrate a representative GFAP+ cell, and panels F–J illustrate a GSTp+ cell. Panel K
depicts quantitative data averaged from 3 IL hemispheres and 6 CL hemispheres. * indicates p,0.05 compared to CLH as determined by student’s t-test.
Scale bar represents 20 mm.
doi:10.1371/journal.pone.0009567.g003

Neonatal Astroglial Dysgenesis
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for GFAP, Zebrin II and glutamine synthetase (GS) as indices of

astrocyte generation. No single factor alone significantly altered

GFAP expression (data not shown), although GFAP expression

was elevated in spheres treated with EGF in combination with LIF

and/or TGFß1 (Fig. 4A,B). The combination of EGF, LIF and

TGFß1 yielded the highest GFAP expression. The expression of

Zebrin II was not significantly affected by treatment with EGF,

LIF and TGFß1 either alone or in combinations. A significant

decrease in GS expression was observed in cells treated with EGF

in the presence of LIF, TGFß1 or a combination of both, as

compared to cells treated with EGF alone (Fig. 4A,B).

Specific Cytokine Combinations Differentially Regulate
Expression and Phosphorylation Status of Transcription
Factors

As combinations of cytokines were more effective than single

factors we hypothesized that they were synergistically activating

intracellular signaling pathways. We analyzed the status of STAT

and Smad transcription factors, which are known to be associated

with astrogliogenesis. When tested alone, EGF had little effect on

STAT and Smad phosphorylation. LIF increased the phosphor-

ylation of STAT-3 on both serine 727 and tyrosine 705, both in

the presence and absence of TGFß1 or EGF. While treatment

with neither LIF nor EGF affected pSmad2/3 levels, TGFß1

induced Smad 2/3 phosphorylation. This heightened pSmad2/3

level observed in TGFb-treated cells was unaffected by the

presence of either EGF, LIF or a combination of both LIF and

TGFb (Figure 5A,B). Phosphorylation of Smad1 was undetectable

under all conditions tested (Fig. 5A). The levels of total STAT3,

pSTAT3Ser and pSTAT3Tyr were elevated in the presence of LIF

(Fig. 5A). The elevated levels of pSTAT3Ser were comparable in

cells treated with LIF either in the presence or absence of EGF or

TGFb or both. However, an approximately 9 fold increase in

pSTAT3Tyr level was observed in cells treated with a combination

EGF, LIF and TGFb1, as compared to those treated with LIF

alone or with EGF or TGFb1 (Fig. 5A,C).

TGFß1 Synergizes with EGF to Induce Astrocyte
Proliferation and Antagonizing ALK5 Blocks This
Astrocyte Generation In Vitro

The changes we observed in the levels of astrocytic proteins

could occur either as a result of increased astrocyte numbers or

increased expression of astrocyte markers. To distinguish between

these two possibilities, we dissociated the gliospheres, stimulated

the single cells with cytokines and counted the percentage of

astrocytes by GFAP immunostaining. We found that no factor

alone increased the percentage of astrocytes. When these factors

were combined, LIF together with EGF significantly increased the

percentage of GFAP positive cells (Fig. 6A). However, it was the

combination of all three cytokines that most significantly increased

astrocyte numbers compared to controls (Fig. 6A).

In order to determine whether cell proliferation was responsible

for this increase in astrocytes, gliospheres were treated with EGF

in combination with LIF and TGFß1 followed by a short BrdU

pulse. We found that the combination of EGF with TGFß1

stimulated the incorporation of BrdU into the GFAP+ cell

population (Fig. 6B,C,D). Interestingly, LIF suppressed the

proliferative effects of EGF and TGFß1, by decreasing the

Table 1. Quantitative PCR analysis for genes associated with
astrogliogenesis following neonatal H/I.

Gene Fold Change at 7 days of recovery

EGFR 1.44

LIF 2.1

LIFR 1.1

gp130 1.5

TGFb1 4.1

ALK1 0.625

ALK5 1.8

Ipsilateral and contralateral SVZs were dissected at 7 d post H/I. Total RNA was
isolated and amplified by Q-PCR using Taqman primers specific for the genes
shown in the table, and normalized to the expression of 18S RNA. Values for all
transcripts except LIFR were significantly different from the CLH as determined
by the REST program.
doi:10.1371/journal.pone.0009567.t001

Figure 4. Combinations of EGF, LIF and TGFß1 effectively
increase astrocyte generation in gliosphere cells. Gliospheres
were grown in ProN supplemented with B104 conditioned medium and
10 ng/ml FGF-2. They were dissociated and plated onto culture dishes
for 6 h in differentiation media with 2% serum and then switched to
differentiation media supplemented with either 5 ng/mL EGF (E), LIF (L),
TGFß1 (T) or combinations for 48 h. (A) Densitometric analyses of
protein levels on Western Blots were performed for GFAP, Zebrin II and
GS as indices of astrocyte differentiation. (B) Values represent the mean
fold change over controls 6 SEM from 3 independent experiments.
* and # denote a significant increase and decrease respectively from
control (P,0.05).
doi:10.1371/journal.pone.0009567.g004

Neonatal Astroglial Dysgenesis
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Figure 5. Differential effect of EGF, LIF and TGFß1 on Smad 2/3 and STAT3 phosphorylation in gliospheres. Gliospheres were grown in
ProN supplemented with B104 conditioned medium and 10 ng/ml FGF-2. They were dissociated and plated onto culture dishes and then treated with
5 ng/mL EGF (E), LIF (L), TGFß1 (T) either alone or combinations in differentiation media for 30 min. (A) Total cell lysates were collected and Western blot
analysis was performed to determine levels of total Smad2/3, STAT3, pSmad 2/3 on Ser465/467 and pSTAT3 on Ser727 and Tyr705 residues. (B) Values
represent fold change in pSmad2/3 over Smad2/3. (C) Values represent fold change in pSTAT3Tyr705 over STAT3, 6 SEM from 3 independent
experiments. * Denote significant increase from control, # significant increase from treatment with a single cytokine or combination of two (P,0.05).
doi:10.1371/journal.pone.0009567.g005

Neonatal Astroglial Dysgenesis

PLoS ONE | www.plosone.org 6 March 2010 | Volume 5 | Issue 3 | e9567



Figure 6. TGFß1 induced increased astrocyte proliferation is mediated through the ALK5 receptor. Gliospheres were plated onto
chamber slides in differentiation media supplemented with 5 ng/mL of EGF (E), LIF (L), and TGFß1 (T) in different combinations for 96 h and were
pulsed with BrdU for the last 3 h in culture. The percentage of (A) GFAP+ and (B) GFAP+/BrdU+ cells is depicted. (C,D) Representative images of
gliospheres differentiated in EGF (C) or combination of EGF and TGFß1 (D) stained for GFAP (green) and red (BrdU). (E,F) Gliospheres were similarly
treated with EGF or a combination of EGF and TGFß1 for 96 hrs and the effect of these cytokines on oligodendrocyte generation were determined by
O4 staining. Representative images of gliospheres differentiated in EGF (E) or combination of EGF and TGFß1 (F) stained for GFAP (green) and red (O4)
are shown. (G) Gliospheres were propagated in EGF or EGF+ TGFß1 in the presence or absence of 10 mM SB431542, a potent ALK5 inhibitor, pulsed
with BrdU and stained for GFAP and GFAP/BrdU (G). Results are representative of 3 independent experiments. * indicate statistically significant
differences (p,0.05) for each condition compared to medium alone (M) controls using Student’s t-test. The scale bar represents 35 mm for panels C,D
and 50 mm for panels E,F.
doi:10.1371/journal.pone.0009567.g006

Neonatal Astroglial Dysgenesis
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number of BrdU+/GFAP+ cells (Fig. 6B). We also observed

that specific cytokines altered the morphology of GFAP+ cells,

as gliosphere cells cultured in the presence of EGF produced

GFAP+ cells with broad, flattened processes whereas the addi-

tion of TGFß1 produced cells with highly stellate, thin pro-

cesses (Fig. 6C,D). While EGF and TGFb1 increased astrocyte

proliferation, growth in EGF either alone or in combination with

TGFb1 had no effect on oligodendrocyte progenitor production.

The number of O4 positive cells obtained in EGF alone or in

combination with TGFb1 was comparable (Fig. 6E, F).

As TGFß1 induced SVZ-derived gliospheres to produce more

astrocytes and the signal transduction studies indicated that

TGFß1 was stimulating the ALK5 receptor, we hypothesized that

inhibiting the ALK5 receptor would inhibit astrocyte generation.

Treatment with ALK5 antagonist SB431542 had no effect on

BrdU incorporation into gliosphere cells stimulated with EGF

alone. However, as expected SB431542 completely inhibited the

EGF and TGFb1–stimulated increase in proliferating astrocytes as

measured by BrdU incorporation (Fig. 6G).

Increased Astrogliosis after Hypoxia/Ischemia Is
Abrogated by ALK5 Inhibition In Vivo

Based on the findings above that inhibiting ALK5 diminished

astrocyte generation in vitro, we tested the hypothesis that

inhibiting ALK5 after neonatal H/I would similarly reduce

astrogliosis in vivo. At 4 days after H/I, astrogliosis in the injured

SVZ was observably higher (Fig. 7C,D) than in the contralateral

SVZ (Fig. 7A,B) as shown by intense GFAP expression. To

antagonize ALK5 in vivo, we administered SB505124 to animals

immediately after H/I, and twice daily for 4 days after injury and

analyzed GFAP intensity in each hemisphere at 4 days of recovery.

Unlike SB431542, this ALK5 kinase inhibitor crosses the blood

brain barrier [24,25]. Visually, there was a clear decrease in

staining for GFAP (Fig. 6E,F), and a quantitative analysis of

fluorescence intensity confirmed that SB505124 treatment signif-

icantly decreased GFAP expression in the damaged SVZ (Fig. 7G,

p,0.05). Although SB505124 prevented the increase in GFAP

staining within the SVZ, GFAP staining intensity in the un-injured

hemisphere was not different between vehicle-and SB505124

treated animals, and the injury-induced increase in GFAP was

indistinguishable in neocortex of vehicle and SB505124 treated

animals (Figure S2). Thus, administering an ALK5 antagonist in

vivo appears to abrogate the injury-induced astrocyte generation in

the SVZ. At this early time-point of recovery, we did not observe

any change in staining for the oligodendrocyte marker Rip within

the subcortical white matter or SVZ (Data not shown [26]).

Discussion

Neonatal white matter damage occurs during that interval of

human development when SVZ cells are predominantly produc-

ing oligodendrocytes. This injury occurs when the late OPCs are

most abundant [27,28,29] and studies show that these progenitors

are extremely vulnerable to glutamate, oxidative stress and FasL

[30,31,32,33,34,35,36]. Recent studies indicate that oligodendro-

cyte progenitors are present within abnormal white matter of

human PVL cases, but are unable to properly differentiate and to

replace damaged OPCs [37,38]. Back et al (2005) suggested that

certain factors made by reactive astrocytes, such as hyaluronan,

Figure 7. Increased astrogliosis at 4 days of recovery observed in the injured SVZ after H/I is decreased by ALK5 inhibition in vivo.
(A,B) Representative images of CL (A) and IL (B) hemispheres from age-matched control animals (twice daily i.p. SB505124 injections) and stained
with antibodies against GFAP (green) and counterstained with DAPI (blue). (C,D) Images of CL (C) and IL hemispheres (D) of H/I vehicle-treated
animals. (E,F) Representative images of CL (E) and IL (F) of SB505124-treated animal at 4 days after injury. (G) Densitometric analyses of GFAP
intensity within the SVZ in H/I and H/I + SB treated animals at 4 days after injury. Untouched controls treated with SB compound were also analyzed
and no significance was found between IL and CL hemisphere data (data not shown). * and ** denote p,0.05 using ANOVA analysis with Fisher’s
PLSD post-hoc test comparing vehicle to H/I and H/I to H/I + SB respectively. Scale bar represents 50 mm.
doi:10.1371/journal.pone.0009567.g007

Neonatal Astroglial Dysgenesis
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accumulate in white matter lesions that inhibit the maturation of

oligodendrocyte progenitors both in human multiple sclerosis

lesions and in animal models of experimental autoimmune

encephalitis (EAE) [39]. Thus reactive gliosis subsequent to

neonatal white matter injury may directly contribute to the failure

of myelin formation.

Our studies and others have established that there is an

expansion of the SVZ neural stem/progenitor cell population,

resulting in neuronal and some glial cell replacement

[7,9,10,11,13,40]. Therefore, this regenerative response should

lead to significant OPC replacement, especially since this injury is

occurring precisely when the majority of OPCs are being

generated. However, OPC replacement in both rat models and

in human infants is limited. We hypothesized that the signals that

determine sequential cell fate specification within the SVZ are

disturbed following H/I adversely affecting gliogenesis in the

developing brain. In the studies reported here we analyzed (1)

whether there is aberrant generation of oligodendrocytes and

astrocytes from SVZ progenitors subsequent to neonatal H/I; (2)

whether there is increased expression of extrinsic signals that

promote astrocyte differentiation in the SVZ following H/I; (3)

whether those signals that are aberrantly expressed promote

astrocyte differentiation from glial restricted progenitors and (4)

whether inhibiting one of those signals would prevent aberrant

astrogliogenesis.

We observed increased astrogliosis in the injured hemisphere at

4 and 7 days of recovery. This end result could have occurred

though 3 possible routes: 1) OPC death, 2) astrocyte proliferation

or 3) aberrant differentiation of SVZ glial progenitors into

astrocytes. Were only scenario 1 occurring, then one would

predict that the regenerative expansion of SVZ precursors would

replace the depleted oligodendrocyte progenitors, which is

incomplete at best. Scenario 2 is surely occurring as numerous

studies have shown local astrocyte proliferation after H/I,

however; to our knowledge none attribute this astrogliosis to

aberrant production of astrocytes from the glioblasts in the SVZ

[41,42,43,44,45,46,47,48,49]. Using retrovirus fate mapping

techniques and immunohistochemistry for lineage-specific mark-

ers, we provide data that strongly support the third scenario - that

SVZ glial progenitors are aberrantly differentiating after injury.

Importantly, we show that some of the new astrocytes that are

produced are derived from SVZ cells as opposed to locally

proliferating immature astrocytes confirming our hypothesis that

gliosis in the immature brain may be qualitatively different from

gliosis in the adult brain. In this manuscript, we propose an

alternative mechanism for the generation of ‘‘excess’’ astrocytes in

the injured brain–altered generation of astrocytes from subven-

tricular zone progenitors. This alternative source may be further

amplified by astrocyte proliferation locally.

Interestingly, we also observed an increase in the percentage of

weakly stained GSTp+ cells and indeterminate cell types in the

injured white matter, which is reminiscent of the halt in the

differentiation of OPCs as recently observed in human PVL cases

[37,38]. Our SuperArray results indicate an up-regulation of

CD44 in the injured SVZ, the cell surface glycoprotein capable of

binding hyaluronic acid, supporting a potential role for hylaur-

onan as an inhibitor of oligodendrocyte production after injury.

Additionally, we found that there were significantly fewer labeled

cells in the injured hemisphere as compared to the contralateral

and control hemispheres. As we have previously demonstrated that

there is a depletion of progenitors acutely after neonatal H/I

[50,51,52] the depletion of these progenitors could reduce the

proportion of cells available for retroviral infection. To test this

hypothesis, we examined the extent of retrovirus infection 2 days

after injury and observed far fewer infected cells in the damaged

SVZ and in the corpus callosum 48 h after infection. Thus, the

expansion of the stem/progenitor cells in the SVZ that we have

previously documented may not be sufficient to replenish damaged

white matter oligodendrocytes progenitors. However, we cannot

rule out the possibility that SVZ cells that divided after the injury

may fail to survive and that the reduced number of retrovirally

labeled cells is a consequence of persistent glial progenitor cell

death.

Cumulatively, our results demonstrate that there is a shift in the

cell types generated from the SVZ, and that the cells that are

produced from the SVZ after injury preferentially become

astrocytes rather than oligodendrocytes. It is well established that

radial glial cells are an important source of astrocytes in the

developing brain [53] and recently, Sizonenko et al. 2008

documented accelerated transformation of radial glia into

astrocytes as a mechanism for astrogliogenesis after neonatal H/

I [54]. Our studies provide an additional mechanism whereby

astrocyte generation is enhanced from a different set of precursors,

those within the SVZ. It is known that axonal loss will lead

oligodendrocyte precursor death [55]. Although axonal loss occurs

following neonatal H/I, we have previously shown that this loss is

disproportional to decreased oligodendrocyte generation [56].

Therefore, axonal loss is not sufficient to explain the loss of

oligodendrocytes, but it may contribute to the decrease in

oligodendrocyte replenishment after injury,

We provide evidence both from in vivo analyses as well

as from in vitro studies that indicate that elevated levels of

cytokines post injury are stimulating astrocyte proliferation.

Extrinsic cytokines and growth factors provide decisive signals

that govern the differentiation choices of neural precursors

[57]. These extracellular signaling molecules work though

intracellular signaling cascades to either activate or repress distinct

groups of transcription factors. Gene array analysis validated by

QRT-PCR revealed an increase in the expression of LIF and

TGFß1 as well as their corresponding receptors, LIFR, gp130 and

AK5 in the SVZ at 7 days recovery from H/I. We have also found

that EGFR is more highly expressed on putative neural stem cells

and SVZ progenitors after H/I [23]. These factors have been

previously shown to promote astrocyte differentiation from

embryonic and fetal neural precursors [58,59,60,61,62,63,64,65].

As reported here, as well as in a recently published study, we found

that there was no change in the expression of EGF in the SVZ

after neonatal H/I. This result appears to contradict the

importance of EGFR signaling for the astrogliogenesis observed,

however, TGFa, not EGF, is the major EGF-R ligand during

CNS development where TGFa is expressed 15 to 150 times

higher than EGF [66].

To date, the effects of EGF, LIF and TGFß1 have not been fully

assessed on SVZ glial progenitors. We found that the combination

of EGF with either LIF or TGFß1 increased astrocyte generation

from gliospheres, an in vitro model for studying SVZ glial

progenitors. GFAP expression increased with combinations of

these growth factors, and the combination of all 3 was most

effective in promoting astrocytic protein expression. Despite

increased GFAP expression, astrocyte maturation, as measured

by the metabolic marker GS, was considerably reduced in all

cultures containing TGFß1. Of relevance to neonatal hypoxia/

ischemia, our findings support previous studies showing that

TGFß1 impairs astrocyte GS activity [67]. A consequence of

reduced GS expression is that the capacity of these astrocytes to

detoxify glutamate will be impaired. Without the capacity to

eliminate glutamate, OPCs and other cell types will be rendered

even more vulnerable to damage and eventual cell death.
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Although TGFb1 has been shown to inhibit astrocyte pro-

liferation [68,69], it has been shown to increase the proliferation of

glioblastoma [70]. As we show here for SVZ glial precursors, these

differences in the effects of TGFß1 could be due to varied

responsiveness of cells at different stages of differentiation.

Previous studies have suggested that proper myelination after

CNS injury requires astrocyte participation [71]. Our in vivo

studies show that astrocytes are being generated from the SVZ

after injury, suggesting that these SVZ-derived astrocytes may be

proliferating but not maturing properly to actively participate in

normal myelination. We found that EGF and TGFß1 were most

effective in increasing astrocyte proliferation. These findings

indicate that combinations of growth factors promote the

proliferation of SVZ-derived immature astrocytes, while retarding

their differentiation and that TGFß1 is a key stimulus.

Bone morphogenetic proteins of the TGFß family and LIF have

been shown to synergistically induce astrocyte differentiation from

fetal neuroepithelial precursors though a complex comprised of the

transcription factors Smad1 (via ALK1) and STAT3 respectively,

together with the transcriptional co-activator p300 [72]. Analo-

gously, we found that EGF, LIF and TGFß1 promoted astrocyte

differentiation from postnatal SVZ glial progenitors and that they

synergistically stimulated STAT-3 phosphorylation. These in vitro

experiments confirm results from an earlier study that showed

increased STAT-3 phosphorylation in the injured SVZ after H/I

[73]. We hypothesized that TGFß1 would act though ALK1 to

induce astrocyte specification; however, TGFß1 only increased

Smad 2/3 phosphorylation, reflecting signaling though ALK5

instead of ALK1. This result was not necessarily predictable since

ALK1 is activated by BMPs, and has been previously implicated in

astrocyte development. Supporting the importance of the ALK5

receptor, pharmacologically inhibiting ALK5 signaling with the

potent inhibitor SB431542 [74,75] prevented TGFb1-induced

immature astrocyte proliferation.

As our in vitro data suggested that TGFb1 signaling via ALK5

was central to the injury induced astrocyte generation from SVZ

glial progenitors, we asked whether antagonizing this receptor in

vivo would decrease the extent of astrogliosis after neonatal H/I.

To test this hypothesis in vivo, we used a hydrophilic ALK5

antagonist, SB505124 to inhibit ALK5 signaling. Studies have

shown that astrocyte proliferation increases around 3–4 days of

recovery [76], therefore we used this short recovery time point for

studying astrogliosis within the SVZ. At 4 days of recovery from

H/I we observed a significant increase in the GFAP staining

intensity in the ILH SVZ vs. the CLH SVZ. This increase was

significantly decreased when SB505124 was administered. Where-

as the most parsimonious explanation for this result is that

inhibiting ALK-5 antagonized the aberrant production of

astrocytes we cannot exclude the alternative explanation that this

antagonist delayed the maturation of newly generated astrocytes

but did not prevent their formation. However, the injury-induced

increase in GFAP expression in the neocortex appeared to be

unaffected by ALK-5 inhibition. These results suggest that the

decrease in GFAP expression in the SVZ is not simply due to

suppression of GFAP expression. In characterizing the conse-

quences of ALK-5 inhibition, it will be of interest to determine

whether astrogliogenesis is indeed inhibited by employing markers

of immature astrocytes such as vimentin or Zebrin II. These data

suggest that inhibiting TGFß1-signaling through the ALK5

receptor in the early stages of cell fate determination could create

an environment in the injured brain that would enable

regeneration to occur more robustly. It is quite likely that by

dampening the astrogliosis after injury, ALK5 inhibition may

promote oligodendrogliogenesis. However, our objective for this

experiment was to examine the astrocyte response after SB505124

administration. An analysis of oligodendrogliogenesis will require

evaluation at a later time point after injury because the precursors

must proliferate after the injury and also differentiate into fully

mature oligodendrocytes. Future studies will be needed to study

the long-term effects of antagonizing ALK5 signaling in the SVZ

towards restoring oligodendrocyte progenitor cell production after

injury.

Neonatal H/I is detrimental to the developing brain due to both

its pathological effects on oligodendrocyte progenitors and

neurons, but it also adversely affects white matter astrocyte

development as evidenced by these studies. We hypothesized that

altered cytokine signaling would affect the specification and

proliferation of astrocytic precursors and immature astrocytes

which would contribute to the imbalanced production of glial cells

from the neonatal SVZ after brain injury. The data provided in

this report fully substantiate the validity of this hypothesis. As the

neonatal brain is conducive for oligodendrocyte generation, our

studies suggest that a new focus of neonatal research should be on

evaluating whether antagonizing those signaling pathways that

induce astrocyte differentiation might restore normal oligoden-

drogliogenesis. The knowledge obtained from these studies may

well lead to interventions that can be applied to infants after an

ischemic injury or other disturbances of brain development to

enable the infant brain to develop more normally, thus decreasing

the incidence and lifelong neurological and psychiatric handicaps

that are too often sustained.

Methods

Ethics Statement
All research involving animals was conducted according to

relevant national and international guidelines. The animal

protocol for the work described in this report was approved by

the New Jersey Medical School IACUC, protocol #06069, and

these studies were in accordance with the National Institute of

Health Guide for the Care and Use of Laboratory Animals (NIH

Publications No. 80-23) revised in 1996. We further attest that all

efforts were made to minimize the number of animals used and

efforts were made to ensure minimal suffering.

Neonatal Hypoxia/Ischemia
Experiments were performed in accordance with research

guidelines set forth by the New Jersey Medical School and the

Society for Neuroscience Policy on the use of animals in

neuroscience research. Cerebral H/I was induced in P6 rats

(day of birth being P0), by a permanent unilateral (right) common

carotid artery cauterization under isoflurane anesthesia followed

by systemic hypoxia [2,4,77]. The neck wound was sutured with

surgical silk and the animals were returned to the dam to recover

for 1.5 h. Animals were then pre-warmed in jars for 20 min in a

37uC water bath. The pups were exposed to a humidified, hypoxic

atmosphere (8% O2/92% N2) at 37uC for 75 min, allowed to

recover in room air, and then returned to their dams. Control

animals underwent the same procedure as experimental animals

but the carotid artery was not cauterized. In experiments where an

antagonist to the TGFb1 receptor was administered, animals were

treated twice daily, beginning immediately after H/I, with 5 mg/

kg SB505124 or vehicle alone via intraperitoneal injection.

Animals were deeply anesthetized with ketamine (75 mg/kg)/

xylazine (5 mg/kg), perfused with RPMI culture medium

containing 6 U/ml heparin followed by 4% paraformaldehyde,

pH 7.4. Brains were removed, cryoprotected, embedded in OCT,

frozen and sectioned for further analysis.
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RNA Isolation, Probe Labeling and Hybridization
SVZs from untouched control, contralateral and ILHs of H/I

animals at 7 days post recovery were microdissected and snap

frozen at 280uC. RNA was isolated using TRIZOL (Molecular

Research Center, Inc., Cincinnati, OH). cDNA probes were

prepared, labeled and hybridized to nylon Superarray stem cell

array as previously described, normalizing values to GAPDH [7].

Q-PCR was performed as described earlier [73].

Gliosphere Cultures
P4 rat pups were decapitated under sterile conditions and the

brains were placed into PBS with 0.6% glucose and 2 mM MgCl2.

Incisions were made ,2 mm from the anterior end of the brain

and ,3 mm posterior to the first cut. Blocks were transferred to

fresh PBS-glucose-MgCl2 and the region including the dorsolateral

SVZ (SVZDL) was microsurgically isolated, mechanically minced

and enzymatically dissociated using a 1:4 dilution of Accutase

(Innovative Cell Technologies, CA) at 37uC for 10 min. Glio-

spheres were cultivated by plating the cells at 1.56105 cells/mL in

ProN media (Dulbecco’s modified eagle’s medium/F12 media

containing 10 ng/ml d-biotin, 25 mg/ml insulin, 20 nM proges-

terone, 100 mM putrescine, 5 ng/ml selenium, 50 mg/ml apo-

transferrin, 50 mg/ml gentamycin) supplemented with 30% B104

conditioned medium [78]. Spheres generated after 7–10 days in

culture were dissociated in Accutase and used for experimentation.

Differentiated cells were obtained by culturing the cells with/

without cytokines in N2B2 media [ProN supplemented with

0.66 mg/mL BSA and 0.5% fetal bovine serum] for 72 h.

SB431542 was purchased from Tocris Cookson Inc. (Ellisville,

MO).

Western Blot Analysis
Gliospheres were dissociated with 1:4 diluted Accutase and

plated onto PdL-coated 60 mm plates in differentiation media

supplemented with 2% serum. After 6 h the cells were treated with

5 ng/ml of cytokines in differentiation medium. After 48 h

proteins were extracted and Western blot analysis was performed

for GFAP (Dako, Carpinteria, CA), aldolase C/Zebrin (gift from

Dr. Richard Hawkes), and GS (Chemicon, Temecula, CA). Total

STAT3, pSTAT3 tyrosine705 and pSTAT3 serine727, total

Smad2/3 and phosphorylated Smad1 and Smad 2/3 were

analyzed at 30 minutes of stimulation using antibodies from Cell

Signaling Technologies (Danvers, MA). The blots were stripped

and reprobed with anti-b-tubulin to determine equivalent loading

as described previously [79].

Immunocytochemistry
Cells were fixed briefly with cold acetone and then incubated in

rabbit anti-GFAP (1/500, Dako), rinsed well and then incubated

for 2 h with fluorochome conjugated secondary antibodies (1/200,

Jackson Immunoresearch). BrdU immunofluorescence was per-

formed as previously described [80]. Cells were visualized using an

Olympus AX70 microscope and imaged using a Photometrics

cooled charged coupled device camera (Tucson, AZ) interfaced

with IP Lab scientific imaging software (Scanalytics Fairfax, VA).

At least 6 random (nonadjacent) fields were counted per well

under a 406 objective and a total of 2 wells analyzed per 3

independent experiments. For the SB505124 experiment, images

were taken at 206magnification on 2 nonadjacent sections from

at least 4 animals per group.

Tissue sections (12 mm) were collected and immunohistochem-

istry was performed. For BrdU labeling experiments, BrdU

(Sigma, at 50 mg/kg body weight, 10 mg/ml in 0.007 N NaOH

in 0.9% NaCl) was administered intraperitoneally (i.p.) 2 days

following H/I. On day 7, animals were sacrificed by intracardiac

perfusion, cryoprotected, frozen and tissue sections encompassing

the region of brain subserved by the middle cerebral artery were

cut at 12 mm and mounted onto glass slides. Select tissue sections

were incubated for 1 h at RT in 2 N HCl, extensively rinsed with

borate buffer (pH 8.5), and blocked in a solution containing 10%

BSA, 10% goat serum in Tris buffer for 1 h. The sections were

then incubated with a rat monoclonal anti-BrdU (Accurate

Chemical, NY; 1:30) and mouse IgG anti-vimentin (V9 clone,

Roche, 1:100) overnight at 4uC. Sections were further incubated

in fluorochrome-conjugated secondary antibodies (Jackson Labo-

ratories, PA; 1:200) for 2 h at room temperature. DAPI was used

to stain all nuclei. Other sections were stained using the Rip

antibody (supernatant 1:4) and anti-GFAP (rabbit anti-GFAP

1:500) using the same protocol as above but omitting the HCl

incubation and borate buffer rinses. Images from corresponding

brain regions in ipsilateral and CLHs were captured at a

standardized exposure time. IP Lab was used to measure the

density of staining fluorescence. The average density was

calculated for control, H/I and H/I plus SB505124 treatment.

Retrovirus Production
Replication-deficient viruses with vsv-g coats were generated

from pNIT-GFP plasmid [81,82]. pNIT-293 cells were main-

tained for at least two weeks prior in 0.8 mg/ml G418 in DMEM

with 10% newborn calf serum. 2–3 days before transfection, cells

were split onto 7 PDL-coated plates in media lacking G418.

Transfection was performed when the pNIT-293 cells were 90–

95% confluent. On the transfection day, vsv-g mixture was

prepared with 27 mg plasmid/100 mm plate, to make a total of

0.5 ml/plate. A separate tube was prepared with a 1:25 dilution of

LipofectamineTM 2000 Reagent (Invitrogen, Carlsbad, CA).

Tubes were mixed separately, and then mixed together followed

by incubation at room temperature for 30 min. The media was

removed and ,4 mL of transfection media was added to each

plate. Plates were incubated for 4 h, and checked every 20 min. to

redistribute media over entire plate. At the end of 4 h, transfection

media was aspirated and replaced by slowly adding 10 mL of

media (without G418). Two to 3 days after transfection, the

supernatant was collected on ice and filtered though a 0.45 mm

cellulose filter. Conical tubes containing viral supernatant were

centrifuged at 19,200 rpm in Surespin 630 rotor for 2.5 h in

Sorvall ultracentrifuge at 4uC. Supernatant was aspirated and

pellet diluted 1/200 in cold sterile HBSS. The tube was left on ice

for 2 h, or until the pellet was completely dissolved. Viral titers

were determined in CFU by incubating NIH3T3 cells with serial

dilutions of retrovirus. At 48 h post infection the number of GFP+
cell clusters were counted. The CFU was calculated by multiplying

the number of GFP+ cell clusters by the dilution factor. DAP

retrovirus was produced and titered as described previously [83].

Retroviral Fate Mapping
Two days after H/I (P8) 2–5 mL of DAP or pNIT replication

deficient retroviruses with 8 ug/mL polybrene were stereotacti-

cally injected at a rate of 0.2 ml/min targeting the lateral ventricles

of anesthetized rat pups at the following coordinates: A 1.0 mm, L

1.2 mm, D 2.5 mm. At 2, 10 or 19 days after injection animals

were anesthetized with ketamine (75 mg/kg)/xylazine (5 mg/kg),

perfused with RPMI culture medium containing 6 U/ml heparin

followed by 4% paraformaldehyde, pH 7.4. Brains were removed,

cryoprotected, frozen in OCT and sectioned for further analysis.

Twenty mm sections were incubated in TBS/0.3% Triton-X-100

for 30 min, blocked for 1 h, and incubated overnight with primary
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antibodies against GFP (chicken anti-GFP, 1:2,500, Aves Labs,

Tigard, Oregon). Sections were washed extensively with TBS/

0.05% Triton-X-100 and incubated for 4 h at RT with

fluorochome-conjugated secondary antibodies (Jackson Immunor-

esearch). After extensive rinses, the sections were counterstained

with DAPI and coverslipped with gelmount. For experiments

using the DAP retrovirus, staining was performed at 10 days after

injection as described previously [10] on 40 mm free floating

sections and cell types were characterized morphologically as

astrocytes, oligodendrocytes or indeterminate. To analyze pheno-

typic markers, animals were perfused 19 days after pNIT injection.

Twelve mm sections were incubated in TBS/0.3% Triton-X-100

for 30 min, blocked for 1 h, and incubated overnight with primary

antibodies against GSTp (rabbit anti-GSTp, 1:500, MBL, Santa

Cruz, CA), GFAP (mouse anti-GFAP 1:500, Cell Signaling) and

GFP (chicken anti-GFP, 1:2,500, Aves). Sections were washed

extensively with TBS/0.05% Triton-X-100 and incubated for 4 h

at RT with fluorochome-conjugated secondary antibodies (Jackson

Immunoresearch). After extensive rinses, the sections were

counterstained with DAPI and coverslipped with gelmount. For

quantitative analysis, at least 6 nonadjacent sections for each

group were analyzed. Images of pNIT-infected cells with

immunofluorescence were taken under 636 oil magnification.

All animal work was performed according to Institutional Animal

Care and Use Committee (IACUC) guidelines of UMDNJ,

approved protocol #0609.

Statistical Analyses
Results from cell culture experiments were analyzed for

statistical significance by ANOVA with Fisher’s PLSD post-hoc

analysis or using a Student’s t test. Error bars represent SEMs

unless noted otherwise. Comparisons were interpreted as signif-

icant when associated with p,0.05. The REST algorithm was

used to evaluate the qPCR data [84].

Supporting Information

Figure S1 Fewer SVZ cells are infected by replication deficient

retroviruses in the injured hemisphere. (A) Number of retrovirally-

labeled cells counted in the hypoxic sham, contralateral and ILHs

at 9 days of recovery with DAP virus. (B) Distribution of labeled

cells among various brain regions. For short-term analysis of

retrovirus infection, 5 ul of pNIT was injected at P8 as described

above and animals sacrificed 48 h later. Cryostat sections were

prepared and stained for GFP. (C,D) Representative panels of

pNIT-labeled cells in contralateral (C) and ipsilateral SVZs (D)

48 h after bilateral intraventricular retrovirus injection.

Found at: doi:10.1371/journal.pone.0009567.s001 (0.08 MB TIF)

Figure S2 Neocortical Astrogliosis is not blocked as a conse-

quence of antagonizing ALK-5. Representative images of CL and

IL hemispheres from H/I animals that received vehicle or twice

daily i.p. SB505124 injections for 4 days and then killed and

processed for immunofluorescence. Sections were stained with

antibodies against GFAP. Scale bar represents 50 mm.

Found at: doi:10.1371/journal.pone.0009567.s002 (7.73 MB TIF)

Table S1 Results from the SuperArray stem cell array. mRNAs

pooled from at least 6 animals at 7 days of recovery were labeled

and hybridized to the Nylon membrane. Fold differences in

ipsilateral vs. contralateral are indicated. Values are averages from

3 experiments with 3 independent sets of mRNAs.

Found at: doi:10.1371/journal.pone.0009567.s003 (0.04 MB

RTF)
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