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Abstract Contact tracing (also known as partner no-
tification) is a primary means of controlling infectious
diseases such as tuberculosis (TB), human immunode-
ficiency virus (HIV), and sexually transmitted diseases
(STDs). However, little work has been done to deter-
mine the optimal level of investment in contact tracing.
In this paper, we present a methodology for evalu-
ating the appropriate level of investment in contact
tracing. We develop and apply a simulation model of
contact tracing and the spread of an infectious disease
among a network of individuals in order to evaluate
the cost and effectiveness of different levels of contact
tracing. We show that contact tracing is likely to have
diminishing returns to scale in investment: incremental
investments in contact tracing yield diminishing reduc-
tions in disease prevalence. In conjunction with a cost-
effectiveness threshold, we then determine the optimal
amount that should be invested in contact tracing. We
first assume that the only incremental disease control is
contact tracing. We then extend the analysis to consider
the optimal allocation of a budget between contact trac-
ing and screening for exogenous infection, and between
contact tracing and screening for endogenous infection.
We discuss how a simulation model of this type, appro-
priately tailored, could be used as a policy tool for de-
termining the appropriate level of investment in contact
tracing for a specific disease in a specific population. We
present an example application to contact tracing for
chlamydia control.
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1 Introduction

Studies of infectious disease control efforts—such as
screening, vaccination, and contact tracing (also known
as partner notification)—often focus on evaluating the
effectiveness of such programs. For example, Saretok
and Brouwers [1] evaluated the likely epidemic impact
of school closures in the event of a potential pandemic
influenza outbreak; Bozzette et al. [2] evaluated the
effectiveness of different vaccination strategies in miti-
gating the effects of a smallpox outbreak; and Hethcote
[3] evaluated the impact on gonorrhea prevalence of six
different control measures. Some analyses of infectious
disease control efforts have focused on finding the most
effective means of allocating a fixed amount of epi-
demic control resources across competing interventions
and populations, and/or over time. For example, Zaric
and Brandeau [4] determined the optimal allocation of
a fixed budget among HIV prevention programs at a
given point in time and over time [5]; Longini et al.
[6] determined the optimal distribution of a limited
supply of vaccine in the event of an influenza pandemic;
and Halloran et al. [7] performed a similar analysis
in the event of a smallpox outbreak. Other analyses
have evaluated the minimum cost means of achiev-
ing a desired level of epidemic control. For example,
Müller [8] determined the cost-minimizing pattern of
vaccination among different age groups to achieve a de-
sired epidemic reproduction number, and Revelle et al.
[9] determined the cost-minimizing use of treatment,
prophylaxis, and BCG (Bacille Calmette-Guerin)
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vaccination to achieve a target prevalence of tubercu-
losis (TB) in a given time horizon.

None of these analyses considers the optimal level
of investment in epidemic control. In some cases, epi-
demic control programs may have diminishing returns
to scale: incremental investments in epidemic control
can yield diminishing health benefits. Moreover, funds
not spent to control one disease can often be spent to
control another disease, or on other public health pro-
grams. Thus, investing the maximum available funds to
control an infectious disease may not represent a cost-
effective use of resources. In this paper we present a
methodology for determining the appropriate level of
investment in contact tracing. We develop and apply a
simulation model of contact tracing and the spread of
an infectious disease among a network of individuals.
We evaluate the cost and effectiveness of different
levels of contact tracing, and show how to determine
the appropriate level of investment.

Contact tracing is a primary means of disease control
for infectious diseases with low prevalence. In the USA,
contact tracing is required for TB [10], recommended
for human immunodeficiency virus (HIV) [11], and
not uncommon for other sexually transmitted diseases
(STDs) [12, 13]. Contact tracing has also been used
(and modeled) for severe acute respiratory syndrome
(SARS) [14], foot-and-mouth-disease [15], smallpox
[16, 17], and avian influenza [18].

Hyman et al. [19] and Armbruster and Brandeau [20]
studied contact tracing using differential equation mod-
els that assume homogeneous mixing of the population.
Kretzschmar [21] reviewed STD models on networks.
Müller et al. [22] introduced one of the first models of
contact tracing on a network and analyzed a stochastic
branching process that approximates it. Subsequent
work [15, 23, 24] analyzed similar models using both
stochastic simulations and moment closures (also called
mean-field approximations). Most of these papers study
the effectiveness of contact tracing but do not consider
the costs. Armbruster and Brandeau [20] and Wu et al.
[18] incorporated costs in their analyses, but considered
contact tracing as an all-or-nothing decision, with a
fixed level of intensity.

Empirical studies of the cost effectiveness of contact
tracing programs have been carried out for diseases
such as TB [25, 26], HIV [27, 28], chlamydia [29],
syphilis [30], and gonorrhea [31]. These studies all eval-
uate a single fixed level of contact tracing.

Armbruster and Brandeau [20] presented a theo-
retical model for determining when (a fixed level of)
contact tracing should supplement screening to control
an endemic infectious disease. That work was based
on a simple compartmental model (an SI model) with

homogeneous mixing, and employed a highly stylized
representation of the contact tracing process (with con-
tact tracing yielding new identified disease cases at a
constant rate, as a function of disease prevalence). A
number of studies have shown that analyses based on
more realistic models of disease transmission in social
networks can yield significantly different projections of
disease spread than projections generated by simple
compartmental models [21, 32]. In addition, depending
on how it is implemented (e.g., how many contacts of
any index case are traced; which contacts are traced—
and possibly removed—first; and other factors), a fixed
level of contact tracing may yield different numbers of
new index cases identified, as well as differing impact on
the spread of the disease. Therefore, we use simulation
to evaluate the effectiveness (and cost) of different
levels of contact tracing—and thus to determine the
appropriate level of investment in contact tracing.

A number of researchers have analyzed dis-
ease transmission in social networks, but often with
little knowledge of the actual network structure.
Schneeberger et al. [33] used data on the distribution of
the number of sexual partners when constructing net-
works of sexual contacts among individuals in Britain
and Zimbabwe. A few studies have reconstructed vari-
ous small social networks: for example, Klovdahl et al.
[34] mapped the network of sexual contacts of injection
drug users (IDUs) and prostitutes in Colorado Springs;
Weeks et al. [35] described the social network of IDUs
in Hartford, Connecticut; Parker et al. [36] mapped
a network of sexual contacts among 154 people in
London starting from a 20-year-old HIV-infected man;
and Helleringer et al. [37] described the network of
sexual contacts in a region of Malawi. Wylie and Jolly
[38] were able to construct a larger network of sexual
contacts among individuals in Manitoba, Canada by
using the reported contacts of chlamydia and gonorrhea
cases. For respiratory diseases, the contact network
may be easier to find: Saretok and Brouwers [1] used
the location of the homes and workplaces of Swedes to
model the spread of an avian flu pandemic.

The following section describes our simulation
model of contact tracing and the spread of an endemic
infectious disease among individuals in a network. In
Section 3, we simulate the contact tracing and disease
process for different amounts of contact tracing. We
show that contact tracing is likely to have diminishing
returns to scale: incremental investments in contact
tracing yield diminishing reductions in disease preva-
lence. Using the simulation results in conjunction with a
cost-effectiveness threshold, we show how to determine
the optimal level of investment in contact tracing. We
extend the analysis in Section 4 to consider the optimal
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allocation of a budget between contact tracing and
disease screening. We consider the cases of screening
for exogenous infection (infected individuals entering
the population) and endogenous infection (infected
individuals already in the population). In Section 5
we illustrate the use of the model with an example of
contact tracing for chlamydia control. We conclude in
Section 6 with discussion of results and directions for
future research.

2 Simulation model

Network structure We consider an infectious disease
that is endemic in a population of n individuals. We
model individuals as nodes on an undirected graph
where an edge between nodes i and j indicates that
infection transmission can occur between i and j if one
these individuals is infected (we say they are contacts
of each other). We employ an SIRS epidemic model
(described below) with five states: susceptible (S), in-
fected (I), removed (R), susceptible and being traced
as a contact (ST), and infected and being traced as a
contact (IT).

We used random small-world graphs in our initial
simulations. We chose this family of random graphs
because it is the only one among the major families of
random graphs (the others are Erdos–Renyi, regular,
and scale-free) that allows for significant clustering
and short paths between pairs of nodes. Watts and
Strogatz [32] give examples of these features in many
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Fig. 1 A small-world graph with nodes in various states. The
states are: susceptible (S), infected (I), removed (R), susceptible
and being traced (ST), and infected and being traced (IT)

real networks and show that they significantly affect the
spread of disease on a network.

To generate the graphs, we started with a cyclic
regular graph of n nodes with degree 4 where node i
connects to nodes i ± 1, ±2 (mod n). For every other
pair of nodes (i, j) we created a link independently with
probability 1/n. This process creates a network in which
each node has approximately five contacts on average.
Figure 1 shows a small example of such a network with
its nodes in various states. Our choice of n (500) and
average degree (5) is consistent with data from the
Colorado Springs study [34], which found a main con-
nected network with 669 individuals and a median of
5.1 risky relationships per person (11.7 relationships per
person but of which 29% reported no risky behavior
and 27% reported drug sharing without needle use).

Epidemic model We employ an SIRS epidemic model
in which susceptible individuals become infectious, be-
come removed when they are treated, and finally be-
come susceptible after treatment. We assume that no
deaths occur in the population over the simulation
time horizon. Figure 2 illustrates the disease states and
transitions among them. In our simulation, the sojourn
time in each state was exponentially distributed for all
states except for states ST and IT, where the sojourn
time was a constant.

We assume that the rate of endogenous infection
(transition from S → I) of node i (or, more precisely,
the individual represented by node i) is proportional
to di, the number of infected neighbors of node i:
specifically, the transition rate is di/t1, where t1 is a time
constant. This stochastic process on a network is called
a contact process. Individuals can also become infected

Fig. 2 Possible states of an individual and the transition times
between them. The states are: susceptible (S), infected (I), re-
moved (R), susceptible and being traced (ST), and infected and
being traced (IT). The dashed arrows mark the instantaneous
transitions S → ST and I → IT that occur when we decide to
trace this individual. The terms t0, . . . , t5 are time constants, di is
the number of infected neighbors of this individual, and η1 and η2
are rates of exogenous infection
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from exogenous sources. This could be through interna-
tional travel, for example, or by healthy people leaving
the system and being replaced by infected immigrants.
We assume that the rate at which exogenous infection
occurs is given by a constant, η1 among susceptible
individuals and η2 among removed individuals. The
combined rate at which susceptible individuals become
infected is then (di/t1) + η1.

To model contact tracing, Eames and Keeling [24]
and Kiss et al. [15] extended the contact process so that
infected nodes are found and cured at a rate propor-
tional to the number of index case neighbors a node
has (in our model, this would be individuals in state
R), analogous to the infection process. This model of
contact tracing does not allow us to compare different
contact tracing budgets. Thus, we use a discrete-event
simulation.

When an infected individual seeks treatment for
symptoms of the disease (and thus becomes known to
the public health system), he or she becomes an index
case. This corresponds to a transition in disease state
from I → R. We assume that this transition happens
at rate 1/t2, where t2 is a time constant. When a new
index case occurs, we apply our contact tracing policy
to decide (based on only the graph structure and the
removed nodes) which nodes to trace. Nodes selected
for tracing then transition to state ST or state IT,
depending on whether the individual is susceptible or
infected, respectively. We assume that contact tracing
requires a fixed amount of time, t4 for state ST and t5
for state IT.

After tracing is completed, a node in state ST returns
to state S, whereas a node in state IT transitions to
state R and becomes a new index case. We assume that
the contact tracing capacity, K, is expressed in terms
of the maximum allowable contact tracing rate: at any
point in time, at most K individuals in total can be
in states ST or IT. We can think of the capacity K
as being proportional to the manpower available for
contact tracing.

Contact tracing process In contact tracing, every in-
dex case is asked to name his or her contacts (graph
neighbors who may be infected). Then public health
officials seek out these contacts (as time and resources
permit) to test whether they are infected and treat them
if so. Who to trace is an important tactical decision
since the contact tracing capacity limits the number of
individuals who can be traced at any point in time.

In our simulation we keep a prioritized list of con-
tacts who have not yet been traced (nodes in state S
or I that are neighbors of removed nodes). Every time

a new index case is identified, we update this list and
decide on additional nodes to trace. For our analyses in
Sections 3 and 4 we assume that each index case names
all of his/her contacts; for our example of chlamydia
contact tracing in Section 5, we assume that individuals
name only a fraction of their contacts. We let k be the
number of contacts we would like to trace each time a
new index case arrives. Since the list is prioritized, we
trace the k nodes of highest priority, provided we have
not exhausted the budget.

Based on a simulation study of the effectiveness of
alternative contact tracing strategies [39], we selected
the following scheme for prioritizing contacts for trac-
ing. We assign each contact a score intended to re-
flect the likelihood that the contact is infected (the
higher the score, the more likely that a contact is in-
fected). The contact’s score is the number of index cases
who name that person. We set k, the number of contacts
we trace each time a new index case arrives (assuming
we still have resources), equal to 5.

Costs and health outcomes We compare alternative
levels of contact tracing based on the resulting effec-
tiveness and annual costs in steady state. We consider
both the cost of the contact tracing and the cost of
treating disease cases. We assume a cost of c for treating
a case of disease—this cost is incurred each time an
individual transitions from disease state I to R—and an
annual cost of C for each unit of contact tracing capacity
(hence an annual contact tracing cost of KC for K units
of capacity).

We consider two measures of contact tracing effec-
tiveness: steady-state disease prevalence, and annual
steady-state quality-adjusted life years (QALYs) ex-
perienced in the population. The steady-state disease
prevalence is a simple measure of the effectiveness of a
particular disease control strategy. Following standard
cost-effectiveness practice [40], we also measure the
total QALYs experienced in the population each year.
To do so, we assign quality multipliers (on a scale of 0
to 1, where 0 represents death and 1 represents perfect
health) to health states. We assign a quality multiplier
of 1 to uninfected individuals (those in states S, ST,
and R), and a quality multiplier of q < 1 to infected
individuals (those in states I and IT). Given a steady-
state disease prevalence p, the steady-state number of
QALYs experienced in the population during one year
is n(1 − pq).

Simulation runs We used the simulation model to
estimate for various cases—e.g., for different levels
of the contact tracing budget, for different amounts
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of contact tracing and screening, etc.—the annual
steady-state treatment costs (adding the annual cost
of the contact tracing, KC, yields the total cost for a
year in steady state) and the steady-state prevalence
of the disease (or, equivalently, the steady-state annual
QALYs experienced in the population). To measure
the steady state for a particular case, we performed
1,600 runs. For each run, we generated a random small-
world graph and infected a single random node. Then
we simulated the network for five years in one-day
time increments (1,825 days in total), taking the daily
average prevalence (per capita frequency of states I
and IT) starting with day 181. (Visual inspection of
sample runs indicated that the system is in steady state
by this time.) We averaged over all the runs and set our
error bars to the 95% confidence intervals.

Table 1 shows the values of all parameters we used
in our simulations. These parameters are roughly con-
sistent with the transmission and control of gonorrhea.
The speed of disease transmission, t1, is consistent with
unprotected sexual contact every 45 days, and a 50%
chance of transmission per unprotected sexual contact
[41]. Choosing a 30-day average duration between in-
fection and treatment (t3) is consistent with all women
and 50% of men being asymptomatic, symptoms other-
wise appearing after 4 days, and then a 3-day delay in
obtaining treatment [41, 42]. Gonorrhea is treated with
one dose of antibiotics which costs approximately $50
[43]. We estimated that individuals would refrain from
risky behavior for an average of 3 months after treat-
ment. Our contact tracing cost, C, ($120 per case, figur-
ing a week t4 = t5 = 5 per case and 50 work weeks per
year) is similar to that reported by Dasgupta et al. [25].
Quality multipliers for STDs are not well researched
[44]. We chose a quality multiplier of 0.9, which has
been used for TB, diabetes, and asymptomatic HIV
infection [45].

Table 1 Simulation parameters

Parameter Value

n 500 individuals
t1 90 days
t2 30 days
t3 90 days
t4, t5 5 days
η1, η2 1/9,000 new cases/day/person
c 50 USD/case
C 6,000 USD/case/year
q 0.9

3 How many to trace?

Cost effectiveness threshold Choosing the budget for
contact tracing is an important strategic decision. Funds
not spent to trace a particular disease could be used
for tracing other diseases, for other disease control
efforts, or even for other public health efforts. Thus,
we would like to determine the most “cost-effective”
level of investment in contact tracing for a particular
disease.

Cost-effectiveness analysis can help policy mak-
ers allocate money across different interventions
for the same or different diseases [40]. In a typ-
ical cost-effectiveness analysis of alternative inter-
ventions, the analyst evaluates the total costs and
health benefits—usually measured by quality-adjusted
life years (QALYs) experienced—for each interven-
tion. The analyst then identifies the non-dominated
interventions (a dominated intervention is one that
costs more and yields fewer QALYs than another
single intervention or than a linear combination of
two interventions). The undominated interventions can
then be ranked in order of increasing cost to create
an efficient frontier of interventions. The incremen-
tal cost-effectiveness ratio, defined as the incremental
cost per QALY gained, increases as one moves along
the efficient frontier. The “best” intervention is the
one that has the highest possible incremental cost-
effectiveness ratio without exceeding a pre-determined
cost-effectiveness threshold α. We will suppose in our
analyses that a value for the cost-effectiveness thresh-
old α is known. This value is often determined as an
implicit value given by accepted public health/medical
practice [46].

In our model, the “alternative interventions” involve
alternative levels of investment in contact tracing (or in
contact tracing and screening). Because our simulation
analyses focus on the steady-state disease prevalence
achieved by a given level of contact tracing, we express
all costs and health benefits in annual terms. Thus,
the cost of each “alternative intervention” equals the
annual cost of contact tracing (CK) plus the annual
cost to treat cases of the disease. The effectiveness is
measured in terms of the resulting steady-state preva-
lence, or equivalently as the total steady-state number
of QALYs experienced in the population per year.
Thus, for these analyses, the cost-effectiveness thresh-
old α represents the maximum amount we are willing
to pay per year for one more steady-state QALY. We
used the value α = $50,000, a value commonly used in
cost-effectiveness analyses of health-related interven-
tions [46].
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Finding the optimal level of contact tracing Figure 3a
shows the steady-state disease prevalence as a func-
tion of the contact tracing capacity (K ranging from
0 to 10), using our baseline simulation parameters,
and averaged over 1,600 runs. The convexity of the
curve shows that the effectiveness of contact tracing
(in terms of reductions in disease prevalence) decreases
with its capacity (i.e., it has diminishing returns to
scale): for each incremental increase in the contact
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Fig. 3 Effect of varying the contact tracing capacity, K. Vertical
bars represent 95% confidence intervals (1,600 runs). a Simulated
steady-state disease prevalence as a function of contact tracing
capacity, K. b Steady-state annual cost and QALYs experienced
as a function of contact tracing capacity. The points correspond to
capacity K ranging from 0 to 10, as in (a). At the optimal budget
this curve has a slope of 1/α (the slope of the gray line). Here α =
$50,000/QALY

tracing capacity, the corresponding reduction in steady-
state prevalence diminishes. This makes intuitive sense
because as the contact tracing capacity increases and
prevalence decreases, we trace more contacts, fewer of
whom will be infected. Thus, the probability that the
contacts we trace are infected decreases as the contact
tracing capacity increases. Our simulation model allows
us to quantify this decrease—and thus to evaluate the
relative cost effectiveness of different amounts of con-
tact tracing.

Figure 3b, which is based on the same simulations as
Fig. 3a, shows the total annual cost associated with each
level of contact tracing (K ranging from 0 to 10), and
the total annual (steady-state) QALYs experienced in
the population (recall that the population size n = 500
is constant). The costs incurred include not only the
capacity costs of contact tracing (C = $6,000 for each
unit of capacity K) but also the costs of treating the
disease (c = $50 per case treated). While the contact
tracing capacity is the biggest annual expense, disease
treatment costs cannot be neglected. Indeed, as contact
tracing capacity (K) increases, treatment cost decreases
because the prevalence of the disease decreases. Our
simulation model allows us to quantify these costs and
savings.

The curve connecting the 11 points in Fig. 3b is
concave, reflecting the diminishing effectiveness of con-
tact tracing with incremental investment. The optimal
budget is given by the point on the curve where the
tangent line has a slope of 1/α. At this point, we spend
$18,000 per year to maintain a contact tracing capacity
of 3 (i.e., the ability to trace 3 people at a time) and we
spend approximately $7,500 per year on treatment of
the disease, bringing the total cost to $25,500. At this
point, the incremental cost per reduction in QALYs
equals the maximum level we will tolerate, α. Above
this point, increases in annual expenditure on contact
tracing increase the annual number of QALYs experi-
enced by less than 1 per $50,000 spent (i.e., less than the
ratio 1/α) and are thus deemed not cost effective.

Sensitivity analysis Using the simulation model, we
can determine how the optimal contact tracing capacity
will vary as a function of various disease parameters.
We performed one-way sensitivity analysis on the dis-
ease transmissibility (i.e., baseline disease incidence,
which is proportional to the parameter t1), the rate at
which symptoms develop (and thus the rate at which
individuals seek and receive treatment, which is pro-
portional to t2), the expected length of time a treated
individual remains in the Removed state (proportional
to the parameter t3), and the expected length of time
between exogenous infections (1/η := 1/η1 = 1/η2).
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Fig. 4 One-way sensitivity analysis: steady-state disease preva-
lence as a function of contact tracing capacity, K. Vertical bars
represent 95% confidence intervals (1,600 runs)

We varied each parameter to 10% above and below the
base case.

For each case, Fig. 4 shows the steady-state disease
prevalence as a function of the contact tracing capacity.
Table 2 shows the effect of changes in these parameters
on the optimal capacity (the capacity at which the
marginal total cost per QALY gained equals the cost-
effectiveness threshold).

For any given contact tracing capacity, the effec-
tiveness of contact tracing (measured by the steady-
state prevalence) is affected the most by the rate at
which symptoms develop. If that rate is slower than in
the base case (and thus there are more asymptomatic
infected people in the population), then steady-state
prevalence is higher than in the base case; conversely,
if the rate is faster, steady-state prevalence is lower.
A 10% decrease in this parameter (slower symptom
development) increased the optimal capacity by 2, and
a 10% increase in this parameter (faster symptom
development) decreased the optimal capacity by 2.
Changes in transmissibility also had a significant impact
on prevalence. For a 10% increase in transmissibility
(corresponding to a 10% decrease in the parameter t1),
the optimal capacity increased by 1; for a 10% decrease
in transmissibility, the optimal capacity decreased by 2.

Changes in the rate at which treated individuals return
to the susceptible population (1/t3) and in the rate of
exogenous infection (1/η1, 1/η2) had little effect on
steady-state prevalence, and thus little effect on the
optimal contact tracing capacity.

We performed sensitivity analysis on the network
structure by comparing the base case model (which
uses a small-world network) to a scale-free network
(also known as a preferential-attachment network). We
assumed that, although one may not know many details
of the contact network, one would likely have a reason-
able estimate of disease prevalence in the population,
so we used this value as a point of comparison. Thus,
we set the average degree of the scale-free network to
2.4 so that the steady-state disease prevalence in the
absence of contact tracing would be the same as that for
the small-world network with no contact tracing. The
degree of 2.4 is less than the value 5 used in the small-
world network because, with a scale-free network, the
disease spreads more efficiently: the scale-free network
has a few individuals with many more contacts than
average, and these allow for relatively efficient disease
transmission.

Figure 5 shows steady-state annual QALYs expe-
rienced for different levels of contact tracing for the
small-world network (the same curve as in Fig. 3b)
and for the scale-free network. In both cases, contact
tracing has diminishing returns to scale (i.e., the curves
are concave). For non-zero levels of contact tracing,
disease prevalence is slightly lower in the scale-free net-
work than in the small-world network. This is expected
because the scale-free network has some individuals
who are highly connected, and finding them (through
contact tracing) has a large payoff. For this example,
the optimal annual investment is approximately $1,000
more for the case of the scale-free network than for
the case of the small-world network. This sensitivity
analysis highlights the importance of good information
about network structure when evaluating how much to
invest in contact tracing.

The above sensitivity analyses explore how the
optimal budget changes as the network structure
and epidemic parameters change. We performed
additional sensitivity analyses in which we varied

Table 2 Sensitivity analysis: Approximate change in contact tracing capacity

−10% Reduction 10% Increase

Transmissibility (t1) Increases by 1 Decreases by 2
Symptom development (t2) Decreases by 2 Increases by 2
Removed time (t3) Increases by 1 Decreases by < 1
Exogenous infection (1/η1, 1/η2) Increases by < 1 Decreases by < 1
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Fig. 5 Comparison of the cost-effectiveness of contact tracing
on a small-world network (as in Fig. 3b) and on a scale-free
network of the same size (n = 500) whose average degree (2.4)
is chosen so that the steady-state prevalence without contact
tracing is similar to that for the small-world network. The points
correspond to the contact tracing capacity K ranging from 0 to 10.
At the optimal budget this curve has a slope of 1/α (the slope of
the gray lines). Here α = $50,000/QALY. Vertical bars represent
95% confidence intervals (1,200 runs)

parameter values by up to 200%; multi-way sensitivity
analyses in which we varied disease parameters simul-
taneously; and a stochastic sensitivity analysis in which
all parameters were varied within ±10% of their base
value. In all cases, contact tracing exhibited diminishing
returns to scale as a function of the budget.

4 Contact tracing and screening

Thus far, the only form of disease control we have con-
sidered is contact tracing. Disease prevalence can also
be decreased by screening. One could screen for cases
of endogenous infection (cases of infection caused by
transmission from individuals in the population) or for
cases of exogenous infection (e.g., among immigrants,
visitors from other countries, and travelers returning
from vacation).

In this section, we address the problem of allocating
a combined capacity Ktotal = K + λ between contact
tracing and screening, and the problem of determining
the optimal total capacity Ktotal. Here K is the capac-
ity (manpower) allocated to contact tracing (as in the
previous section) and λ is the capacity allocated to
screening.

The benefits of contact tracing and screening are
larger than the sum of the benefits of doing them
separately: the cost effectiveness of contact tracing

varies with the amount of screening performed and vice
versa. We thus use simulation to determine the opti-
mal mix of contact tracing and screening: we simulate
different allocations of a fixed capacity to determine
the effectiveness of each combination. Once we know
the cost and effectiveness of each combination, we can
use the threshold value α to determine the optimal
total capacity, and the corresponding optimal level of
investment in each type of control.

Screening for exogenous infection We first consider
the case of screening for exogenous infection. Exoge-
nous infection can be a major source of new infection
for many diseases: for example, many TB index cases in
the USA are individuals who have brought the infection
from another country. In the USA and Canada, long-
term immigrants are screened for active TB and HIV
as part of the visa process [47, 48].

We assume that with each capacity unit we can
either screen 12 people or trace one contact (every
t4 = t5 = 5 days) because the cost of tracing one contact
is approximately $120 (as discussed earlier) and the cost
of a gonorrhea test is $10 [43]. Without any screening,
0.056 exogenous infections occur in the population each
day (calculated as n

η1
= n

η2
= 500/9,000). We assume

that 0.17% of new entrants are infected on average
(consistent with gonorrhea prevalence rates in some
Asian and eastern European countries [49]); thus, the
rate of exogenous infection as a function of λ, the
amount of the capacity allocated to screening, is η1 =
η2 = 1

n (5/90 − 0.0017λ12/5).
Figure 6a shows the steady-state prevalence

achieved as we vary λ/Ktotal for different total capaci-
ties. As one would expect, steady-state prevalence
decreases as the total capacity for contact tracing
and screening increases. Additionally, we see from
this figure that allocating a small fraction of the total
capacity to exogenous screening is better for smaller
total capacities (no screening, λ = 0, is optimal for
Ktotal ≤ 5), whereas for larger total capacity it is better
to allocate more of the total capacity to exogenous
screening.

With this information about the effects of alternative
allocations of any fixed total capacity between contact
tracing and screening, we can revisit the decision of
how large to make the total capacity Ktotal. Figure 6b
shows the steady-state prevalence as a function of the
total capacity, where the capacity is allocated between
exogenous screening and tracing so as to minimize
the resulting steady-state prevalence (the correspond-
ing minimum from Fig. 6a). Figure 6b also shows
the steady-state prevalence as a function of the total
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Fig. 6 Effects of allocating a total capacity Ktotal = K + λ be-
tween contact tracing, K, and screening for exogenous infections,
λ. Vertical bars represent 95% confidence intervals (1,600 runs).
a Steady-state prevalence as a function of the fraction spent on
screening λ/Ktotal for various values of the total capacity Ktotal.
b Steady-state prevalence achieved as a function of the total
capacity Ktotal for screening and contact tracing. The solid line
allocates the capacity optimally while the dotted line is from

Fig. 3a where we used no screening (λ = 0). c Steady-state annual
cost and QALYs experienced as a function of the total capacity
Ktotal for screening and contact tracing. The points arranged
(more or less) vertically represent different allocations of a given
total capacity, Ktotal, between screening and contact tracing. At
the optimal budget, this curve has slope equal to 1/α (the slope of
the gray line). Here α = $50,000/QALY
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capacity, assuming that no screening is used. We see
that for capacity Ktotal > 5, using a mix of screening and
contact tracing achieves lower disease prevalence than
does contact tracing alone, and the difference increases
as the total capacity increases.

Figure 6c shows the total cost of each strategy, in-
cluding treatment costs (for different levels of Ktotal and
different allocations of Ktotal between contact tracing
and screening), and the resulting annual steady-state
QALYs experienced. The points arranged (more or
less) vertically represent different allocations of a given
total capacity between screening and contact tracing.
The efficient frontier in Fig. 6c connects the best strat-
egy for each total capacity level. The optimal strategy
is given by the point on the curve where the tangent
line has a slope of 1/α. At this point, the annual cost is
$25,500 with approximately 499.1 steady-state QALYs
experienced per year. This point corresponds to a ca-
pacity Ktotal of 3, all of which is allocated to contact
tracing (thus, three contacts traced at any one time),
with annual disease treatment costs of approximately
$7,500. This is the same solution as was found for the
case of contact tracing only.

Screening for endogenous infection We next consider
the case of screening for endogenous infection. In our
simulation this takes the form of random screening of
members of the population. One could think of such
screening as resulting from encounters that individuals
have with health care providers (either due to symp-
toms of the disease or for another reason) in which
screening is offered. An increase in the endogenous
screening rate increases the number of individuals in
the population who are screened per unit time, and
could correspond to an increase in the rate at which
health care providers offer screening to patients. (For
example, one practical means of achieving higher rates
of routine HIV screening in the USA, as recently
recommended by the CDC [50], is to encourage
more doctors to routinely offer HIV tests to the pa-
tients they see.)

For the case of endogenous screening, we assume
that with each capacity unit we can screen 200 people
per year. Thus, the mean rate at which individuals
move from the infected state (I) to the recovered state
(R) when there is endogenous screening at rate λ is
1/t2 = 1/30 + λ200/n/365. Figure 7a shows the steady-
state prevalence achieved as a function of λ/Ktotal for
different total capacities Ktotal, and Fig. 7b shows the
steady-state prevalence achieved as a function of the
combined capacity Ktotal for endogenous screening and
contact tracing. As for the case of exogenous screening,

allowing for the possibility of screening for endogenous
infection (as occurs in the optimal mix) can reduce
prevalence more than contact tracing alone, and the re-
duction becomes more pronounced as the total capacity
increases.

From Fig. 7c we see that the cost-effectiveness
threshold is reached at a point where the total cost
is approximately $25,000. This corresponds to a total
capacity of Ktotal = 3 (annual cost $18,000) plus approx-
imately $7,000 in annual treatment costs. From Fig. 7a
we see that for Ktotal = 3, approximately one-third of
the capacity is allocated to screening and two-thirds is
allocated to contact tracing.

5 Example: contact tracing for chlamydia control

In this section we illustrate the use of our model to
evaluate contact tracing for control of chlamydia, a
common STD. Estimated chlamydia prevalence in the
general US population is about 0.3%, but among
young, sexually active individuals (age 15 to 24), preva-
lence has been found to be 6% or higher [51, 52].
Contact tracing is commonly performed for chlamydia.

We modeled a population of size n = 500, reflecting,
for example, the size of the sexually active population
in a high school. We used the same SIRS model as
in Fig. 2 (but with different parameter values). We
modeled heterosexual transmission of chlamydia, and
assumed that the population comprised equal numbers
of males and females.

To model this heterosexual population, we created
a bipartite graph with equal numbers of males and
females. In addition, we modeled low-risk and high-
risk males and females, to reflect different levels of risk
behavior. To do so, we subdivided the male and female
populations into high-contact groups (20% of the total)
and low-contact groups (80% of the total).

We assumed an average of three sexual contacts
(partnerships) per person. We adjusted this figure up-
ward for high-risk individuals and downward for low-
risk individuals. We assumed that the probability that
any male-female pair are contacts is independent, and
we assumed that these probabilities have a ratio of 7:5:1
for contacts between high-risk individuals, contacts be-
tween high-risk and low-risk individuals, and contacts
between low-risk individuals, respectively.

We set t2 = 15/0.3 = 50 days to reflect the fact that
chlamydia symptoms appear within 1 to 3 weeks after
infection, but in 70% of cases, the infection remains
asymptomatic [53]. We set the time associated with the
sufficient contact rate, t1, equal to 100. This yields a
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Fig. 7 Effects of allocating a total capacity Ktotal = K + λ be-
tween contact tracing, K, and screening for endogenous infec-
tions, λ. Vertical bars represent 95% confidence intervals (1,600
runs). a Steady-state prevalence as a function of the fraction
spent on screening λ/Ktotal for various values of the total capacity
Ktotal. b Steady-state prevalence achieved as a function of the
total capacity Ktotal for screening and contact tracing. The solid
line allocates the capacity optimally while the dotted line is from

Fig. 3a where we used no screening (λ = 0). c Steady-state annual
cost and QALYs experienced as a function of the total capacity
Ktotal for screening and contact tracing. The points arranged
(more or less) vertically represent different allocations of a given
total capacity, Ktotal, between screening and contact tracing. At
the optimal budget, this curve has slope equal to 1/α (the slope of
the gray line). Here α = 50,000/QALY
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baseline chlamydia prevalence of 8%, consistent with
a study of teenage girls in Philadelphia [51] (before any
intervention). Zimmerman et al. [54] found that clients
at STD clinics who were found to be infected with
chlamydia reported an average of 1.7 contacts. Hence
we set the probability that a contact is reported to
1.7/3 = 57%. We estimated the cost of treating one case
of chlamydia as c = $50 + 0.3($500) = $200: in 70%
of cases, an inexpensive ($50) course of antibiotics is
sufficient to treat the infection, but in roughly 30% of
the cases, patients develop acute pelvic inflammatory
disease which must be treated at an additional cost of
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Fig. 8 Evaluating contact tracing capacity for chlamydia control.
Vertical bars represent 95% confidence intervals (1,600 runs).
a Simulated steady-state disease prevalence as a function of con-
tact tracing capacity, K, for the case of chlamydia. b Steady-state
annual cost and QALYs experienced as a function of contact
tracing capacity. The points correspond to capacity K ranging
from 0 to 15, as in (a). At the optimal budget, this curve has a
slope of 1/α (the slope of the gray line). Here α = 50,000/QALY

$500 [55]. For all other parameters of the model (t3, t4,
t5, η1, η2, and C) we used the same values as shown in
Table 1.

Figure 8a shows the effect of different contact tracing
capacity levels (K = 0 to 15) on steady-state chlamy-
dia prevalence in the population. In the absence of
any contact tracing, steady-state disease prevalence is
8%. As contact tracing capacity increases, prevalence
decreases, but with diminishing returns, as expected.
For K = 5, steady-state prevalence is 4%; for K = 10,
steady-state prevalence is approximately 2.7%; for
K = 15, steady-state prevalence is 2.3%.

Figure 8b shows annual costs and QALYs experi-
enced for each level of contact tracing. For a cost-
effectiveness threshold of α = $50,000/QALY gained,
the optimal contact tracing capacity is K = 11. The
annual cost is approximately $92,000, corresponding
to $66,000 for contact tracing plus $26,000 for treat-
ment. The resulting endemic level of disease prevalence
is approximately 2.6% (Fig. 8a). If the public health
budget for this example constrains contact tracing to
fewer than 11 individuals being traced simultaneously,
Fig. 8b shows that significant health benefits can still
be achieved by contact tracing. For example, a contact
tracing capacity of K = 6 will still reduce steady-state
prevalence from 8 to 3.7%. A simulation model such
as ours allows one to quantify the tradeoffs associated
with different levels of contact tracing.

6 Discussion

We have presented a general framework for evaluating
the optimal level of investment in contact tracing. This
framework combines concepts from cost-effectiveness
analysis with simulation of a disease and the effects
of contact tracing among a network of individuals.
Our simulation results suggest that contact tracing is
likely to have diminishing returns to scale: incremental
increases in the budget for contact tracing yield dimin-
ishing decreases in the disease prevalence. This makes
intuitive sense: the larger the number of contacts traced
per unit time, the less likely it is that the incremental
contacts traced will be infected, and thus the smaller
the number of new cases that will be identified and
removed. Use of a cost-effectiveness framework, com-
bined with the simulation results, allows one to de-
termine the appropriate level of investment in contact
tracing. We also showed how, when other interventions
such as screening are available, simulation can be used
to determine the best mix of interventions for any given
capacity level, and then cost-effectiveness principles
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can be applied to determine the appropriate total ca-
pacity for screening and contact tracing.

Our results are based on a limited set of simulations.
Further analyses could explore the robustness of our
findings under different conditions: for example, for
different networks, diseases, epidemic models, disease
parameters, and populations.

One useful avenue for future research is to extend
our simulation model to capture more details of contact
tracing and disease transmission and progression. For
example, our current model stylizes the screening of
infections from exogenous sources. A more realistic
model could break out the various sources of exoge-
nous infection (e.g., holiday travelers, visitors from
certain countries, legal immigrants, and illegal immi-
grants) and the opportunities to screen them (e.g.,
when they request a visa or at clinics in immigrant
neighborhoods). As another example, our model of
contact tracing does not include the genotype infor-
mation available to investigators that allows them to
distinguish between new and continuing outbreaks. In
practice, when a new outbreak of a disease is detected,
the intensity of contact tracing is often increased until a
significant level of epidemic control has been achieved.
Thus, a natural extension of our work is to consider the
case of dynamically changing levels of contact tracing.

A more sophisticated model would show additional
benefits of contact tracing not captured by our model.
As contact tracing capacity increases, the average time
from acquisition of infection to detection and treat-
ment decreases. Our model captures this effect (Fig. 9).
However, our model does not capture the fact that
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is initiated, as a function of contact tracing capacity, K. Vertical
bars represent 95% confidence intervals (1,600 runs)

the most severe symptoms and complications are in
patients whose disease was untreated the longest. Ex-
tending our model to include multiple infected states
(for example, states representing benign versus acute
symptoms), which differ in their infectiousness, quality
multipliers, and treatment costs, would model this phe-
nomenon and thus help quantify this additional benefit
of contact tracing.

The simplicity of our current model also means that
the selection of contacts to trace is extremely crude
and does not reflect all the considerations (such as
stage of infection, strength of immune system, age,
demographics, etc.) that are used in the real world.
By assuming that contacts are located after a constant
number of days, our model ignores the possibility of not
locating a contact, the uncertainty in the time required
to locate a contact, and the option of giving up the
search. A model incorporating such features would be
more realistic and could be used to compare different
strategies for selecting who to trace.

Another useful avenue for further research would
be to tailor the analysis to specific diseases of interest.
A tailored model could be used to determine the ap-
propriate level of contact tracing for a specific disease
in a specific region. The simulation model we have
presented here could provide the foundation for such
a policy tool. As an example, we applied our SIRS
model to show how one could examine different levels
of contact tracing for chlamydia control. For other
diseases, a different epidemic model (with appropriate
adjustments to the network model) might be needed.

For example, for TB, the disease model should in-
clude latent and active infection stages, with disease
progression times set appropriately. Further, the con-
tact network should allow contacts of greater and lesser
strength (e.g., family members versus coworkers in a
well-ventilated office). In our simulation, a contact’s
priority score is an indicator of the likelihood that this
contact is infected. To better model TB contact tracing,
it would be useful to distinguish individuals by their
potential chance of acquiring infection, as is done in
practice. For example, TB contact tracing in the USA
gives priority to contacts who are children or who have
AIDS.

To model HIV and some STDs, the disease mod-
el should include asymptomatic and symptomatic
disease stages. For HIV, it might be appropriate to
incorporate several modes of transmission (e.g., hetero-
sexual partnerships, same-sex partnerships, and needle-
sharing partnerships). In addition, use of a dynamic
contact network would reflect the pair formation and
dissolution that occurs in social networks of such dis-
eases (see, for example, Kretzschmar [21]).
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More work is also needed to understand the network
structure underlying a particular epidemic in a par-
ticular population. Some limited work has been done
to characterize specific networks of infectious disease
(e.g., Klovdahl et al. [34], Weeks et al. [35], Parker
et al. [36], Helleringer et al. [37]). Further knowledge of
network structure, and related disease transmission fea-
tures such as pair formation and dissolution, is crucial
to evaluating the effectiveness, and cost-effectiveness,
of different investments in contact tracing in any given
setting.

We have considered contact tracing in an endemic
disease setting. Contact tracing is also important (per-
haps more so) for containing outbreaks of epidemic
diseases. Then the crucial question is whether one can
find the contacts faster than they can spread the disease,
or win the “race to trace” as Kaplan et al. [56] put it.
For this problem, the decision maker’s goal is likely to
be that of determining the minimum level of contact
tracing that is needed to reduce the reproductive rate
of infection below 1, perhaps within a specified period
of time. This approach may be relevant for particularly
virulent diseases such as smallpox [56], extremely drug-
resistant TB [57], or a gonorrhea “superbug” [58].

Contact tracing can be an effective means of disease
control, but it is only useful up to a point because incre-
mental increases in the level of contact tracing are likely
to yield diminishing benefits. Simulation can be used
to estimate the benefits of contact tracing as a function
of its intensity. Then, cost-effectiveness analysis can be
used to determine the optimal level of investment in
contact tracing (or the optimal level of investment in
contact tracing and screening). Such analysis can help
public health departments make the most cost-effective
use of their available funds for disease control.
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