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Using machine learning 
to understand the implications 
of meteorological conditions 
for fish kills
You‑Jia Chen1, Emily Nicholson  2 & Su‑Ting Cheng  1*

Fish kills, often caused by low levels of dissolved oxygen (DO), involve with complex interactions and 
dynamics in the environment. In many places the precise cause of massive fish kills remains uncertain 
due to a lack of continuous water quality monitoring. In this study, we tested if meteorological 
conditions could act as a proxy for low levels of DO by relating readily available meteorological data 
to fish kills of grey mullet (Mugil cephalus) using a machine learning technique, the self-organizing 
map (SOM). Driven by different meteorological patterns, fish kills were classified into summer and 
non-summer types by the SOM. Summer fish kills were associated with extended periods of lower 
air pressure and higher temperature, and concentrated storm events 2–3 days before the fish kills. 
In contrast, non-summer fish kills followed a combination of relatively low air pressure, continuous 
lower wind speed, and successive storm events 5 days before the fish kills. Our findings suggest that 
abnormal meteorological conditions can serve as warning signals for managers to avoid fish kills by 
taking preventative actions. While not replacing water monitoring programs, meteorological data can 
support fishery management to safeguard the health of the riverine ecosystems.

Massive mortality of fish, known as fish kill, is a common phenomenon around the world1–5. Negative impacts 
of fish kill on river ecosystems include declines in fish populations, degradation of water quality3,4, and socio-
economic costs involved in cleaning up dead fish that affect amenity values6. While fish kills can be attributed to 
a wide range of reasons, such as eutrophication, high ammonia concentration, heat exhaustion and disease3,7,8, a 
common cause is the level of dissolved oxygen8,9. Exhaustion of localized DO, acute reductions of DO to hypoxia 
(i.e., DO < 2 mg/L)10,11, and/or any kind of DO depletion pose real threats to fish that can lead to low-dissolved 
oxygen syndrome and death3,9,10. For example, in the Mary River in Australia, fish kill events occurred when 
river flow carried oxygen-consuming materials that depleted DO during the wet season12.

The DO concentration is determined by rates of oxygen supply and consumption, so that processes of 
air–water exchange, photosynthesis, respiration, organic matter decomposition, nitrification, sediment oxygen 
consumption could directly or indirectly interact or combine to influence the DO concentration and, in turn, 
cause fish kills10,13,14. While DO is responsible for many fish kill events, intermittent monitoring of water quality 
(e.g., monthly or less frequently), means that direct causation can be difficult to attribute, and periods of high risk 
of fish kill cannot be detected in time to implement preventative measures. The lack of water quality monitoring 
data poses real challenge for riverine ecosystem management for many places worldwide.

Given that the diffusion of oxygen between air and water interface is a two-way reaction, meteorological meas-
urements could provide some understanding of conditions that may impede the dissolubility of oxygen into the 
water, leading potentially to fish kill events. Interactions between meteorological factors on the amount of oxygen 
dissolved in water are complex15,16: temperature controls the saturation concentration of DO17–19; precipitation 
washes oxygen-consuming material into rivers11,12; and wind speed promotes DO through air–water oxygen 
diffusion by creating rough surfaces20,21. Other weather-related conditions can also indirectly affect DO, such 
as photosynthesis-related factors like temperature, nutrients and solar radiation, and respiration-related factors 
such as organic matter decomposition by microbes, carbonaceous biochemical oxygen demand (CBOD) and total 
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organic carbon (TOC)17,22. Although these complex interactions present challenges in relating meteorological 
mechanisms to levels of DO in water, continuous meteorological observations are typically taken in many places 
around the world. Depending on the extent to which the meteorological factors can explain in relation to the 
DO conditions, any nonlinear relationship behind the fish kills might be revealed by new analytical approaches.

In this study, we apply a machine learning technique to test if meteorological measurements could act as a 
proxy for low levels of DO in the absence of continuous water quality monitoring data, to predict massive fish 
kills and provide management guidance. We used fish kill events of the grey mullet (Mugil cephalus), in the lower 
Danshui River in Taiwan as a case study. This species presents an ideal case study because multiple fish kills have 
been reported throughout the year and attributed to a sudden drop of dissolved oxygen (DO). Yet DO is moni-
tored only once a month, or measured after the fish kill events occurred, making the detection or prevention of 
fish kills difficult. The species also has dynamic spatial and temporal interactions with its environment, includ-
ing localized diel movements and seasonal or life-cycle movements with the ambient physical environmental 
conditions along their upstream or downstream passage23,24, covering habitats of seawater, brackish water and 
freshwater environments, and estuaries in a relatively short period of time4. Our specific objectives include: 
(1) gathering historical fish kill events in the lower Danshuei River (Taiwan) as a case study and the associated 
hourly meteorological measurements close to these events; (2) applying the self-organizing maps (SOM) as a 
non-biased clustering tool to explore the nonlinear relationships between the various meteorological factors and 
fish kills; and (3) identifying early warning signals behind the meteorological patterns associated with fish kills 
to implement timely actions for mitigation.

Results
Based on the clustering results of the SOM, followed by a systematic risk analysis, our results suggested that the 
occurrence of fish kills can be categorized into different types, and different meteorological stressors can cause 
cumulative effects that increase the risk of fish kills.

Recognize types of fish kills by the SOM.  From year 2010 to 2018, more than 27 grey mullet fish kill 
events were recorded in the lower Danshuei River. Excluding those clearly resulted from industrial pollution 
and those missing required meteorological observations, the final 19 events analyzed occurred across 19 sites in 
the months of April to September (Fig. 1) with estimated weights of dead fish ranging from 1500 to 35,000 kg 
(Table 1). 

By bundling each fish kill event with associated hourly weather data into a parallel input matrix form from 
7 days before each event, we assembled a total of 3192 data matrix (i.e., 19 events × 7 days × 24 hours = 3192) 
for 6 variables of reporting time of fish kills (F), air pressure (AP), temperature (T), wind speed in north–south 
direction (WY) and in east–west direction (WX), and precipitation (R). The criteria of local minimum of quan-
tization error (QE) and topographic error (TE) determined a proper SOM size for interpretation to be 9 groups 
(i.e., a 3×3 SOM) (Fig. 2a), and neuron I and neuron VII had been assigned the most data, of which 446 and 
543, respectively (Fig. 2b). In the SOM, the same neuron numbers demonstrating parallel conditions in each 
variable may show different colors in a band from dark brown to yellow, representing data values from small to 
large. These color patterns and their actual values can help relate the conditions of various variables and their 
non-linear inter-relationships.

Because the time the fish kills actually happened remains unknown, the value of F provided a way to estimate 
the temporal distance between the analyzed day and the reporting of the fish kill event. In the results, neurons 
I and VII were yellow-hued in the variable of fish kill time (F), representing a closer time between the meteoro-
logical conditions and the reported day of each fish kill event (day 7) (Fig. 2c). Traced back to the bundled date 
of each dataset in neurons I and VII, we found distinct time frames of summer fish kill type (neuron VII) and 
non-summer one (neuron I), where the SOM classified events 1, 3, 4, 5, 10, 11, 16, and 17 as non-summer fish 
kill type, and events 2, 6, 7, 8, 9, 12, 13, 14, 15, 18, and 19 as summer fish kills (Table 1).

Seasonal meteorological variations.  Because our analysis bundled the corresponding meteorological 
conditions with the time of fish kill events, the parallel linked characteristics of each variable in the SOMs helped 
provide unbiased recognitions of the temporal non-linear and complex relationships and patterns across the het-
erogeneous data inputs (Fig. 2c). With the nested algorithm of SOM, the neighborhood neurons exhibited closer 
patterns and relationships, which facilitated an understanding of the meteorological trends associated with dif-
ferent fish kill types (Fig. 3). Based on the results, the summer type fish kills can be traced back to neurons IX, 
VIII, and VII, having air pressure (AP) gradients from 1001.1 to 1002.4 hpa and temperature (T) gradients from 
32.3 to 29.9 °C across the 7 days; a sudden drop of wind in the vertical position (WY) from 0.24 to 0.09 m/s, with 
a bounce back to 0.24 m/s; an increasing trend in wind in the horizontal position (WX) from −0.03 to 0.24 m/s; 
an intense storm from the 5th to 7th day (R) at an hourly rate of 0.35 mm/h that accumulated to a total of 
192.5 mm (Fig. 3 and Table 2). In contrast, the non-summer type fish kills were grouped into neurons III, II, and 
I with greater AP gradients from 1010.3 to 1006.1 hpa; smaller T gradients from 23.1 to 22.1 °C; a sudden drop 
of WY from 0.26 to 0.12 m/s with a bounce back to 0.24 m/s, and of WX from 0.80 to 0.14 m/s with a bounce 
back to 0.41 m/s; a longer period of continuously rain (R) since the 3rd to the 7th day at hourly rate of 0.34 and 
0.13 mm/h that accumulated to a total of 90.0 and 57.5 mm in neuron II and neuron I, respectively (Fig. 3 and 
Table 2). Similar meteorological patterns were clustered in neurons IV, V, and VI, in which they shared patterns 
and gradients with the two fish kill types. 

Notably, wind speed (i.e., WS, considering WX and WY together) in the summer fish kills appeared to have a 
diurnal wind direction pattern (WV) and a cycled descending and bouncing back since the 2nd to the 6th days. 
On contrast, non-summer fish kills were associated with a constant northeastward direction with little change 
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in wind direction, and a decreasing trend of WS that periodically dropped to almost zero m/s between the 3rd 
to the 6th days (Fig. 3).

Systematic meteorological risk assessments.  The risk analysis results showed distinct forcing factors 
to summer vs. non-summer fish kill types (Fig. 4). Comparing the normal average conditions (i.e., average of 
the conditions with no fish kills, black line) of multiple meterological variables of air pressure (AP), temperature 
(T), wind speed (WS), and precipitation (R), to those average conditions in the type of non-summer (blue line) 
and those in the summer fish kill type (red line), we found that in the summer fish kill type, normal AP during 
the summer time (black line in Fig. 4a) was about 5–7 hpa lower than that during the non-summer time, yet 
AP of the summer fish kills (red line in Fig. 4a) was even lower; T (red line in Fig. 4b) across the 7 days were 
very close to the dash line (i.e., one standard deviation around the mean), representing a boundary of a 66.7% 
probability to the normal conditions, compounding by periodically lower WS < 1 m/s (Fig. 4c) and concentrated 
storms (R) (particularly over 1.5 to 2 mm/h) in the 5th to 7th days (Fig. 4d). In contrast, meteorological tension 
to air–water oxygen diffusion in the non-summer fish kill type was intensified by AP (blue line in Fig. 4a) lower 
than one standard deviation to the normal conditions (dash line) since the 2nd to the 3rd days; higher T (blue 
line in Fig. 4b) in the 1st to 3rd days; much lower WS almost across the 7 days (Fig. 4c); intensive storms (R) over 
1.5 mm/h in the 3rd to 4th days and the 6th days (Fig. 4d). Based on the results, the two fish kill types appear to 
have different critical climatic actors as barriers for oxygen difussion in the air–water interface.

In addition, we tested the hourly differences between fish kill and non-kill average conditions. We found 
that temperature (T) had a significance level lower than 0.05 for most of the time in the summer fish kill type, 
while air pressure (AP) and wind speed (WS) more frequently had a significance level lower than 0.05 for the 
non-summer fish kill type (Fig. 5). Other variables were largely above the 0.05 level of significance (Fig. 5). This 
suggested that summer fish kills were mostly induced by T, and intensified by AP and precipitation (R); while 
non-summer fish kills appeared to be triggered by AP and WS, and worsened by R. As a result, if the average 
meteorological conditions of AP, T, R, and WS without fish kills is assumed to be normal states of non-kill condi-
tions, our study indicates threshold changes that may serve as early warning signals for practical monitoring or 
fish kill prevention purposes: purturbations over the range of one standard deviation of T and R, and negative 

Figure 1.   The fish kills occurred in the downstream of each tributary of the Danshuei River (red dots in the 
figure), and we gathered meteorological data from the nearby weather stations (blue triangles in the figure). This 
map was generated using ArcGIS version 10.5.
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one standard deviation of AP and WS (Table 3). Given the cumulative adverse impacts of each meteorological 
factor (Fig. 5), when any of the meteorological conditions hit the above mentioned threholds, it can be seen as 
a warning signal; with two or more meteorological conditions satisfied the warning thresholds, preventative 
actions are recommended. 

Discussion
Due to the lack of continuous water quality monitoring data, the causal effects of ambient environmental condi-
tions on fish kills has been difficult to predict in many places. In this study, we showed how machine learning 
techniques can be applied for the classification of spatial and temporal information associated with the mete-
orological conditions to discriminate patterns in fish kill events. We took historical fish kill events of the lower 
Danshuei River as a case study to explore the potential influences from the explicit meteorological conditions on 
fish kills in the circumstances of intermittent DO monitoring data and seek for implications on future fish kill 
mitigations. We found that without continuous water monitoring data, available meteorological observations 
can provide a useful early warning to allow timely action for fish kill avoidance.

Fish kills were grouped by the SOM into time-dependent “summer” versus “non-summer” fish kill types. 
Although the summer/non-summer classification seemed not a difficult classification, the non-linear relation-
ships across a range of multiple factors with various response time and effects are hard to detect by conventional 
techniques. This study enabled a way to visualize complex interactions from the meteorological conditions 
conducive to the occurrence of fish kills with a consideration of time dependent variations in a 7-day time series. 
Summer-type fish kills are associated with low air pressure, high temperatures and a prior 2–3 days concen-
trated precipitation; in contrast, non-summer events resulted from compounding effects of low pressure, low 
wind speed, and longer periods of intensive storms to cause death of fish. These results provide a science-based 
foundation to disentangle the mystery and clarify the potential conditions causing fish kills.

In general, it has been reported in the news that the main problem causing fish kills is the high temperature 
resulting in a sudden hypoxia condition of the water leading to massive death of fish. Indeed, in our analysis 
high temperature was a critical factor to form summer type fish kills (Fig. 4b). Yet focusing on temperature alone 
cannot fully account for the complex causes of the fish kills. Our results revealed that the lethal circumstances in 
both the summer and non-summer fish kill types were compounded by and attributed to concentrated storms 
that were surmised to stir up bottom sediments because of the higher water level and flow rate contributed 
from the storms. This effect was also found in the fish kills in Australia, highlighting the significant impact from 
stormwater runoff transporting a substantial organic load with high oxygen demand25. Floodplain and estuarine 
water bodies, both as a part of the riverine system, often receive large amount of sediments carrying excessive 
anthropogenic inputs of nutrients and organic matter26 that can easily exhaust the remnant oxygen in the water. 
Consequent death associated with serious hypoxia situation could happen across large areas without leaving any 

Table 1.   Detailed information of the assembled 19 fish kill events in one of the three tributaries (i.e., Dahan, 
Keelung, or Xindian River) of Danshuei River.

Event 
ID

Tributary 
name

Reported date of  
fish kill event

Estimated 
weight (kg)

Reported fish 
kill site

Nearby weather 
station Reporting media

1
Dahan

2016/4/8 NA FD1 W5 (Banqiao) Liberty Times Net

2 2018/8/13 35,000 FD2 W5 (Banqiao) United Daily News

3

Keelung

2010/5/10 2000 FK7 W3 (Xinyi) United Daily News

4 2011/4/18 3000 FK9 W4 (Dazhi) Liberty Times Net

5 2011/10/13 3000 FK10 W4 (Dazhi) Apple Daily

6 2013/6/23 NA FK8 W3 (Xinyi) China Times

7 2013/7/25 7000 FK6 W3 (Xinyi) Liberty Times Net

8 2014/9/11 NA FK5 W2 (Xizhi) Taipei City Government Environ-
mental Protection Bureau

9 2015/7/20 1,500 FK11 W4 (Dazhi) Liberty Times Net

10 2016/4/26 NA FK1 W1 (Rueifang) Liberty Times Net

11 2016/5/27 NA FK2 W1 (Rueifang) Keelung City Garbage collection site

12 2016/7/21 NA FK13 W9 (Shezih) Apple Daily

13 2017/7/29 The Liberty Times 
Net estimated a total 
weight of 194,190 kg 
for events occurred 
during late July to 
August in 2017

FK3 W2 (Xizhi) United Daily News

14 2017/8/12 FK4 W2 (Xizhi) New Taipei City Government Envi-
ronmental Protection Bureau

15 2017/8/28 FK12 W8 (Shihlin) Taipei City Government Environ-
mental Protection Bureau

16

Xindian

2011/4/18 3000 FX2 W7 (Yonghe) Liberty Times Net

17 2012/4/19  > 2000 FX4 W7 (Yonghe) Taiwan Environmental Information 
Association

18 2014/9/11 27,700 FX3 W7 (Yonghe) Taipei City Government Environ-
mental Protection Bureau

19 2017/8/10 NA FX1 W6 (Zhonghe) Liberty Times Net
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refugee or sheltering places27. Lower air pressure and prolonged diurnal pattern of wind direction with low wind 
speed may have additional harmful effects that reinforces the circumstance by breaking down the required oxygen 
diffusion mechanism from the atmosphere to the water28, eventually leading to a lethal outcome.

Our results suggested that fish are vulnerable to combinations of driving forces, which, when they exceed the 
survival requirements, lead to fish kills. This is why in a situation of lower temperature and higher air pressure 
that theoretically should facilitate the diffusion of oxygen19,21, fish kills still occur. Nonetheless, fundamental 
knowledge to the understanding of oxygen exchange dynamics among the atmosphere, fresh water, tide, and 
sediments, and the resultant stresses affecting the fish is still incomplete. We can only confirm that the occur-
rence of these fish kills implies greater mixed disturbances preventing effective oxygen diffusion into the water, 
such as a decreasing trend of air pressure21, a drop of wind speed to a low magnitude, a constant wind direction 
without obvious change throughout the week, and a successive precipitation11, and that these multiple players’ 
status along the temporal horizon could together proceed to structure a dramatic barrier leading the river water 
into a hypoxia situation.

The results showed distinct combination of meteorological stressors for the two types fish kills; this under-
standing of the potential forcing stressors from available meteorological data could provide practical informa-
tion for fish kill preventive actions for places lacking essential dissolved oxygen monitoring. When abnormal 
meteorological conditions hit the threshold of possible fish kill occurrence, they can serve as warning signals for 
managers to take preventative actions, such as proactive water oxygenation, to avoid fish kill. This is particularly 
important under climate change. For example, in Taiwan the diurnal and annual temperature changes had been 
increased by 1 to 1.4 °C in the past 100 years29, as well as the uneven trend of precipitation in space and time30, 
in which more intense storms and about 80% annual precipitation concentrated are projected to occur in the 
wet season in the middle, southern and eastern parts of Taiwan, while less rain in the dry season with warnings 
on more successive droughts31. This may imply greater fluctuations in air temperature and more washed off 
terrestrial nutrients by larger precipitation intensity, as well as bottom-sediment disturbance associated with 
changes in the river flow affected by floods or droughts30.

A serious problem can arise due to IPCC’s forecasting on longer hot days under global warming32,33. Under 
high temperatures, there might appear an increase in the oxygen demand of aquatic animals34 and sediment 
oxygen demand. These negative situations will recurrently form DO anomalies, and even be intensified by more 
urbanization-caused anthropogenic organic matters being brought into the estuaries35, potentially leading to 
more frequent and larger areas of fish kills36. During the summer time, DO conditions could be harsh due to 
higher temperature and lower air pressure. Several fish species are known to survive under very low DO concen-
trations because under progressive hypoxia, the adult fish are forced to depress aerobic and enacted anaerobic 

Figure 2.   (a) Map size was determined to be 9 neurons (i.e., 3×3) based on the measurement of quantization 
error (QE) and topographic error (TE); (b) number of input records (shown in red) in each neuron (shown 
in blue); (c) results of the SOM representing associations of meteorological conditions of air pressure (AP), 
temperature (T), wind speed in N–S direction (WY) and in E–W direction (WX), and precipitation (R), to the 
reported time of fish kills (F).
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metabolism to extend their survival37. Nonetheless, larger body-size adults tend to have higher oxygen demand, 
and therefore, when expose to acute hypoxia, larger body-size adults may be more sensitive to oxygen deficits38.

Considering the life-cycle movements of grey mullet with the changes of their inhabitant environmental 
conditions, the dominance observed in the non-summer type fish kills were the juveniles and the younger grey 
mullets39, because they start to spawn in the estuary in late fall to winter time; eggs hatch and the juveniles utilize 
the estuary as a nursery ground in November to March; then they migrate upstream to freshwater feeding areas. 
While the potential individuals dead in the summer type fish kills were the larger grey mullet adults, which were 
the matured adults migrating downstream to go back to the sea during the summer time39. Since the two types of 
fish kills targeted on individuals in different life stages, the population structure of grey mullets may be impacted; 
this will require further study to confirm. Such analysis will rely on many years of monitoring to determine the 
link between physiology and life history40, natural fluctuation in population size, and the potential distribution 
of grey mullets and changes attached to it, to reflect long-term and short-term changes at the population level 
process for fishery management and conservation.

Figure 3.   A general view of the actual meteorological conditions of AP (grey bar), T (red line), R (upper black 
bar), WS (blue line), and WV (bottom black arrow lines) clustered in each neuron.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17003  | https://doi.org/10.1038/s41598-020-73922-3

www.nature.com/scientificreports/

We suggest that long-term monitoring for finding solutions to emergent problems like fish kills requires a 
systematic consideration to detect where, how, and to what extent the environmental changes would become 
stressors to the ecosystem. Although in this study we gained insights by applying SOMs to examine the linkages 
of fish kills among the meteorological factors, better understanding of how and to what extent the environmental 
changes would act together to induce fish kills requires an extensive monitoring program of freshwater ecosys-
tems. We recommend that developing a continuous long-term monitoring of flow and water quality at outbreak 
places is necessary for future research looking into the physical characteristics of the rivers to improve under-
standing and prediction of fish kills. In addition, this information could help flag potential sites for monitoring 
stations and inform the design of the long-term monitoring program. Moreover, as river networks are connected 
from upstream to downstream, occurrence of soil erosion or landslides, and existence of landuse change in 
the upstream can disrupt the balance of natural regimes and transport inputs of sediments and nutrients into 
downstream areas35,36. Major modifications such as reservoirs situated in the middle, excessive nutrient loading 
from agriculture41, pollution and biological invasions are also management-relevant element on a long-term 
continuum of change42,43. Such long-term monitoring program can have multiple aims covering a wide range 
of environmental and biological measures across spatial and temporal scales from upstream to downstream for 
detecting and/or identifying where, how, and to what extent exists considerable variabilities to influence the 
ecosystem health.

Methods
Case study and data description.  In the Danshuei River, the third longest river in Taiwan, fish kill events 
have occurred periodically at downstream of each tributary (Fig. 1) almost every year for the last 20 years. The 
mainstem of the Danshuei River has a length of 158.7 km with approximately 2726 km2 of the drainage basin. 
There are three main tributaries originating from mountainous areas: the Xindian and the Dahan Rivers, which 
merge at Jiangzicui, and the Keelung River, which enters the mainstream of the Danshuei River at Guandu, 
eventually flowing into the Taiwan Strait26. Natural and undisturbed areas exist at upper watersheds but are 
intermixed with few small scale agricultural developments, where landuse patterns shift to larger scale agricul-
ture and urban areas at the flatter terrain of river valleys and downstream areas42. To meet the human demands 
in drinking water and flood control, check dams, reservoirs, and levees have been constructed throughout the 
river basin and have greatly modified the riverine habitats42.

Located in the subtropical zone, the Danshuei River Basin is in general, humid and warm. Annual precipita-
tion is abundant with no obvious dry season. In winter, precipitation stems from the northeast monsoon, while 
in summer, the heavy rains (May/June) and typhoons. In the Danshuei weather station during the last decade, 
annual average precipitation is around 2138.5 mm with various monthly patterns—the highest in June, reach-
ing 323.5 mm in average, and the lowest in July, only 99.7 mm; annual monthly average temperature is around 
22.6 °C, in which the highest (29.3 °C) occurs in July, and the lowest (15.6 °C) in January (interpreted data 
obtained from the Central Weather Bureau of Taiwan).

The grey mullet (Mugil cephalus) have been reported in the news as the main species in these fish kill events. 
The massive death of grey mullets is typically reported by the local media as the cause of high temperature 
resulting in low DO concentration. Here we sought to understand the relationship between fish kills and the 
meteorological conditions (air temperature, wind, air pressure, and precipitation). Therefore, we assembled 
reported grey mullet fish kill events from the online news from 2010 to 2018 (Fig. 1 and Table 1). These events 
occurred at multiple places within the catchment (Fig. 1), but rarely in the estuary. Assessments of the water 
and dead fish were evaluated by the Department of Environmental Protection (DEP) of the Taipei and New 
Taipei cities immediately (few hours to one day) after a single fish kill event to clarify if fish kills were caused 
by industrial contaminants. Based on the reports, we excluded those caused by industrial water pollution. We 
also gathered spatially explicit, hourly meteorological data collected by the Central Weather Bureau, including 
air pressure, temperature, wind speed, wind direction, and precipitation. Missing data were imputed through 
linear interpolation44.

Table 2.   Detailed information for each variable in neurons of the SOM.

Neuron 
number

Number of 
Data AP (hpa) T (°C) WY (m/s) WX (m/s) WS (m/s)

Average R 
(mm/h)

Total R 
(mm)

Duration 
of R (h)

I 446 1006.1 22.1 0.24 0.41 0.83 0.13 57.5 38

II 264 1006.3 23.1 0.12 0.14 0.48 0.34 90.0 34

III 329 1010.3 23.1 0.26 0.80 1.44 0.02 5.5 6

IV 177 1005.6 26.9 −0.10 0.21 0.80 0.24 43.0 10

V 214 1003.8 27.2 −0.06 0.27 0.84 0.18 39.5 6

VI 500 1001.9 29.4 0.11 0.67 1.31 0.03 16.0 7

VII 543 1002.4 29.9 0.24 0.20 1.42 0.35 192.5 38

VIII 439 1001.9 31.2 0.09 0.04 1.42 0.02 9.5 2

IX 280 1001.1 32.3 0.24 −0.03 1.64 0.03 7.0 2

Total 3192 1004.1 27.5 0.15 0.32 1.19 0.14 460.5 –
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Figure 4.   Risk assessments of the meteorological factors of (a) air pressure (AP), (b) temperature (T), (c) wind 
speed (WS), and (d) precipitation (R) in 2010–2018.
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The Machine learning approach: the self‑organizing map (SOM).  The self-organizing map (SOM) 
is a type of artificial neural networks, usually used as a tool for clustering or data-mining45,46. Its unsupervised 
character makes it useful in providing automatically and unbiased clustering results, by applying the “shortest 
relation distance” algorithm between every input variable to decide the weight vector through learning about the 

Figure 5.   Significance level of hourly comparisons between fish kill and non-kill normal average conditions 
with a red line showing the significance level of 0.05.
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input data46,47. As the SOM can effectively reduce high data dimensions into a 2-dimensional map for clustering 
and visualizing, it has been widely used to explore problems in industry, natural sciences, ecology, and many 
other fields48–50.

During the SOM learning and training process, we inspected the consistency of the results to judge if con-
vergence was reached. Evaluation was done by calculating the similarity of the SOM using the simple matching 
coefficient (SMC), in which a neighborhood matrix is created with both the number of rows and columns being 
equal to the number of data51, and each row or column is used to represent each data vector. In this neighbor-
hood matrix, if two data points are assigned to the same neuron or the adjacent neuron in the SOM, the cor-
responding value in the matrix is 1, otherwise the value is 0. If the corresponding position of the two matrices is 
1, it is regarded as positive similarity, whereas 0 is regarded as negative similarity. In the end, SMC is calculated 
by dividing number of matches (positive similarity and negative similarity) by the total number of elements in 
the matrix51:

To determine the optimal output neuron numbers of the SOM, we trained the SOM with different map sizes, 
including 2×2, 3×2, 3×3, …, 5×5, and applied the criteria of quantization error (QE)52 and topographic error 
(TE)49. In particular, we calculated the associated QE as the average distance between input vector and the weight 
vector of its best-matching unit (BMU)49:

 where xi is the input vector, uc is the vector of the BMU, and n is the number of data vectors. We considered the 
number of input vectors that its second-matching unit (SMU) is not adjacent to the BMU as the error of TE49:

 where u (xi) is set to 1 if the SMU is not adjacent to the BMU.
Moreover, since QE decreases when output neuron numbers increase, we determined the optimal solution 

as the local minimum of TE49, and took the shape of the SOM map into consideration for easier visualization 
purposes. As a result, the square shaped map (i.e., same neuron numbers in length and width) was preferred 
since it retained patterns among input variables whichever the SOM map was rotated.

Modeling procedure.  To explore the relationship among fish kills and multiple meteorological factors, we 
took hourly weather data of air pressure (AP), temperature (T), wind speed (WS), wind direction (WD), and 
precipitation (R) to compare with the “fish kill time” (F) representing the days to the reported fish kill news for 

SMC =
number of matches

total number of elements in matrix

QE =
1

n

n
∑

i=1

||xi − uc||,

TE =
1

n

(

n
∑

i=1

u(xi)

)

,

Table 3.   Summary of daily normal average conditions and values of positive or negative one standard 
deviation for each meteorological variable during non-kill summer and non-summer periods.

Summer

Variable Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

 AP (hpa)
  Min of normal ave. 1003.8 1003.7 1003.6 1004.0 1004.2 1004.7 1004.7

  Min of −1 std. dev. 998.8 997.3 997.4 999.2 998.1 1000.5 1000.5

 T (°C)
  Max of normal ave. 28.9 29.0 28.9 28.9 28.8 28.9 29.0

  Max of +1 std. dev. 34.3 34.0 34.1 34.2 34.3 34.3 34.4

 WS (m/s)
  Min of normal ave. 1.56 1.62 1.65 1.59 1.62 1.55 1.57

  Min of −1 std. dev. 0.07 0.00 0.00 0.03 0.00 0.05 0.08

 R (mm/h)
  Max of normal ave. 0.2 0.3 0.3 0.2 0.3 0.1 0.1

  Max of +1 std. dev. 3.1 6.1 6.3 9.7 7.2 4.9 5.4

Non-summer

Variable Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

 AP (hpa)
  Min of normal ave. 1010.7 1010.7 1010.8 1010.6 1010.5 1010.9 1010.5

  Min of −1 std. dev. 1005.3 1005.6 1005.9 1005.5 1005.4 1005.6 1005.1

 T (°C)
  Max of normal ave. 22.7 22.7 22.4 22.9 23.0 22.9 23.3

  Max of +1 std. dev. 29.2 29.5 29.1 29.9 29.7 29.6 29.6

 WS (m/s)
  Min of normal ave. 1.76 1.80 1.85 1.69 1.72 1.69 1.76

  Min of −1 std. dev. 0.10 0.18 0.23 0.20 0.13 0.10 0.06

 R (mm/h)
  Max of normal ave. 0.3 0.3 0.2 0.2 0.2 0.2 0.4

  Max of +1 std. dev. 3.1 3.5 2.9 2.8 3.4 3.3 5.1
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analysis. Under this setting, the reported date of fish kill was set as time 7, and bundled with hourly weather data 
from 7 days before the event (i.e., time 1 to time 7). To present the value of a cyclic variable (i.e., the wind direc-
tion), yet to preserve the magnitude of wind speed, we transformed them using a trigonometric function into 
WY (i.e., wind speed in north–south (N–S) direction) and WX (i.e., wind speed in east–west (E–W) direction), 
where WY is the product of wind speed and the cosine of wind direction, and WX the multiplication of wind 
speed by the sine value of wind direction.

Each variable was normalized to the range of 0 to 1, preventing a biased interpretation in the formation of 
data analysis49,53. The normalized data of the implicit hourly meteorological variables (i.e., AP, T, WY, WX, and 
R) were paired with the normalized F to implement the SOM using MATLAB R2015b software. We applied an 
unsupervised competitive learning algorithm for clustering the nonlinear interrelationship into a hexagonal 
lattice topological map using a Gaussian neighborhood function. Then based on the SOM clustering results, 
we returned to the original data and performed a data-mining task to investigate the linkage between fish kill 
occurrence to meteorological factors of air pressure, temperature, wind speed, wind direction, and precipitation. 
Based on the clustered fish kill types by SOM, we performed a risk analysis comparing meteorological patterns 
behind fish kills to their normal conditions using t-test. Lastly, we established warning thresholds by applying 
values of positive or negative one standard deviation of the normal non-kill conditions as early warning signals 
for timely preventative actions (Fig. 6).

Figure 6.   Flowchart of this study.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17003  | https://doi.org/10.1038/s41598-020-73922-3

www.nature.com/scientificreports/

Data availability
The data that support the findings of this study are available from the Open Weather Data of Taiwan (https​://
opend​ata.cwb.gov.tw/datas​et/clima​te?page=1). Restrictions may apply to the availability of these data with the 
permission of the Open Weather Data of Taiwan.
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