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Abstract: Reduced fetal movement (RFM) can indicate that a fetus is at risk, but current
monitoring methods provide only a “snapshot in time” of fetal health and require trained
clinicians in clinical settings. To improve antenatal care, there is a need for continuous,
objective fetal movement monitoring systems. Wearable sensors, like inertial measurement
units (IMUs), offer a promising data-driven solution, but distinguishing fetal movements
from maternal movements remains challenging. The potential benefits of using linear accel-
eration and angular rate data for fetal movement detection have not been fully explored. In
this study, machine learning models were developed using linear acceleration and angular
rate data from twenty-three participants who wore four abdominal IMUs and one chest
reference while indicating perceived fetal movements with a handheld button. Random
forest (RF), bi-directional long short-term memory (BiLSTM), and convolutional neural
network (CNN) models were trained using hand-engineered features, time series data, and
time–frequency spectrograms, respectively. The results showed that combining accelerome-
ter and gyroscope data improved detection performance across all models compared to
either one alone. CNN consistently outperformed other models but required larger datasets.
RF and BiLSTM, while more sensitive to signal noise, offered reasonable performance with
smaller datasets and greater interpretability.

Keywords: bi-directional long short-term memory (BiLSTM); convolutional neural net-
work (CNN); fetal monitoring; inertial measurement units (IMUs); random forest (RF);
spectrogram; time–frequency analysis; wearable sensors

1. Introduction
Prenatal care is essential for maternal and fetal health, with regular monitoring used

to identify an at risk fetus and improve birth outcomes. Key indicators of fetal well being
include fetal heart rate, movement, and muscle tone [1]. Among these indicators, maternal
perception of fetal movement stands out as one of the oldest and most common methods
of monitoring fetal health [2]. Reduced fetal movement (RFM) can signal complications:
stillbirth, fetal growth restriction, congenital anomalies, and fetomaternal hemorrhage [3,4].
An estimated 25% of pregnancies in which mothers report RFM result in poor perina-
tal outcomes [3]. However, maternal perception inherently is subjective, influenced by
factors such as activity level, placental position, and fetal sleep–wake cycles, and lacks
standard guidelines for optimal number of movements [1,3,5–7]. Clinicians initiate ante-
natal testing where there is a report of RFM by completing a non-stress test. Fetal heart
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rate and uterine activity are monitored for 20 minutes for fetal heart rate accelerations or
decelerations with or without contractions. Non-stress tests have significant false posi-
tive rates, resulting in additional testing to assess fetal wellbeing [1,8]. The contraction
stress test provides information about fetal reactivity with uterine contractions and the
biophysical profile measures fetal breathing, movement, tone, and amniotic fluid via ultra-
sound [1]. All these tests require trained clinicians and clinical settings and provide only
a “snapshot in time” of fetal health, which may yield inconclusive results [1,8]. Despite
the utility of clinical fetal monitoring, these methods can prompt cautious but sometimes
unnecessary interventions—including early delivery, hospitalization, or more frequent
monitoring [1,2,4,7,8]. Continuous, objective fetal movement monitoring could reduce
reliance on subjective perception and isolated assessments, offering a more comprehensive
understanding of fetal well being and improving antenatal care.

Wearable sensors offer a promising solution for continuous, objective fetal movement
monitoring. However, distinguishing fetal movements from superimposed maternal move-
ments in wearable sensor data continues to be a challenge [9–12]. Accelerometers have
shown potential in controlled research environments when study participants are station-
ary. For instance, Khlif et al. achieved moderate accuracy (59%), sensitivity (76%), and
specificity (55%) using a thresholding algorithm with three abdominal accelerometers [13].
Mesbah et al. applied signal preprocessing to remove maternal artifacts, achieving 95.8%
accuracy but observing a sharp drop to 87.6% when maternal artifacts were included [9].
Delay et al. explored multiclass classification (e.g., fetal movement, maternal laughter,
and respiratory motion), achieving an 86% true positive rate and 7% false positive rate
with a single accelerometer [14]. Xu et al. achieved 86.6% accuracy and 84.2% F1 score
using two accelerometers, but relied on synthetic minority oversampling [15]. These ex-
amples highlight the complexity of fetal movement detection, particularly the difficulty
of distinguishing fetal movements from maternal motion—a challenge that becomes even
greater in real-world settings outside controlled environments. Furthermore, differences
in study populations and methodologies—such as gestational age, baseline fetal activity,
preprocessing techniques, model architectures, and data representations—affect the results
reported [16]. Comparing studies based on these metrics alone is not applicable to a broad
patient population, as success reflects conditions and datasets specific to the study, and
algorithms may not be generalizable. Understanding these nuances is crucial for inter-
preting research in this field and appreciating the variability inherent in fetal movement
detection approaches.

Although evaluating the effectiveness of fetal movement detection approaches
presents significant challenges, isolating and detecting fetal movements becomes par-
ticularly difficult when superimposed maternal movements are captured by wearable
sensors [9–12]. In related biomedical applications where superimposed movements are also
a concern (e.g., monitoring of sleep apnea in preterm infants, pulmonary conditions, and
dietary behaviors), inertial measurement units (IMUs) have shown promise for accurate
event detection [17–20]. Traditional accelerometer-based approaches detect fetal movement
by identifying isolated changes in acceleration caused by abdominal deformation. When
maternal movement occurs, a mixture of signals from both fetal and maternal motion are
captured [9–12]. Angular rate gyroscopes, although rarely used to date in fetal movement
detection, measure rotational motion and could help distinguish between the superim-
posed movements [21,22]. During maternal movement, the torso can be approximated as a
rigid body, leading to similar gyroscope readings across sensors [23,24]. Thus, combining
accelerometers with gyroscopes may detect localized abdominal deformation, potentially
allowing for the identification of fetal movement in the presence of maternal motion.
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Only one study to date has reported using both accelerometer and gyroscopic data
obtained from IMUs for fetal movement detection [25]. The recent preprint by Alwis et al.
demonstrated that a fusion deep learning model combining a convolutional neural network
(CNN) and long short-term member (LSTM) layers achieved 88% accuracy, 0.86 sensitivity,
and 0.91 specificity using spectrogram-based time–frequency representations [25]. While
this study highlighted the potential of IMUs for fetal movement detection, it did not
address the distinct contributions of acceleration versus angular rate data or evaluate their
potential combined benefits relative to an accelerometer-only approach. Furthermore, Alwis
et al. relied exclusively on spectrogram features and a specific fusion model architecture,
leaving questions about how alternative data representations and machine learning models
may perform.

Given the variability across study methodologies, comparing how different data
representations affect performance is crucial for advancing fetal movement detection
approaches. For example, hand-engineered features capture domain-specific patterns, time
series characterize temporal dependencies, and time–frequency spectrograms offer insights
into frequency and time dynamics simultaneously [9,14,25]. Comparing these approaches
provides a valuable understanding of the strengths and limitations of each method and
helps standardize evaluations in the field.

This study explores fetal movement detection using acceleration and angular rate
signals from wearable IMUs. The primary contributions of this work are as follows:
(1) a comparative analysis of accelerometer and angular rate gyroscope performance in
detecting fetal movement, (2) an assessment of their combined performance to enhance
detection accuracy, and (3) an evaluation of various machine learning models trained
on three distinct data representations—hand-engineered features, time series data, and
time–frequency spectrogram representations. Additionally, this study examines the effect
of decision thresholds for binary classification on model performance and the effect of
training set size on model robustness. This analysis aims to provide a clearer understanding
of each approach’s benefits and limitations, addressing gaps in current models and offering
insights into how more efficient, deployable solutions can be developed for real-world use.

2. Materials and Methods
2.1. Participants

Twenty-three participants were recruited for a single data collection session at the
University of Michigan. Participants were selected based on the following criteria: be-
tween 18 and 49 years old, currently carrying a singleton pregnancy, and between 24 and
32 weeks of gestational age. Appendix A provides additional demographic information
about the participant population. Exclusion criteria included a diagnosis of gestational
diabetes, hypertension, or any known fetal disease or physical abnormalities, to minimize
confounding factors that could affect movement patterns. Written informed consent was
obtained from all participants, and the study protocol was reviewed and approved by the
University of Michigan Institutional Review Board (HUM00204999).

2.2. Sensor System

Data were collected using four tri-axial IMUs (Opal, APDM Inc., Portland, OR, USA)
positioned around the participant’s umbilicus with a medical-grade adhesive. The x-axis of
each IMU was aligned with gravity and the z-axis was perpendicular to the abdomen to
ensure proper and consistent measurements of angular rates (Figure 1). To help distinguish
between fetal and maternal movement, a chest IMU was added as a reference [9,13]. By
approximating the torso as a rigid body, the angular rates measured by the chest and
abdominal IMUs were assumed to be similar during maternal movement. Since the chest
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IMU was not expected to capture isolated abdominal deformations, it was considered
useful for distinguishing maternal movement from fetal movement. The IMUs collected
synchronized acceleration and angular rate data at a sampling rate of 128 Hz.
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Figure 1. Position and alignment of four tri-axial IMUs on the maternal abdomen for fetal move-
ment detection.

2.3. Experimental Protocol

At the start of each session, participants’ heights and weights were recorded, and the
sensor system was fitted. Calibration data were collected by having participants perform a
series of specified movements, which were later used to align the axes of the angular rate
data. While accelerometer-only approaches have detected fetal movement in prior studies
by capturing changes in acceleration tangential to the abdomen [10,13,14], approaches
that use angular rate data have the potential to distinguish fetal movement from maternal
motion but require an estimation of the sensors’ orientation [26]. Therefore, a Functional
Alignment Method was employed to determine the anatomical axes relative to the IMU
fixed frame of reference [26]. Since the IMU sensors were placed on the abdomen and the
abdomen was assumed to move as a rigid body with rotation about the hip, the hip axis
was used as a reference point to estimate IMU orientation. At the start of data collection,
participants began from a standing position and were instructed to lean forward, bending at
the hip, to a comfortable degree. This motion was repeated three times, and the calibration
data from these hip-hinging movements were used to align the IMU axes (details related to
signal processing are in Section 2.4).

Following calibration, participants were seated in a chair. Each participant held a
unique IMU which functioned as a handheld toggle. When fetal movement was perceived,
participants pressed the button on this IMU to mark the event as ground truth for subse-
quent movement detection analysis. Data collection was conducted in 10–15 min intervals
to balance practical constraints with capturing meaningful fetal movement data. Since fetal
movements often occur in clusters [27,28], shorter recording periods allowed for natural
fluctuations while preventing participant fatigue and loss of focus, which could affect the
accuracy of self-reported movements. Additionally, these intervals provided opportunities
for participants to engage in behaviors that stimulate fetal movement, such as rubbing the
abdomen or consuming a snack, increasing the likelihood of detecting activity [28]. While
maternal perception captures only about 40% of true movements [6], simply increasing the
recording duration would not necessarily yield more detected events. Instead, shorter trials
helped sustain participant engagement, minimize fatigue-related artifacts, and effectively
extend total observation time across the session. Each participant completed 2–3 trials,
generating a total of 49 trials.



Sensors 2025, 25, 2944 5 of 20

2.4. Signal Processing and Data Labeling

After data collection, the synchronized files from the IMUs were downloaded and
reviewed for signal quality. Data from two participants were excluded due to signal
acquisition issues. Raw acceleration and angular rate signals from each IMU were processed
through a zero-phase bandpass filter (1–20 Hz) to reduce drift and noise [16].

For angular rate data, a Functional Alignment Method was applied to estimate each
sensor’s orientation to improve differentiation between maternal and fetal movement
signals [26]. During static standing, the global gravity vector was identified to establish a
reference for the alignment of the vertical axis. Using rotation about the frontal axis, from
the hip-hinging movements, the frontal and sagittal axes were identified. Each sensor’s
x-axis was aligned with global gravity, the y-axis with the participant’s frontal axis, and
the z-axis with the sagittal axis. This alignment allowed the angular rate data to capture
deviations from expected rigid body motion—a key feature for distinguishing localized
abdominal deformations caused by fetal movements from larger maternal movements. By
aligning the axes this way, rotational changes inconsistent with whole-body movement
patterns could be identified as potential fetal movements.

Axis alignment was not performed on acceleration data to preserve tangential fetal
movement information on the z-axis, which is critical for capturing small, localized changes
in abdominal acceleration that may be otherwise lost through axis realignment. Preserv-
ing the raw acceleration signal ensured that subtle changes in movement direction and
magnitude—key indicators of fetal movement—were retained for analysis.

This combination of angular rate alignment and unaltered acceleration data leveraged
each signal’s strengths: angular rate data for detecting deviations from maternal rigid body
motion and acceleration data for capturing localized movement dynamics. An example of
the time series measurements is provided in Figure 2.
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Figure 2. Example of fetal movement in the time series measurement data from accelerometer and
gyroscope sensors. Bright green markers indicate maternal perception toggle presses, while labeled
fetal movement events are defined to be within the gray boxes.

Fetal movement events were defined 3.5 s prior to and 1.5 s after each recorded
press of the handheld toggle to account for participant reaction time and fetal movement
duration [29] (see Figure 2 for an example). The full time series data were then segmented
by a window of fixed size. Binary labels were assigned to each window, where windows
containing more than 10% overlap with event intervals were labeled as 1 and all others as
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0. This 10% threshold, determined through visual inspection, effectively captured short
fetal movements [30].

2.5. Model Training and Evaluation

From the full dataset, six trials were randomly selected for testing, six for validation,
and the remaining thirty-seven for training. This division ensured that performance
could be assessed on data unseen to the model, allowing for an evaluation of model
generalization across different scenarios. After labeling, approximately 11% of windows
were positively labeled. To mitigate data imbalance in the training set, two-thirds of
negatively labeled windows were discarded to achieve an approximate 1:3 positive-to-
negative ratio with 26% positive training windows [16]. Three dataset configurations were
explored: (1) acceleration data only, (2) angular rate data only, and (3) a combination
of both data types. For evaluation, the area under the receiver operating characteristic
curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV), and F1
score were calculated to present a comprehensive view of model performance. Confusion
matrices were also generated for each combination to provide a visual representation of
classification performance.

To ensure robust and consistent evaluation, cross-validation was employed with a
randomized repeated split approach [31]. Specifically, 10 sets of validation and testing
splits were pre-selected prior to model training, with each split generated independently
and without replacement to maintain diversity across trials. Model performance was
then evaluated on the validation and testing sets to reflect its predictive capability on
unseen data scenarios. This Monte Carlo cross-validation approach ensured that each
model’s performance was averaged across 10 different splits, providing a robust estimate
of generalization [31]. Furthermore, using the same validation and testing splits for all data
representations ensured a fair and direct comparison of model performance across different
dataset configurations. Other cross-validation approaches, such as k-fold, could also be
employed. To assess the statistical significance of differences between models, p-values
were calculated using paired statistical tests across the 10 validation and testing splits.

2.6. Feature-Based Approach: Random Forest Model

For the first data representation, all data trials were segmented into 0.5 s windows
with no overlap. Statistical and correlation features were calculated for each axis and sensor,
including the mean, standard deviation, and range. In addition, the cross-correlation be-
tween axes and the cross-correlation with the reference sensor for each axis were computed,
as described in our previous study [30]. This process resulted in 75 acceleration features
and 75 angular rate features per window. The features of each window were then used to
train a random forest (RF) model. The model architecture consisted of an RF classifier with
hyperparameters optimized via a random search based on the F1 score evaluated on the
validation set. The final output was determined by aggregating the predictions of all trees
using majority voting, based on a chosen threshold, to classify samples into {0, 1} [30].

2.7. Time Series Approach: BiLSTM Model

In contrast to the feature-based approach used for the first data representation, the
second data representation used the time series data. Using information from the time
domain maintains the natural temporal dynamics and memory of activity history, capturing
transient accelerations and rotations that could indicate movement events. Preserving the
time series structure may improve sensitivity to short, low-frequency bursts, characteristic
of fetal movement [32].

For the second data representation, all data trials were again segmented into 0.5 s
windows with no overlap. These windows were used directly as inputs into a machine
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learning model. The time series inputs were then used to train a bi-directional long
short-term memory (BiLSTM) model, a type of recurrent neural network and variant to
LSTM that is designed for capturing temporal dependencies from past and future contexts
simultaneously [33]. Given that fetal movements often follow patterns or brief bursts,
BiLSTM’s memory capability enables it to recognize and retain relevant time dependencies
while ignoring noise or less relevant temporal artifacts.

The model architecture presented in Figure 3 included a single BiLSTM layer with
64 units regularized with 0.3 dropout and 0.3 recurrent dropout. The output from this layer
was passed to a fully connected dense layer with sigmoid activation to produce a scalar
value, which was rounded to {0,1} following a thresholding rule for binary classification.
The model was trained using the Adam optimizer with binary cross-entropy loss.
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2.8. Time–Frequency Approach: CNN Model

A time–frequency data representation was used for the third data representation to
enable the model to leverage frequency-specific features, which may correspond to fetal
movement rhythms or recurrent patterns that are not easily seen in the time domain [34].
Frequency–domain analysis has proven useful in other biomedical applications, particularly
in distinguishing movement from background noise, and may improve model robustness
against maternal motion artifacts [35]. Spectrograms also allow the model to focus on
frequency components associated with fetal movement, improving sensitivity to movement
events in noisy environments.

For the third data representation, all data trials were segmented into overlapping 8 s
windows with a 1 s stride. Although shorter windows (e.g., 0.5 s) are suitable for capturing
fine-grained temporal patterns in feature-based or time series approaches [16], a longer
window was necessary to balance the tradeoff between time and frequency resolution
in the time–frequency representation [25]. Specifically, a 0.5 s window provided better
time resolution, but poor frequency resolution, limiting the ability to capture meaningful
frequency–domain patterns. Conversely, the 8 s window allowed for improved frequency
resolution, which is crucial for distinguishing fetal movement patterns from maternal
motion in the spectral domain. Within each 8 s window, the short-time Fourier transform
(STFT) was computed using a sliding Hanning window of 16 samples with a stride length
of 1 [25]. The magnitude of the STFT is known as the spectrogram time–frequency rep-
resentation of the signal (Figure 4). A magnitude spectrogram was constructed for each
window, and these spectrograms were used as inputs into a machine learning model.
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Magnitude spectrograms were used to train a CNN. CNNs are effective for pattern
recognition in image data, as they excel in identifying localized features and patterns [36].
By applying a CNN to frequency–domain representations, the model can learn frequency-
specific movement characteristics while ignoring irrelevant noise, making it ideal for
movement detection in an environment with variable maternal activity.

The model architecture, presented in Figure 5, consisted of an initial two-dimensional
(2D) convolutional layer with 32 filters, each of size (3, 3), and ReLu activation. This layer
was followed by a (2, 2) max-pooling layer to downsample the feature map. A second
convolutional layer with 16 filters, each of size (3, 3), and ReLU activation was applied to
further refine the extracted features. The output of the second convolutional layer was then
flattened and passed to a dense layer with 16 units and ReLu activation, a dropout layer
with rate 0.25, and a final output layer with sigmoid activation to produce a scalar value,
which was rounded to {0, 1} following a thresholding rule for binary classification. The
model was trained using the Adam optimizer and binary cross-entropy loss.

Sensors 2025, 25, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Example of fetal movement in the time–frequency spectrum. 

Magnitude spectrograms were used to train a CNN. CNNs are effective for pattern 
recognition in image data, as they excel in identifying localized features and patterns [36]. 
By applying a CNN to frequency–domain representations, the model can learn frequency-
specific movement characteristics while ignoring irrelevant noise, making it ideal for 
movement detection in an environment with variable maternal activity. 

The model architecture, presented in Figure 5, consisted of an initial two-dimensional 
(2D) convolutional layer with 32 filters, each of size (3, 3), and ReLu activation. This layer 
was followed by a (2, 2) max-pooling layer to downsample the feature map. A second 
convolutional layer with 16 filters, each of size (3, 3), and ReLU activation was applied to 
further refine the extracted features. The output of the second convolutional layer was 
then flattened and passed to a dense layer with 16 units and ReLu activation, a dropout 
layer with rate 0.25, and a final output layer with sigmoid activation to produce a scalar 
value, which was rounded to {0, 1} following a thresholding rule for binary classification. 
The model was trained using the Adam optimizer and binary cross-entropy loss. 

 

Figure 5. Model architecture for the time–frequency approach. 

2.9. Thresholding Analysis and Training Set Size Reduction 

In addition to the primary model evaluations, two exploratory analyses, thresholding 
and training set size reduction, were conducted to further understand model perfor-
mance. Setting a good threshold for the machine learning models is an important part of 
creating an effective binary classification model. A standard 0.5 threshold is often not the 
best choice, and a smaller threshold (towards 0) tailors the model to predict more posi-
tives, while a larger threshold (towards 1) tailors the model to predict more negatives. 
This effect can also be quite sensitive at times, leading to fragile models. Therefore, a 
thresholding analysis was performed to vary the threshold from 0.1 to 0.9 in increments 
of 0.1. 

Another consideration for data-driven modeling is whether the training set is suffi-
ciently rich. This consideration is non-trivial and depends on the architecture and com-
plexity of the models being used, the nonlinearity of the underlying data input–output 
relationship, and the settings and demographics being targeted. Nonetheless, sensitivity 

Figure 5. Model architecture for the time–frequency approach.

2.9. Thresholding Analysis and Training Set Size Reduction

In addition to the primary model evaluations, two exploratory analyses, thresholding
and training set size reduction, were conducted to further understand model performance.
Setting a good threshold for the machine learning models is an important part of creating
an effective binary classification model. A standard 0.5 threshold is often not the best
choice, and a smaller threshold (towards 0) tailors the model to predict more positives,
while a larger threshold (towards 1) tailors the model to predict more negatives. This effect
can also be quite sensitive at times, leading to fragile models. Therefore, a thresholding
analysis was performed to vary the threshold from 0.1 to 0.9 in increments of 0.1.

Another consideration for data-driven modeling is whether the training set is suffi-
ciently rich. This consideration is non-trivial and depends on the architecture and com-
plexity of the models being used, the nonlinearity of the underlying data input–output
relationship, and the settings and demographics being targeted. Nonetheless, sensitivity
analysis can be performed by varying the training data size and providing insights for
understanding model limitations and future data collection. The three models in this study
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were evaluated for robustness and sensitivity to data availability by training and testing
them at 100%, 75%, 50%, and 25% of the full training set size.

3. Results
3.1. Summary of the Results

The results presented in this study demonstrate the comparative performance for
detecting fetal movement when using only acceleration data, only angular rate data, and
combining both. By evaluating three distinct data representations and models—hand-
engineered features classified with RF, time series data analyzed with BiLSTM, and time–
frequency spectrograms analyzed with CNN—this study highlights the strengths and
limitations of each approach. Across all model types, the acceleration and angular rate
datasets resulted in comparable performance. However, combining both types of sensor
data consistently improved performance for all data representations. Additionally, model
performance improved with increasing model complexity, specifically when transitioning
from the simpler RF model to the more complex CNN.

3.2. Model Performance Across Sensor Types

Mean receiver operating characteristic (ROC) curves, averaged across 10 testing splits,
were generated for binary classification under varying thresholds (Figure 6), with the
corresponding mean area under ROC (AUROC) values shown in the legend. The time–
frequency spectrograms analyzed with CNN achieved the highest AUROC of 0.90 for the
combined dataset, indicating “excellent” performance [37] in distinguishing fetal movement
from non-movement. The single-mode acceleration and angular rate datasets achieved
significantly lower AUROC scores of 0.86 (acceleration: p-value = 0.002; angular rate:
p-value = 0.0002). Time series data trained with BiLSTM yielded “good” performance [37]
with an AUROC of 0.78 for the combined dataset. The single-mode datasets scored
0.75 and 0.72, respectively—significantly lower than the combined dataset (acceleration:
p-value = 0.0007; angular rate: p-value = 0.008). Hand-engineered features trained with RF
achieved “sufficient” performance [37] with the lowest AUROC of 0.69 for the combined
dataset. This lower value reflected the model’s limited capacity to capture the complex pat-
terns of fetal movement through features localized to only the 0.5 s window. Single-mode
datasets in this representation performed significantly lower than the combined dataset
(acceleration: p-value = 4 × 10−5; angular rate: p-value = 0.00003) and were the lowest
performing overall, with an AUROC of 0.63.
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3.3. Model Performance Across Data Representations

Accuracy, sensitivity, specificity, PPV, and F1 score, averaged over 10 testing splits
and at a standard threshold of 0.5, are presented in Figure 7 for each dataset and model.
Confusion matrices, presented in Figure 8, provide further insight into these results by
showing the distribution of true positives, false positives, false negatives, and true negatives
across models and datasets. To account for differing window sizes across models (e.g.,
CNN with 8 s windows vs. RF and BiLSTM with 0.5 s windows; see Section 2.8 for more
details), the confusion matrices report percentages relative to the total number of samples,
with raw counts included in parentheses. This presentation highlights both class imbalance
and classifier behavior in a comparable format.
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Figure 7. Performance metrics of RF, BiLSTM, and CNN models. Each histogram displays five metrics,
accuracy (ACC), specificity (SPEC), sensitivity (SEN), positive predictive value (PPV), and F1 score,
with bars indicating the model’s performance on combined, angular rate, and acceleration datasets.

For the hand-engineered features classified with RF, all three datasets achieved
similar accuracy, specificity, and PPV. For RF, sensitivity increased from 0.11 (accelera-
tion: p-value = 0.005) and 0.12 (angular rate: p-value = 0.005) to 0.15 with the combined
dataset. F1 score increased from 0.18 to 0.23 (acceleration: p-value = 0.002; angular rate:
p-value = 0.001), and AUROC increased from 0.63 to 0.69 (acceleration: p-value = 4 × 10−5;
angular rate: p-value = 3 × 10−4). Furthermore, the confusion matrices, shown in green,
illustrate that the combined dataset exhibits more true positives (top left) and fewer false
negatives (top right) compared to the single-mode datasets.

For the time series representations analyzed with BiLSTM, all three datasets achieved
similar accuracy, specificity, and PPV. BiLSTM resulted in a sensitivity increase from 0.25
to 0.34 (acceleration: p-value = 0.0002, angular rate: p-value = 0.006), an F1 score increase
from 0.31 to 0.39 (acceleration: p-value = 3 × 10−5; angular rate: p-value = 9 × 10−4),
and an AUROC increase from 0.72 (acceleration: p-value = 0.0007) and 0.75 (angular
rate: p-value = 0.008) to 0.78. The confusion matrices, shown in purple, further highlight
this improvement by demonstrating the combined dataset’s ability to capture more true
positives and fewer false negatives, which aligns with the higher sensitivity observed in
the performance metrics. Across all datasets, the sensitivity (acceleration: p-value = 0.005;
angular rate: p-value = 0.002; combined: p-value = 0.0008) and F1 score (acceleration:
p-value = 0.002; angular rate: p-value = 0.0004; combined: p-value = 0.0007) of BiLSTM
significantly outperformed RF.
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Figure 8. Confusion matrices showing the performance of the RF, BiLSTM, and CNN models across
three datasets: acceleration, angular rate, and combined. The models’ classification performances are
visualized in terms of true positives (top left), false positives (bottom left), false negatives (top right),
and true negatives (bottom right). Each cell displays the percentage of the total number of samples,
with the raw count shown in parentheses. RF matrices are shown in green, BiLSTM matrices in
purple, and CNN matrices in blue. The combined datasets are positioned in the top row, acceleration
in the second row, and angular rate in the third row. It is important to note that the models were
evaluated using different window sizes: RF and BiLSTM used 0.5 s windows, while CNN used 8 s
windows. This difference in window sizes may affect the distribution of predicted outcomes and
should be considered when interpreting the results.

Finally, for the time–frequency spectrograms analyzed with CNN, the combined
dataset outperformed the single-mode datasets across all five performance metrics, with
accuracy increasing from 0.79 (acceleration: p-value = 0.0006) and 0.80 (angular rate:
p-value = 0.03) to 0.84, specificity increasing from 0.79 (acceleration: p-value = 0.02) and
0.80 (angular rate: p-value = 0.2) to 0.85, sensitivity increasing from 0.78 to 0.80 (acceler-
ation: p-value = 0.7; angular rate: p-value = 0.7), PPV increasing from 0.51 (acceleration:
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p-value = 0.002) and 0.54 (angular rate: p-value = 0.005) to 0.60, F1 score from 0.61 (accelera-
tion: p-value = 0.002) and 0.63 (angular rate: p-value = 0.001) to 0.68, and AUROC from 0.86
to 0.90 (acceleration: p-value = 0.002; angular rate: 0.0002). Although the combined dataset
for the CNN model did not demonstrate statistically significant improvements in sensitiv-
ity over the single-mode datasets, CNN with the combined dataset achieved significantly
higher sensitivity compared to RF (p-value = 1 × 10−7) and BiLSTM (p-value = 6 × 10−7)
models trained on the same combined dataset, highlighting the superior capability of CNN
in capturing true positive events. While maintaining accuracy and specificity similar to RF
and BiLSTM, the CNN model achieved the highest performance in terms of sensitivity, PPV,
and F1 score. Notably, the confusion matrices, shown in blue, further illustrate this increase
in performance. The CNN model—particularly with the combined dataset—demonstrates
a stronger balance between true positives and false negatives, and uniquely among all
models and datasets, it also reduces the percentage of false positive predictions.

3.4. Thresholding Analysis and Training Set Size Reduction

Performance metrics resulting from varying the threshold for binary classification from
0.1 to 0.9 for each model type, trained and tested on the combined dataset, are reported in
Figure 9. When evaluating RF across varying thresholds, accuracy and specificity increased
from 0.1 to 0.5 and then stabilized at their best values. PPV also increased consistently,
stabilizing only at a threshold of 0.8. Sensitivity continuously decreased as the threshold
increased, and the F1 score increased slightly from 0.1 to 0.4 before decreasing thereafter. For
BiLSTM, similar trends were observed but with higher minimum accuracy and specificity
(just below 0.6 at a 0.1 threshold). Sensitivity ranged from 0.2 to 0.8 compared to 0 to 1
for RF. PPV and F1 scores were comparable but had less variation across thresholds. The
performance metrics for CNN were notably stable across all thresholds. Like the first two
approaches, accuracy and specificity increased as the threshold increased, while sensitivity
decreased. The F1 score remained stable, while PPV showed a slight increase. This analysis
highlights how threshold adjustments affected performance metrics differently across
model types, with CNN demonstrating superior robustness compared to RF and BiLSTM.
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Figure 9. Performance of RF, BiLSTM, and CNN models across varying threshold values (0.1 to
0.9). Each line plot represents a different performance metric, illustrating how model performance
changed with threshold adjustments.

Performance metrics and ROC curves resulting from training and testing each model
type on the combined dataset at 100%, 75%, 50%, and 25% of the training set size are
reported in Figures 10 and 11, respectively.

For RF, AUROC and other performance metrics remained low and relatively un-
changed across different dataset sizes. For BiLSTM, AUROC, sensitivity, and F1 score
improved steadily as training size increased. BiLSTM performed reasonably well, even at
50% of the dataset size, and continued to improve as more data were made available. For
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CNN, all performance metrics were poor at 25% but showed rapid improvement thereafter.
CNN performed well at 50% and 75%, reaching its highest performance with 100% size.
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4. Discussion
This study trained and tested machine learning models to detect fetal movement using

acceleration and angular rate signals from wearable IMUs. Acceleration data, angular rate
data, and combined datasets were used to train on hand-engineered features classified
with RF, time series data analyzed with BiLSTM, and time–frequency spectrograms ana-
lyzed with CNN. Combining acceleration and angular rate data improved performance
across all models. Time–frequency spectrograms analyzed with CNN yielded the best
performance, followed by time series data analyzed with BiLSTM and hand-engineered
features classified with RF, highlighting the benefits of more complex data representations
and model architectures.

4.1. Model Performance Across Sensor Types

Single-mode sensors, whether capturing acceleration or angular rate data, performed
similarly across all model types but were insufficient in fully capturing fetal movement
patterns. However, combining acceleration and angular rate data consistently improved
performance across all models. Notably, this combination improved sensitivity, F1 score,
and AUROC.
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Across all data types and models, the increased performance of the combined dataset
suggested that the complementary information resulting from the combination of accelera-
tion and angular rate datasets had discriminative power over either dataset on its own. The
improvements in sensitivity, F1 score, and AUROC observed with the combined dataset
were driven by an increase in true positives and a decrease in false negatives across all
model types. For CNN, this improvement was also associated with a reduction in false
positive predictions when combining datasets, further contributing to the model’s signifi-
cantly higher PPV compared to single-mode datasets. These improvements suggest that
combining acceleration and angular rate data enhances the models’ ability to accurately
identify fetal movement events, improving the reliability of these methods for clinical use.
Reducing false positive outputs prevents false reassurance of fetal well being, while fewer
false negatives can help avoid unnecessary medical interventions.

4.2. Model Performance Across Data Representations

Among the three different data representations, hand-engineered features classified
with RF resulted in the lowest AUROC (0.69), indicating a limited capacity to capture the
complexity of fetal movement patterns. This low sensitivity was further emphasized by
a relatively low number of true positives and a higher number of false negatives. While
RF demonstrated similar specificity across datasets, its limited sensitivity and reliance
on hand-engineered features likely contributed to its inability to accurately distinguish
fetal movement from other signals. Furthermore, training set size analysis revealed that
RF showed low sensitivity to data quantity, reinforcing its limitations in discriminating
complex patterns in fetal movement data.

Time series data analyzed with BiLSTM improved AUROC (0.78), highlighting the
power of sequential data for detecting fetal movement and its potential for enhancing
sensitivity and reliability in clinical settings. The increase in true positives and decrease in
false negatives observed with BiLSTM reflected its ability to better identify fetal movement
events compared to RF. However, the decrease in PPV indicated a higher number of false
positive predictions, possibly due to motion artifacts and overfitting. Despite its higher
discriminative power compared to RF, BiLSTM still faced challenges in differentiating fetal
movement from other signals. Additionally, both RF and BiLSTM were highly dependent
on the choice of threshold, which can be challenging for deployment in real-world settings
where signal noise can vary. Training set size analysis revealed a clear benefit for BiLSTM
when larger dataset sizes were used, emphasizing its ability to better capture temporal
patterns in fetal movement data as the dataset expanded.

Time–frequency spectrograms analyzed with CNN achieved the highest AUROC
(0.90), demonstrating the value of preserving both temporal and frequency-specific infor-
mation. The confusion matrices for CNN showed the highest percentage of true positives
and lowest percentage of false negatives across all datasets, reflecting their ability to achieve
increased sensitivity and reliability. Additionally, CNN reduced false positive predictions
compared to BiLSTM, contributing to its improved PPV and F1 scores. Performance
remained stable over all thresholds, suggesting greater robustness to noise and better suit-
ability for real-world applications. Importantly, CNN performance remained consistently
high with training sets above 25% of the total data size, indicating that CNN models excel
when sufficient data are available, leveraging their capacity to recognize complex patterns
in fetal movement data.

These results emphasized the unique ability of CNN to extract complex spatial and
temporal patterns from spectrograms, distinguishing fetal movement from environmental
noise and demonstrating the significant benefits of incorporating both time- and frequency-
dependent features. Overall, CNN affirmed the importance of time–frequency representa-
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tions for improving sensitivity and reliability, while BiLSTM outperformed RF, suggesting
that more complex models led to improved performance in this problem setting. These
findings emphasized the advantages of using both acceleration and angular rate signals
and advanced model architectures.

4.3. Implications for Fetal Movement Detection

When considering the deployment of a fetal movement detection system in real-
world settings, the tradeoffs between interpretability and model performance must be
considered [38–40]. While combining acceleration and angular rate signals from IMUs was
shown to be consistently more effective than individual sensors across all model types,
the choice of model depends on the specific application and data available. RF excels at
simpler tasks, such as detecting easily identifiable fetal movements in low-risk pregnancies,
and offers quick, interpretable results through its relatively simple binary decision trees,
making it suitable for environments with limited data or when immediate explainable
feedback is essential [41]. In contrast, CNN excels at complex tasks, such as detecting subtle
or noisy fetal movements in real-world environments, but it is also more computationally
demanding to train and deploy, which may limit its feasibility for real-time use in devices
with constrained power or battery life [42].

BiLSTM and CNN generally require larger datasets to achieve good performance,
which may present another challenge in certain fetal monitoring contexts, such as when
targeting at-home settings or specific demographics where data may be scarce [42]. For
smaller datasets or when fetal movements are more pronounced, RF or BiLSTM may
provide a more practical solution. However, when large datasets are available, as might
be the case in large hospitals or other clinical settings, CNN should be favored for their
consistent, robust performance.

Furthermore, the balance between model accuracy and interpretability is critical in
real-world deployments [38,41,42]. In clinical settings, more complex models, like CNN,
can offer high accuracy, but may require additional analysis or tools for interpretability,
which may hinder clinician trust and delay their adoption [39,40]. On the other hand, for
consumer-level wearables, where power consumption, size, and ease of use are more impor-
tant, RF or BiLSTM may be more practical [4,39,43]. In conclusion, further advancements
in sensor fusion and model development hold promise for enhancing fetal movement mon-
itoring and providing a more reliable solution for both clinical and consumer applications.

4.4. Limitations and Future Work

While this study provided valuable insights into data-driven fetal movement detec-
tion using wearable IMUs, there are several important limitations and areas for future
research before implementation in clinical or real-world settings is possible. Although
machine learning models demonstrated strong performance across various sensor types
and data representations, the “ground truth” labels in the current study were based on
maternal perception, which is subjective and has intrinsic human error [4,6]. Counting
perceived fetal movements requires attention and varies with maternal activity and fetal
sleep cycles, so consequently some fetal movement may not be perceived. Maternal anxiety
can negatively affect maternal perception, resulting in patients seeking care for inadequate
movement [4,44,45]. Validating these models for clinical use requires comparison with
ultrasound, which provides a detailed view of fetal activity [4,46]. Future work should
aim to conduct prospective studies where fetal movement predicted from models using
wearable IMU data is compared directly with real-time ultrasound observations to assess
its true accuracy and reliability.
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Another important consideration is the gestational age of the participant population.
Participants in this study were recruited between 24 and 32 weeks of gestational age, as
mothers can typically perceive fetal movement by the 20th week and there is an increased
risk of labor after 32 weeks [47]. While the frequency of fetal movement is highest between
28 and 34 weeks, the risk of stillbirth increases with gestational age being highest after
41 weeks [48]. Future studies should consider prioritizing the recruitment of participants
between 28 and 32 weeks to capture a greater number of fetal movements.

For a fetal movement detection system to be effective in real-world settings, it must be
robust enough to handle a wide range of maternal activities of daily living (ADLs) without
sacrificing performance [43]. Current models were all trained in controlled environments,
but real-world use presents additional challenges, such as increased noise from maternal
body movement, varying sensor placements, inconsistent data quality, and the lack of reli-
able data labeling, whether through maternal perception or ultrasound [4]. Future research
should focus on testing these models in more diverse settings, such as during physical
activity, sleep, and other routine behaviors, to evaluate their performance and robustness
under real-world conditions. In addition, the development of adaptive algorithms that can
adjust for such variability could be a promising direction for improving system reliability
in non-clinical environments.

5. Conclusions
In conclusion, this study demonstrated that combining acceleration and angular rate

data improves fetal movement detection across all data representations and model types.
Time–frequency spectrograms analyzed with CNN achieved the best overall performance,
highlighting the importance of preserving both temporal and frequency-specific informa-
tion. BiLSTM outperformed RF, indicating that more complex models led to improved
performance in this problem setting. These findings highlight the advantages of using
acceleration and angular rate signals and advanced model architectures. While these results
emphasized the potential of advanced machine learning models, balancing model com-
plexity with interpretability is essential for real-world applications. Future work should
validate these models against clinical ultrasonography and assess their robustness during
everyday activities, paving the way for wearable technology in antenatal care to improve
maternal and fetal health outcomes.
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Appendix A
Appendix A.1

This appendix contains demographic data applicable to the participant population
in which IMU signals were acquired. S09 and S16 were excluded from the analysis due to
signal acquisition issues reported in Section 2.4. Gestational age (GA) refers to the number
of weeks that have passed since the first day of the participant’s last menstrual period. Only
the week was reported, e.g., 32 weeks, and 5 days is recorded as 32 weeks. Parity refers
to the number of times a woman has given birth, where mothers in their first pregnancy
are nulliparous and those with previous pregnancies are parity ≥ 1. GA and parity were
self-reported by participants. Body mass index (BMI) is calculated based on the height and
weight of the participant taken on the day of participation. A pre-pregnancy BMI was not
collected. A BMI ≥ 30 is classified as obese. BMI was calculated according to Equation
(A1). GA, parity, and BMI can impact a participant’s ability to perceive fetal movement [4]
and may impact the maternal perception labels applied to this analysis.

BMI =
weight (kg)

height (m)2 (A1)

Fetal movement follows a diurnal pattern, with stronger and more frequent move-
ments generally occurring later in the day [28,47,49]. As a result, the time of day may
influence both a participant’s ability to perceive fetal movement and the frequency and
intensity of movements that occur. To account for this potential effect, session timing was
recorded and categorized as follows: “morning” sessions began between 7 and 10 a.m.,
“afternoon” sessions began between 2 and 4 p.m., and “evening” sessions began at or
after 5 p.m.

Table A1. Demographic information for the participant population included in this study related to
the ability to perceive fetal movement.

Participant
Identifier GA (in Weeks) Parity BMI Time of Day of Data

Collection

S01 32 Parity ≥ 1 37.2 Evening
S02 28 Nulliparous 38.7 Morning
S03 32 Nulliparous 31.7 Afternoon
S04 32 Parity ≥ 1 36.4 Evening
S05 29 Nulliparous 28.2 Morning
S06 31 Nulliparous 28.8 Afternoon
S07 26 Parity ≥ 1 36.3 Afternoon
S08 26 Nulliparous 25.7 Evening
S10 25 Parity ≥ 1 27.7 Morning
S11 31 Nulliparous 25.0 Evening
S12 28 Nulliparous 23.5 Evening
S13 24 Not reported 27.1 Evening
S14 26 Parity ≥ 1 35.0 Evening
S15 28 Nulliparous 25.0 Evening
S17 32 Nulliparous 39.8 Evening
S18 27 Not reported 30.3 Evening
S19 25 Parity ≥ 1 27.1 Evening
S20 25 Parity ≥ 1 30.5 Evening
S21 30 Parity ≥ 1 35.9 Evening
S22 24 Parity ≥ 1 24.8 Evening
S23 27 Nulliparous 25.8 Morning
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