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Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent 
malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the 
world population, and currently, no treatment ensures its total elimination. There has been an increase in our understand-
ing of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic 
alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and coloniza-
tion. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. 
Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host’s 
gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay 
between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. 
pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effec-
tive therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about 
the virulence and pathogenesis mechanisms of H. pylori.
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Introduction

Helicobacter pylori is a Gram-negative and flagellated bac-
terium. The organism belongs to several distinct genetic 
populations which shows high genetic diversity [1, 2]. The 
organism can survive in the presence of a low level of oxy-
gen. Interestingly, this bacterium can navigate between two 
different shapes depending on the physiological activity 
required, such as survival during adverse environmental 
conditions (temperature or pH shifts, long intervals between 
meals, and antibiotic therapy) [3]. Although the organism is 
usually spirally shaped, it can appear as a rod. Also, during 
prolonged in vitro culture or even antibiotic treatment, the 
coccoid shapes could appear [4]. This ability to change from 
spiral to coccoid form is also one of the unique mechanisms 
this bacterium uses to survive in the host’s gastrointestinal 

tract [5, 6]. To date, the coccoid form persists as a major 
challenge in the eradication of H. pylori [7, 8].

H. pylori use flagella-mediated motility for movement 
towards the stomach’s epithelial cells and to penetrate the 
mucus lining [9]. Thereafter, the organism crosses the 
acidic environment to areas with suitable conditions. The 
coccoid form enabled its colonization at the mucus lay-
ers [6, 10]. Attachment to host epithelial cells is through 
adhesin production [9, 11]. So far, several studies have 
shown that the colonization of H. pylori could be nega-
tively and positively associated with the induction and 
progression of several diseases [6, 12–16]. It has been 
reported to be linked to gastric and duodenal ulcer, gastric 
carcinoma, and gastric mucosa-associated lymphoid tis-
sue (MALT) lymphoma [14, 17, 18]. Several other studies 
are also available reporting a positive correlation between 
gastrointestinal diseases and H. pylori. For example, a 
positive association has been reported between H. pylori 
and duodenal ulcer and gastric ulcer [19], gastritis [20], 
and oesophageal cancer [21]. Moreover, evidence is also 
available on the positive association between H. pylori 
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and non-gastrointestinal diseases such as diabetes mellitus 
[22], coronary artery disease [23], and anaemia [24].

Mostly, infection occurs during childhood, where 
patients remain healthy carriers, manifesting the symp-
toms later in adulthood. However, the vast majority of the 
infected population does not develop symptoms related 
to H. pylori infection [6]. Epidemiologically, 85–95% 
of developing countries’ population has H. pylori infec-
tion and approximately 30–50% in developed countries 
[25–28]. Sadly, there is no precise knowledge of the mode 
of transmission of H. pylori. It has, however, been hypoth-
esized to be transmitted through oral-to-oral and faecal-
to-oral routes. This transmission mode is associated with 
contaminated food and water [6, 29–31]. Poor hygiene, 
nutrition, and differences in geographical determinants are 
factors that play a role in infection [10], while its adap-
tation mechanisms include the acquisition of some viru-
lence factors that enables it to survive at a lower pH. The 
organism cannot produce acid by itself but can neutralize 
gastrointestinal acid using the urease enzyme [10].

The pathogenic potentials of H. pylori have been evalu-
ated several decades ago since its discovery in 1983. Sadly, 
the resistance of H. pylori to antibiotics treatment is rising 
daily, making treatment of H. pylori difficult. Frequent H. 
pylori infection causes a significant alteration in the com-
position of the GIT microbiome. It also causes the pro-
duction of free radicals with implications on the outcome 
of several diseases. On the other hand, it remains to be 
completely understood why most individuals infected with 
H. pylori remain asymptomatic while some develop severe 
gastric diseases. Several other recent studies enhancing 
our understanding of the interaction of H. pylori and host 
cells are also available [32–36].

However, to date, the exact role of the pathogen in gas-
tric diseases and other diseases remain elusive and contro-
versial. H. pylori employ antibiotic resistance mechanisms 
such as genetic mutations and biofilm formation [37], 
while its pathogenicity involves host signalling pathways 
and indirect inflammatory responses induced within the 
gastric mucosa [38]. Furthermore, the pathogenicity of H. 
pylori depends on the exact strain of H. pylori, although 
several other factors play a role. The expression of a spe-
cific virulence factor facilitates the interplay between the 
host and the bacterium [39]. A recent study by Palamides 
et al. [40] shows that H. pylori isolates differ in virulence 
factor and disease outcome. So far, the eradication of H. 
pylori has become increasingly challenging. Moreover, 
breaking its link with other health issues is also another 
challenge. To find strategies to improve the efficacy of H. 
pylori, an understanding of the virulence and pathogenesis 
mechanisms is essential. Thus, this review is timely as 
it will help to bring to the limelight the latest update on 
the virulence and pathogenesis mechanisms of H. pylori. 

These virulence pathways could be leveraged for thera-
peutic targets.

Therefore, expounding the role of virulence factors in H. 
pylori pathogenesis and clinical outcomes would be crucial 
in drug development and vaccine formulation. In the present 
review, we discussed what is currently known about the viru-
lence and pathogenesis mechanisms of H. pylori.

An overview of H. pylori infection

The genome of H. pylori was completely sequenced in 1997 
[41]. Since then, there has been an increase in studies report-
ing the pathology, immunology, virulence, and pathogenesis 
of H. pylori. As previously established, H. pylori infection 
varies geographically, and the developing nations carry the 
higher burdens [42]. In addition, several environmental fac-
tors such as smoking, excessive intake of alcohol, presence 
of carcinogens, and diet play a crucial role in the pathogen-
esis of H. pylori [43–45]. Also, the development of H. pylori 
infections after the invasion depends on bacterial survival, 
virulence factors, and the host factors such as the immune 
system and environmental determinants [46–49].

Approximately 4.4 billion people are infected with H. 
pylori, with the majority of the H. pylori strains having viru-
lence genes. However, less than 20% develops severe gastric 
diseases [33, 50]. These observed discrepancies or clinical 
outcome raises a lot of questions. However, it is important 
to emphasize that several factors determine whether a per-
son infected with H. pylori will remain asymptomatic or 
come up with one of the several gastric diseases: climate 
and local geography, host immune response, the composi-
tion of the microbiota (both gastric and intestinal), nutri-
tional status of the individual, and medicine usage history 
[12]. In addition, studies have shown that the H. pylori strain 
display different degrees of virulence that determine their 
pathogenicity and potential disease progression. Therefore, 
understanding these factors that promote asymptomatic H. 
pylori infection to clinical disease is paramount for treatment 
and management.

H. pylori can infect, replicate, and persist in a host [44, 
51]. The colonization with H. pylori is not a disease in itself. 
However, it is a condition that could affect the risk of devel-
oping various clinical disorders [7, 52]. Upon entering the 
stomach, H. pylori neutralize the hostile acidic environment 
with the aid of their urase activity. The cell subsequently 
moves towards the gastric epithelium using its flagella-
mediated motility. H. pylori adhesins further interact with 
the host cell receptors leading to successful colonization 
and persistent infection. Upon successful colonization, H. 
pylori produce several effector proteins/toxins responsible 
for damage to the host tissues. During the infection, the 
secreted chemokines trigger innate immunity. There is also 
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the activation of neutrophils and subsequent clinical mani-
festation [11].

H. pylori can also form biofilms. The formation of the 
biofilm helps to reduce its susceptibility to antibiotics, thus 
bringing about mutations that complicate bacterial eradica-
tion. In addition, H. pylori can use biofilm formation as a 
mechanism for its persistence and long-term colonization 
[53]. This tactic enhances the exchange of genetic materi-
als and facilitates the frequency of recombination [54]. A 
positive association has also been reported between biofilm 
formation and an increased expression of multiple genes 
crucial for virulence [55] and resistance to antibiotics [56].

Abdominal pain and discomfort, nausea, burping, and 
loss of appetite are common symptoms. Other symptoms 
include excessive burping, bloating, weight loss, and heart-
burn [10]. Also, the rates of isolation of H. pylori vary 
between laboratories (about 30–37%) due to the fastidious 
nature of H. pylori [57, 58]. Several approaches are used in 
the detection of H. pylori. Both the invasive and the non-
invasive methods are employed in the detection of H. pylori 
in a patient. Many factors, however, influence  choices in the 
method of diagnosis: availability of diagnostic instruments/
materials, sampling population, and competency and experi-
ence of the physicians/clinicians, among others [59]. Inva-
sive methods include endoscopic evaluation, histology, rapid 
urease test (RUT), and bacterial culture. Non-invasive meth-
ods include urea breath test (UBT), stool antigen test (SAT), 
serology, and molecular diagnostic approaches [60]. Each of 
these methods has its advantages and limitations. However, 
in clinical practice, none can be considered a single gold 
standard [61]. UBT and SAT are the most commonly used 
non-invasive tests, and they are also the best methods to 
diagnose H. pylori infection [10, 59, 62, 63]. The invasive 
method employs the biopsy of a small sample of the gastric 
mucosa. It allows for the accurate detection of H. pylori. 
However, there is a high risk of contamination of the sample 
by viruses such as human immunodeficiency virus (HIV) 
and hepatitis C virus (HCV) [64, 65]. Also, it cannot be 
performed on pregnant women, the aged, and children [66]. 
Moreover, multiple biopsies are needed to provide a better 
understanding of the infection.

RUT detects the presence of urea production, although 
factors like bacterial load and the presence of other urease 
producing pathogens can result in a wrong diagnosis [67]. 
Also, information on antibiotic resistance cannot be pro-
vided using this method [68, 69]. As already mentioned, 
non-invasive methods such as urea breath test (UBT), stool 
antigen assay, and serology are frequently used [70–72]. 
These are widely performed on gastric juice, saliva, urine, 
and stool specimens. Both UBT and SAT have high sensi-
tivities and specificities [73, 74]. Although the technique can 
detect the presence of H. pylori, it cannot provide informa-
tion on drug susceptibility profiles. The culture method of 

detection allows for antibiotic susceptibility profiling [75]. 
Its disadvantage is the alteration of the specimen through 
contamination from commensals of the same flora and time 
intervals before culture.

Real-time PCR (molecular method) has also been used to 
diagnose H. pylori and its virulence genes [59]. The ampli-
fication of genes through polymerase chain reaction (PCR) 
is the common method of virulence detection. However, 
multiple amplification is usually needed for all the known 
genes and their variants, which can be time-consuming and 
require many funds. In addition, when there is a mismatch 
in the primer binding site, amplification of the target region 
may be impaired [76]. Also, a high number of amplification 
cycles may lead to artefacts in the amplified target sequence, 
potentially leading to wrong assumptions regarding the 
presence or structural variation of outer membrane proteins 
(OMPs). Whole-genome sequencing (WGS) is preferably 
used in genomic sequencing as it gives ample information on 
bacterial antibiotic resistance, bacterial diversity, and patho-
genicity [76]. However, the cost of WGS and the complexity 
of data present some difficulties to most laboratories. The 
genetic population structure and analysis of H. pylori has 
recently been studied by Jiang et al. [77] using the whole-
genome-based approach.

For the treatment of most H. pylori diseases, triple anti-
biotic therapy consisting of proton-pump inhibitor (PPI) 
and two antibiotics (usually amoxicillin and metronidazole/
clarithromycin) have been used as a conventional method of 
treatment. However, with the recent surge in antibiotic resist-
ance, triple therapy has become less effective. Therefore, 
quadruple treatment has emerged in recent years, involving a 
14-day administration of proton-pump inhibitor (PPI) + bis-
muth + two antibiotics (quadruple bismuth therapy) [78–81]. 
Other methods of treatments have also received recognition 
across the globe. The limitation, however, is that different 
strains exhibiting different drug resistance and susceptibil-
ity patterns have been isolated from a single patient from 
several locations [82–86].

There are emerging alternatives to the treatment of H. 
pylori infections outside the use of antibiotics. For more 
information, a review paper by Roszczenko-Jasinska et al. 
[87] is recommended. In addition, the co-infection with mul-
tiple H. pylori strains, which may have different genotypes 
and phenotypes, has been observed within the same patient 
[86]. Such genetic variability proves drug susceptibility 
therapy difficult and poses the danger of the evolution of 
more virulent and adapted strains. In the study of Mi et al. 
[88] using cagA typing and RAPD-PCR fingerprinting, H. 
pylori strain isolated from patients showed heterogenicity 
that were considered to indicate the incidence of multiple 
infections. Overall, the different clinical outcomes during 
H. pylori infection may be due to differences in H. pylori 
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strains—this could act as a marker to predict H. pylori dis-
ease outcomes [89].

Virulence and pathogenesis mechanisms

Epithelial cell; the first‑line defence barrier

The epithelial cell of the human gastric region prevents the 
adhesion, proliferation, and movement of invading patho-
gens through its ability to form a tight structure. Pathogens 
like H. pylori disrupt the gastric barrier by the production 
of harmful soluble components. It also adheres to many 
epithelial cell receptors and stimulates various signalling 

pathways within the host. The colonization and the estab-
lishment of diseases and infection by H. pylori depend on 
four major stages: adaptation to the acidic environment of 
the gastric mucosa, the movement towards and penetration 
of the epithelial cell barrier, attachment to specific recep-
tors, and finally, tissue damage and other detrimental health 
effects (Fig. 1). Therefore, to successfully colonize the host 
and establish infection, H. pylori must be able to survive the 
acidic stomach, attach to the host cells, and release damag-
ing tissue toxins. Some of the major effector proteins/toxins 
released by H. pylori include blood group antigen-binding 
adhesion (BabA), outer inflammatory protein (OipA), outer 
membrane protein (OMP), outer membrane vesicles (OMV), 
vacuolating cytotoxins (VacA), a cytotoxin-associated gene 
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Fig. 1   Virulence and pathogenesis mechanisms of H. pylori. Colo-
nization and establishment of diseases and infection by H. pylori 
depend on four major stages: (1) adaptation to the acidic environ-
ment of the gastric mucosa, (2) the movement towards the epithelial 
cells using the flagella, (3) penetration of the epithelial cell barrier 
and attachment to specific receptors, and (4) tissue damage and other 
detrimental health effects. Therefore, to successfully colonize the host 

and establish infection, H. pylori must be able to survive the acidic 
stomach, attach to the host cells (using several adhesins), and release 
toxins that damage host tissues. The VacA helps in the disruption of 
the epithelial barrier. Also, the macrophages can be induced by the 
urease. The induction brings about alterations in gastric physiology. 
Several other effector proteins play a crucial role in the pathogenesis 
of H. pylori 
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product (CagA), high-temperature requirement A (HtrA), 
neutrophil-activating protein A (NepA), and sialic acid-
binding adhesins (SabA) [37].

Other outer membrane proteins (OMP) possessed by H. 
pylori include Helicobacter OMPQ (HopQ) and Helicobac-
ter OMPZ (HopZ). There are also the H. pylori outer mem-
brane (Hom) family proteins (HomA), HomB, HomC, and 
HomD. A recent study by Xu et al. [90] showed that HomB 
could induce IL-8 secretion.

The binding of H. pylori to gastric epithelial cells, colo-
nization, and even biofilm formation in H. pylori are also 
mediated by adherence-associated lipoprotein A and B 
(AlpA/AlpB). There are also other poorly studied adhesins 
playing a crucial role in H. pylori virulence. For example, 
a recent study by Baj et al. [37] showed that LacdiNAc-
specific adhesin (LabA) facilitates H. pylori adherence to 
the gastric epithelium. More recent evidence is also showing 
that H. pylori adaptation and survival in the gastric environ-
ment are controlled by Hpne4160, a small non-coding RNA 
[91]. According to the investigation, an increased expres-
sion of OMPs and cagA during chronic infection was due to 
decreased expression of HPne4160.

Survival in the acidic environment

The flagellum is a complex organ composed of three struc-
tural elements (basal body, hook, and filament). The fila-
ment is composed of several types of protein subunits, such 
as FlaA and FlaB [10, 92–94]. The flaA is located in the 
outer region, while flaB is on the base of the flagellum [95]. 
Flagella can exist in swimming, swarming, or the spreading 
form [92].

H. pylori use its flagella for movement and adhesion 
functions. Flagella enable the migration of the pathogenic 
bacterium from entry to the mucus membrane, where it pro-
duces an adhesin to colonize the mucus lining of the host’s 
epithelial cells [11]. This flagellum also protects the bacte-
rium from the gastric environment [10]. In the presence of 
relatively high percentage acid that results in more acidity in 
the gastroenteric, the flagellar tend to swim faster as a proton 
motive force powers their proteins motor at this pH [93]. The 
number of flagella has been reported to increase the speed 
of bacterial cells during movement [96].

Mutation in the gene that encodes for flagella produc-
tion, such as fliD, flaA, and flaB can lead to the inability to 
colonize the gastric mucosa. flaA mutant strain of H. pylori 
cannot produce flagella at all, while that which is deficient in 
flaB might produce flagella [97, 98]. A decrease in the motil-
ity and adhesion capacity of a flaB deficient strain has been 
demonstrated [11]. A non-flagellated strain of H. pylori can-
not colonize the epithelial cells of the mucosa [10]. In addi-
tion to motility, H. pylori flagella can induce inflammation 

and immune invasion and play an active role in biofilm for-
mation [54, 92, 99].

Epithelial cell colonization

Adherence of H. pylori to the gastric epithelium is a neces-
sary step in establishing infection [94]. H. pylori adhesins 
bind to mucins in the gastric mucus and receptors on the 
surface of the gastric mucosa. The outer membrane adhesin 
proteins like blood group antigen-binding adhesin (BabA), 
SabA, outer inflammatory protein (OipA), H. pylori outer 
membrane protein (OMP), and other proteins interact with 
the receptors found on the host epithelial cells. Binding to 
receptors protects the invading pathogenic H. pylori from 
clearance mechanisms such as bulk liquid flow, gastric peri-
stalsis, and the continuous shedding and replenishment of 
the mucus layer. It also provides nutritional access to the 
bacteria and promotes the delivery of bacterial toxins and 
other effector molecules to the host cells [93, 94].

Outer membrane vesicles

The accumulation of phospholipid in the periplasm through 
the activities of the ATP-binding cassette system causes 
vesiculation in the cell wall outer membrane resulting in the 
formation of OMV [100]. OMV is a small, circular structure 
with an intact outer membrane expressed on the surface of 
H. pylori and other Gram-negative bacteria. It is made up 
of periplasmic proteins, toxins, outer membrane proteins 
(OMPs), and lipids. They sometimes can contain extracel-
lular DNA (eDNA) [83, 101–103]. Formation of OMV often 
occurs during stress responses. OMV has been associated 
with cell proliferation, vacuolation, a loss of cell viability, 
and the production of the pro-inflammatory cytokine IL-8 
[104]. They have also been reported to enhance bacterial 
survival, DNA transfer, antibiotic resistance, and induction 
of immune cell apoptosis [105]. A recent study conducted by 
Murray et al. [106] showed that the OMV of H. pylori offers 
protection against toxic compounds such as hydrogen per-
oxide in a dose-dependent manner and against bactericidal 
produced by epithelial cells antimicrobial peptide LL-37. 
It also protects against levofloxacin and clarithromycin in a 
dose-dependent manner.

Generally, the OMV proteins are grouped into five dis-
tinct classes according to the encoding genes. Type one is 
made up of the outer membrane porins (Hop), Hop-related 
proteins (Hor), type 2 comprises of the Hof, and type 3 com-
prise the H. pylori outer membrane proteins (Hom). The 
iron-regulated OMPs made up the fourth category. At the 
same time, the efflux pump OMPs belong to the fifth cat-
egory [107], although other members do not fit perfectly into 
any of the five classes.
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Outer membrane protein (OMP)

H. pylori express about 64 OMPs which are grouped into 
at least five gene families. Family 1 is composed of the hop 
and hor genes. These genes code for adhesion proteins such 
as the BabA/B/C, SabA/B, and AlpA/B. The production 
of OMP is regulated by gene recombination or by slipped 
strand mispairing occurring in the dinucleotide repeat 
regions at the 5′-end of the respective gene [94]. The OMP 
family two genes encode for OMPs of unknown function. 
In comparison, the OMP family five genes encode for efflux 
pump proteins and therefore play a vital role in antibiotic 
resistance [108]. Several OMPs have been identified to con-
tribute to the virulence of H. pylori. They are essential in 
the adhesion of the bacteria to the epithelial cell of the host 
[76] and can enhance cag-pathogenicity island stimulation 
of pro-inflammatory immune response and induce signalling 
in the host cell [76, 109].

Outer membrane porins

The family outer membrane porin (HOP) adhesion mole-
cules adhere to host cell membrane receptors. Widely stud-
ied among this class are the outer inflammatory proteins 
A (OipA), blood group antigen-binding adhesin (BabA), 
sialic acid-binding adhesin (SabA), HopQ, HopZ, and the 
adherence associated lipoprotein A (AlpA) [110]. Of most 
notable importance are the BabA and SabA adhesins [107, 
111–113]. These adhesins are encoded by different genes 
and recognize a different set of host epithelial cells. A recent 
investigation by El-Sayed et al. [114] showed that OipA was 
highly significantly associated with gastroduodenitis, thus 
suggesting that they could be a great biomarker in predicting 
mucous progress in patients with chronic gastritis. BabA is 
probably the best-characterized adhesin of H. pylori. The 
babA2 gene encodes BabA. It can bind to H, Lewis b (Leb) 
and fucosylated ABO blood group antigens expressed on 
erythrocytes and gastric epithelium [112, 115]. This bind-
ing to epithelial cells facilitates the delivery of both VacA 
and CagA to the epithelial cell through the use of the T4SS. 
SabA recognizes Sialyl-Lewis x and sialyl-Lewis antigens 
expressed on the gastric epithelium [115]. Both BabA and 
SabA enables H. pylori to adhere to the gastric mucosa and 
subsequent colonization [116].

The role of outer membrane porins (e.g. OipA) has been 
established in several studies, although there is no clear 
information about the structure and the receptors of this 
adhesion protein OipA. However, there is an established 
relationship between its expression and the activities of 
cagA, as the expression of the oipA genes determines the 
expression of cagA [117, 118]. OipA increases the secre-
tion of interleukin-8 (IL-8), causing inflammation in the host 
[117] and the inhibition of apoptosis [119]. Teymournejad 

et al. [119] investigated the role of OipA in the pathogen-
esis of H. pylori. The investigation showed that OipA could 
bind to gastric cell lines. The binding leads to the induction 
of toxic events and also triggers apoptotic cascade via the 
intrinsic pathway. HopQ, another important outer membrane 
porins, is active in the transportation of virulence substances 
extruded by CagA into the host cell [120], possibly through 
the T4SS system [121, 122], and Hom enhances secretion 
of IL-8 and other inflammatory factors as well as adhesion 
to host cells [90].

Shape switch

The transformation of the bacterium from the spiral form 
to the coccoid form occurs under adverse environmental 
conditions. The coccoid form of H. pylori is usually resist-
ant to antibiotics, replicable, non-culturable, and can persist 
for a prolonged time causing severe damage to the gastric 
mucosa [7]. The spiral form of H. pylori is culturable. They 
are often referred to as the spiral viable culturable form 
(SVCF), whereas the coccoid form is viable but non-cul-
turable (CVNCF). CVNCF cannot be detected by a simple 
culture method; direct electron microscopy and molecular 
techniques are used [49].

Under adverse environmental conditions such as an 
insufficient supply of nutrients, desiccation, lack of protec-
tion against oxygen, and exposure to antimicrobial agents, 
H. pylori can survive by switching its shape from SVCF 
to CVNCF [96, 123–126]. SVNCF bacteria still maintain 
their metabolic activity and pathogenicity and can return to 
active, viable culturable conditions [127, 128]. The study of 
Elhahriri et al. [49] demonstrated the survival of H. pylori 
in adverse environmental conditions. In their study, 76 H. 
pylori were isolated from faecal milk samples from livestock 
through nested PCR. Genotyping of the virulence genes 
vacA and cagA was also done. The 76 samples were further 
subjected to bacterial culture. Thirteen samples were cultura-
ble, indicating the presence of the viable spiral form (SVCF) 
of H. pylori, while the 53 were non-culturable, indicating 
the presence of the CVNCF. To demonstrate its survival 
under adverse environmental conditions, the SVCF was cul-
tured in UHT milk for 10 days under 4 °C, 5 days at 37 °C, 
and 1 day at 40 °C. There was an observed decrease in the 
microbial load between 1 and 10 days. They also observed 
that a decrease in the SVCF coincides with the appearance 
of the coccoid viable non-culturable form (CVNCF), which 
survived in the UHT milk for up to 30 days. The genotype 
of the SVCF and CVNCF strains (cagA + vacA + s1a m1 i1) 
that survived in milk was the same as the inoculated one, 
suggesting the conversion of the SVCF to a CVNCF.

The findings of the study conducted by Willén et al. [129] 
and Andersen et al. [130] also portray the survival of H. 
pylori in the adverse condition through a transformation 
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from spiral to coccoid form. In vivo study of the pathogenic-
ity of the isolates (SVCF and CVNCF) was conducted on 
mice. The result of the investigation showed that both strains 
were able to colonize the mice gastric mucosa at a similar 
level as the positive reference SS1 strain, providing a shred 
of evidence for their infectivity. Indeed, the strains recovered 
from the gastric mucosa of the mice following infection were 
cytotoxic and carried the same genotype cagA + vacA s1a 
m1 i1 as the inoculated strain. Interestingly, the CVNCF 
recovered from the mice were culturable, indicating the 
reversion of the CVNCF to SVCF following gastric infec-
tion. An important finding was the culturability of the strains 
isolated from the CVNCF mice group. This suggests a rever-
sion of the inoculated CVNCF to an SVCF following gastric 
infection.

Urease production

Some transition metals are essential for organisms, as they 
serve as cofactors for enzymatic reactions and some physi-
ological processes [98]. In bacteria, these metals are crucial 
for survival and successful infection. An example of such 
metal is nickel [131], a cofactor for two important enzymes: 
urease and hydrogenase. These enzymes play a vital role in 
the infection process [132]. Urease has been demonstrated 
as a virulence factor for some species like Proteus mirabilis, 
Staphylococcus saprophyticus, and H. pylori [93]. It cataly-
ses the hydrolysis of ammonia from CO2, resulting in the 
alkalization of the acidic environment [98]. Hydrogenase, 
in turn, participates in a signalling cascade that induces an 
alternative pathway, allowing H. pylori to use molecular 
hydrogen as a source of energy for its metabolism [133].

One active urease molecule requires 24 nickel ions for full 
enzymatic action [134]. The nickel molecules found as trace 
molecules in the blood are taken by uptake proteins of bacte-
ria, FecA3 and FrpB4, located on the outer membrane [135]. 
After entering the outer membrane, the nickel molecules are 
transported to the cytoplasm through the protein channel 
NixA, in the inner cytoplasmic membrane of the bacteria 
[136, 137]. In the presence of insufficient or total absence of 
nickel, urease cannot be activated. Consequently, there will 
be a reduction in the level of survival and colonization of 
H. pylori. Similarly, too much entry of nickel into the inner 
cytoplasmic membrane leads to oxygenic reactions that can 
result in cell death [138].

The urease gene cluster encodes for the production of the 
urease enzyme in H. pylori to neutralize the effect of hydro-
chloric acid in the gastric region. This set of genes consists 
of the catalytic units (urea A/B), an acid-gated urea channel 
(ureI), and accessory assembly proteins (ure E–H) [6, 94]. 
The synthesis of urease is dependent on the pH of the gastric 
environment. The Urel-channel closes whenever the gastric 
environment is at a neutral pH (7.0) and opens when there 

is a change in the acidic level of the stomach [6, 11]. When 
the stomach is acidic, the Urel-channel opens up and release 
urease which hydrolysis urea into CO2, ammonia (NH3), and 
carbamate making it free to react with water producing an 
unstable ammonium hydroxide which results in alkalization 
of the stomach [11]. Over time, the carbamate decomposes 
to ammonia (NH3) and carbonic acid. The carbonic acid is 
broken down into CO2 and H2O. Ammonia and CO2 par-
ticipate in the lowering of pH. [139]. Ammonium (NH4 +) 
produced in the process of hydrolysis of urea also reduces 
the pH of the gastric region. However, if not metabolized or 
exported out of the cell, it can be detrimental.

The mechanism of efflux of ammonium is yet to be clearly 
understood. However, the role of ammonium assimilating 
enzymes, glutamine synthetase (GS), and glutamate dehy-
drogenase has been demonstrated to play a part [140]. NH3 
disrupts the tight cell junctions, breaches cellular integrity, 
and damages the gastric epithelium, while CO2 protects the 
bacterium from the bactericidal activity of metabolic prod-
ucts like nitric oxide and intracellular killing by phagocytes 
[93].

There are two types of urease produced by H. pylori. One 
is found on the cytoplasmic compartment, and another on 
the surface of the bacteria, often classified as the internal 
and the external urease. The external is primarily produced 
during the lysis of other bacterial cells and functions at a pH 
of 5.0–8.0, while the internal function is at pH of 2.5–6.5 
[37, 140]. Urease promotes bacterial nutrition by releas-
ing the host metabolites and is active in the generation of 
proton motive force during the hydrolysis of urea [141]. It 
modulates host immune responses via several mechanisms, 
including altered opsonization, enhanced chemotaxis of neu-
trophils, and monocytes, facilitated apoptosis due to bind-
ing to the class II major histocompatibility complex (MHC) 
receptors, and enhanced release of the pro-inflammatory 
cytokines [142].

The conversion of H. pylori from spiral to the coccoid 
form is fundamental in urease activity. The spiral form has 
a higher urease activity than when it is in the coccoid form 
[143]. At low pH, protein synthesis, urease, and catalase 
activity can be terminated [37].

Vacuolating cytotoxins (VacA)

The creation of vacuoles on a host cell is known as vacu-
olation. Pathogenic bacterium employs this mechanism to 
increase the longevity of bacterial infection [144]. Vacuola-
tion resulting from the activities of VacA protein can lead to 
multiple pathogenic effects on the host cell, such as vacuola-
tion cytotoxicity and apoptosis [144–146]. It can also result 
in disruption of endocytic trafficking, mitochondrial pertur-
bations, depolarization of the plasma membrane potential 
and efflux of various ions (including chloride, bicarbonate, 

39Brazilian Journal of Microbiology (2022) 53:33–50



1 3

and urea), and activation of MAP kinases [147, 148]. The 
creation of vacuoles on the cytoplasmic membrane of the 
gastric epithelial cell of the host makes the host cell open 
and susceptible to the activity of urease [144, 146, 149].

VacA is produced as a 140 kDa precursor and undergoes 
some proteolytic process to become a toxin of 88 kDa in 
mass [145]. It binds to corresponding receptors on epithelial 
cells such as receptor-like protein tyrosine phosphatase alpha 
and beta (RPTP-α, RPTP-β), density lipoprotein receptor-
related protein-1 (LRP-1), and sphingomyelin [145, 150]. 
Moreover, on T cells, it binds to β2 integrin (CD18) recep-
tors [145]. In the presence of an amino-terminal signal pep-
tide and a carboxy-terminal domain, the fragments of the 
VacA toxins (amino-terminal 33 kDa (p33) and carboxy-
terminal 55 kDa (p55)) are transported into the extracellular 
space through a type V (autotransporter) secretion pathway 
and is subsequently internalized into endosomal compart-
ments [145]. The different polymorphic forms of vacA are 
associated with several clinical outcomes [151].

H. pylori can release VacA, which internalizes in the cell. 
The internalized VacA associates with endosomal compart-
ments. They have also been reported to associate with mito-
chondria, the Golgi apparatus, and the endoplasmic reticu-
lum [145]. Through the intracellular transporter system, 
VacA can enter the mitochondria and disrupt the normal 
function of the mitochondria. VacA can also induce altera-
tions in endocytic processes or intracellular trafficking and 
inhibit intracellular degradation of epidermal growth factor 
(EGF), inhibited maturation of procathepsin D, perturbation 
of transferrin receptor localization, and inhibition of antigen 
presentation mitochondrial fragmentation [145].

VacA proteins can also tamper with immune response 
by totally inhibiting or reducing the activation of T-lym-
phocytes in the lamina propria [6, 152]. It also reduces the 
proliferation of immune cells, including T cells, B cells, 
eosinophils, macrophages, dendritic cells, and neutrophils 
[147, 153, 154] and hindering the immune system from 
cleaning out damaged cells or dysfunctional components as 
well as distortion of orderly degradation and recycling of 
cellular components and elimination of intracellular patho-
gens (a phenomenon known as autophagy) [6, 152]. Apop-
tosis is a mechanism that programmes cell death through the 
self-destruction of the host cells. This mechanism is often 
characterized by cells shrinking and fragments into smaller 
parts, enabling easy phagocytosis by neighbouring immune 
cells. Apoptosis rarely occurs under normal conditions. Nor-
mally, a complex mechanism keeps cell proliferation and cell 
death in place to maintain a balance. In H. pylori infection, 
apoptosis is increased, especially in the gastric gland of the 
host cells [155].

Although all H. pylori strain harbour vacA, there is a vari-
ation in the degree of vacuolation activity of the encoded 
cytotoxins [156]. This difference results from non-sense 

mutations, internal duplications, deletions, or 1 bp inser-
tions within the vacA gene [157]. Alterations in amino acid 
sequences [158], efficiency, and transcription of this gene 
secretion have also been found to influence the levels of 
vacuolating activity [159]. vacA gene is divided into three 
segments, intermediate (i1 and i2), the signal (s1 and s2), 
and the middle regions (m1 and m2) [160, 161]. The differ-
ent variants of vacA are associated with pathological features 
[162, 163].

Cell surface binding and vacuolating activity of the toxin 
arise from the middle region [164, 165]. The variation in the 
sequence of the signal region (s1a, s1b, and s2) and the mid-
dle region (m1 and m2) of the genome results in mutational 
strains. Strains carrying vacA s2/m2 do not have any cyto-
toxic activity; s1/m2 exhibit intermediate cytotoxic activity, 
while s1a/m1 exhibit more cytotoxic activity. vacA s1b/m1 
also have less activity [76, 166]. In the study of Imkamp 
et al. [76], characterization of the 41 H. pylori isolates to 
detect virulent genes cagA, vacA, iceA, and dupA was done 
based on WGS, out of which 19 (46.3%) carried the vacA 
gene. Twenty-three (56%) was found to harbour vacA s1 
allele. 15/41 (36.6%) were carrying vacA s1 allele (vacA 
sla/m1 and vacA slam2). vacA s1b allele was detected in 8 
strains (5 s1b/ml, 3 s1b/m2), while 18 (43.9%) of the isolates 
harboured the vacA s2/m2 allele. There was also an estab-
lished relationship between the presence of vacA s1 genes 
and the progression of gastritis. Furthermore, Idowu et al. 
[59] reported a positive association between vacA s1 and 
peptic ulcer disease.

Endosomal vacuolation

VacA induces several effects on target cells. Specifically, 
they are capable of inducing vacuolation with immunomod-
ulatory effects on immune cells [154]. For example, a study 
by Altobelli et al. [167] showed that VacA suppressed IL-23 
expression by dendritic cells and also induced IL-10 and 
TGF-β expression in macrophages. Thus, H. pylori can cre-
ate a tolerogenic environment via VacA immunomodulatory 
activity. This can skew the response of T cells towards Tregs. 
This mechanism helps H. pylori to persist in the environment 
with influence on the host cell immunity.

Moreover, vacuoles induced by VacA contain markers 
typically found in membranes of late endosomes [168–171]. 
This suggests that the vacuoles arise from late endosomal 
compartments [172]. VacA is secreted in the form of mono-
mers and attached to the plasma membrane. Subsequently, 
the monomers are built up to form an oligomer [173]. The 
oligomers are transported to the late endosomes, where they 
form an anion-selective channel in their membrane [147]. 
As chloride ions from the gastric environment flow through 
this channel into the late endosome, accumulation leads 
to an increase in the chloride concentration, which in turn 
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enhances V-ATPase proton pump activity and a decrease in 
the intracellular pH. Chemical reactions occurring in the 
presence of weak bases that also flow to the late endosomes 
make the cell swell result in cell vacuolation [174–176].

Cytotoxin‑associated gene product (CagA)

Another important virulence factor is the cytotoxin-asso-
ciated gene product (CagA). It is one of the most studied 
virulence genes of H. pylori. Adherence of H. pylori to the 
gastric epithelial cells induces the expression of cagA [177]. 
The genes that encode the CagA is found within the ~ 40 kb 
cag-pathogenicity island (cagPAI) [178]. The cagPAI codes 
for the production of CagA and type (IV) secretion sys-
tem (T4SS) [179]. Thus, cagPAI is a 40-kb chromosomal 
DNA region. It encodes nearly 31 genes forming a type IV 
secretion system. There are seven known different secre-
tion systems (I–VII). Type III and IV systems allow pen-
etration of the plasma membrane and delivery of bacterial 
molecules directly into the cytoplasm of target cells. The 
type III secretion system (T3SS) uses a flagellum-like tube 
to translocate effector proteins into eukaryotic host cells. 
In contrast, the type IV secretion system (T4SS) employs 
a pilus-based structure to mediate the delivery of DNA or 
proteins into target cells. The oncoprotein (CagA), which 
have a cytotoxic effect on the host cell, is encoded on the 
cag pathogenicity island (cagPAI). It is injected into the 
cell via a pilus formed by the T4SS [37, 180]. In the cell, it 
induces cellular alterations that impair cell motility, cellular 
proliferation, and apoptosis and alters the arrangement of the 
cytoskeleton [37].

Basically, the type (IV) system (T4SS) helps the transport 
of CagA proteins from gastric mucosal surface to endothelial 
cells for tyrosine phosphorylation and subsequent induction 
of immune response [181]. It is now known that H. pylori 
cagT4SS uses the specific interaction between the bacterial 
HopQ adhesin and the CEACAM (a cellular adhesion mol-
ecule) for translocating CagA into gastric epithelial cells. 
For example, Behrens et al. [182] studies this interaction 
using CEACAM-humanized (hCEACAM) mouse PMNs 
and humans. The result from the investigation showed that 
H. pylori HopQ-dependent interaction greatly facilitated the 
translocation and phosphorylation of CagA. Furthermore, 
the PMNs greatly increased the expression of pro-inflam-
matory chemokines MIP-1-alpha. Also, chronic mouse 
model infection showed that there was downregulation of 
hCEACAM and -6 receptors on neutrophils. Overall, this 
study points at the probable tactics H. pylori uses to control 
the host immune response during gastric pathology progress.

Once H. pylori effector protein (CagA) reaches the host 
cell, they interact with a variety of host SH2 domain where 
tyrosine phosphorylation occurs. H. pylori phosphorylation 
site is made up of Glu-Pro-Ile-Tyr-Ala (EPIYA) sequence 

repeat (EPIYA motif) or other closely related sequences 
[183] located at the N-terminal region [184, 185] and a 
C-terminal tail. Based on the composition of the EPIYA-A, 
EPIYA-B, EPIYA-C, and EPIYA-D motifs, H. pylori can be 
classified into different CagA subtypes, such as CagA-AB, 
CagA-ABC, CagA-ABD, or CagA-BD [186, 187].

Similar to other virulence genes, the cagA genes vary in 
their EPIYA segments (EPIYA-A to EPIYA-D). The bind-
ing of the host SH2 domain to this different EPIYA segment 
also varies. The D segment has more affinity than the C seg-
ment. During tyrosine phosphorylation, the C or the D seg-
ment serves as the specific binding site for the SH2 domain-
containing tyrosine phosphatase SHP2 [188], leading to the 
deregulation of Erk MAP kinase signalling. In contrast, the 
Src kinase binds to the A and the B segment [189], which 
in turn inhibit SFK activity. Variation within the EPIYA 
region also results in variation in the amount of ILs pro-
duced. EPIYA D releases a higher amount of IL-8 [190]. The 
amounts of interleukins secreted during H. pylori infection 
are highly associated with the number and variations within 
C-terminal Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs. H. pylori 
strains with the EPIYA-D motif are prone to release higher 
amounts of IL-8 compared to other variations [190].

H. pylori strains are often classified into two subclasses 
(cytotoxin-associated gene A (cagA)-positive and cagA-neg-
ative). Although all H. pylori strains possess cagA, some 
of them are cagA positive, while some strains are cagA 
negative [191]. Studies indicate that the carriage of cagA 
is related to virulence and severe forms of gastrointestinal 
diseases such as peptic ulcers and gastric cancer [192, 193]. 
Likewise, cagA-positive strains are more motile than cagA-
negative ones, indicating that cagA is also associated with 
bacterial motility [194]. cagA can be separated into two seg-
ments, namely cag I and cag II. It has been associated with 
mucosal inflammation and a more severe clinical outcome 
of H. pylori-associated infection.

Overall, CagA, just like vacuolating cytotoxin (VacA), 
exhibits cytotoxic and immunomodulatory activities [109, 
154]. However, the level of expression of cagA varies 
among H. pylori strains. Yeh et al. [195] illustrated that the 
H. pylori strain having Y58/E59 polymorphism in the cagL 
has a higher risk of facilitating gastric cancer. This evidence 
shows that mutations in genes present in the cagPAI can 
influence virulence. The CagA protein can also alter the 
tumour suppressor mechanisms in gastric epithelial cells 
[196].

Induced by contact with epithelium Gene A (iceA)

Another putative virulence factor present in virtually all 
H. pylori strains is iceA, having two fragments (iceA1 and 
iceA2). It is another virulent factor expressed by H. pylori. 
The fragment iceA1 has been associated with peptic ulcer 
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[77], while the iceA2 have no pathogenic effect. However, 
unlike the vacA gene fragments, the relationship between 
these fragments and clinical outcomes is quite controversial. 
While some studies have proven that iceA1/iceA2 may be 
directly involved in gastrointestinal system diseases, others 
have demonstrated contrary findings [197].

Duodenal ulcer‑promoting gene (dupA)

Duodenal ulcer-promoting gene (dupA) belongs to the T4SS 
housed on an integrating conjugative element (ICEHptfs4). 
The dupA gene encodes a VirB4 ATPase homolog [198]. It 
is a virulence factor specifically linked to gastric ulceration. 
For example, Alam et al. [199] showed that dupA is associ-
ated with an increased risk of duodenal ulcers. dupA also 
induces pro-inflammatory cytokine secretion by mononu-
clear cells [77, 200]. The DupA protein can induce the secre-
tion of IL-8 and IL-12 by the gastric mucosa and also by 

gastric epithelial cells in vitro [201]. dupA has been consid-
ered a biomarker for peptic ulcers disease [202]. However, 
ever since the discovery of dupA in 2005, there have been 
several published contradictory results on its pathogenicity 
role [198, 203–206].

A study by Idowu et al. [59] did not show any positive 
association between dupA and peptic ulcer disease. How-
ever, a more recent investigation by de Lima Silva et al. 
[207] revealed that dupA-positive H. pylori infection was 
associated with a two-fold chance of developing gastritis. 
More investigations will help to shed more light on the exact 
role of dupA in the virulent potential of H. pylori.

High‑temperature requirement A (HtrA)

Different stress such as osmotic, acid, basic, oxidative, or 
heat stress can result in protein denaturation and possi-
bly aggregation of subsequently misfolded proteins [208]. 

Table 1   Other important virulence factors in H. pylori 

Virulence factors Function Reference

Phospholipase Activate signalling pathways (e.g. ERK1/2)
Trigger chronic inflammation
Enhance bacterial colonization and survival
Involved in the degradation of lipids and damage to mucus layer

[221, 222]

Lipopolysaccharide Trigger several signalling pathways
Induce several inflammatory responses
Induce immune responses
Disrupts the mucus secretion
Shield the organism against toxic materials

[223–225]

Heat shock proteins Enhance adherence to epithelial surfaces
Involved in urease activation
Control apoptosis and autophagy
Help to maintain the structure and properties of the effector proteins
Protect the cell from reactive oxygen species (ROS)
Induces the production and release of IL-8, TNF-α, and COX-2

[226–229]

Arginase Prevents bacterial killing
Prevents T-cell proliferation
Impair immune responses
Stimulate apoptosis
Help the H. pylori to withstand the acidic environment

[230, 231]

Superoxide dismutase (SOD) Protect the cell from reactive oxygen species (ROS)
Enhance colonization
Inhibits the production of cytokines
Stimulate macrophage activation

[232–235]

γ-glutamyl-transferase Facilitates apoptosis and necrosis
Induce the release of pro-inflammatory proteins
Induce the release of ROS
Stimulate DNA damage

[236, 237]

Cholesteryl α-glucosyltransferase (αCgT) Shield H. pylori from immunological attack
Stimulate the production of pro-inflammatory proteins (e.g. IL-8)
Enhance bacterial growth and its resistance to antibiotics

[238, 239]
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High-temperature requirement A (HtrA) is heat shock-
induced serine protease and a chaperone protecting protein 
expressed in human and prokaryotic cells [209, 210]. It 
determines the quality of protein and is important in the 
evasion of oxidative stress. This protein is resistant to heat 
and pH [211]. Gram-negative bacteria such as Campylobac-
ter jejuni and H. pylori actively secrete HtrA proteins in the 
extracellular environment, where they target host cell factors 
[211]. They are also found to be expressed in the outer mem-
brane vesicles of Vibrio cholera, Chlamydia muridarum, or 
Borrelia burgdorferi [212, 213]. HtrA proteases have been 
established to destroy the integrity of the epithelial cell bar-
rier by opening up cell polarity through the cleaving of the 
extracellular domain of adhesion proteins and E-cadherin, 
allowing the translocation of effector protein, cytotoxin-
associated gene A [211].

In H. pylori, the secretion of HtrA occurs in the extra-
cellular space and acts as a specific E-cadherin protease, 
which effectively destroys adherence junctions in polarized 
epithelial cells, allowing the translocation of effector protein. 
HtrA destroys epithelial barrier function, allowing persistent 
H. pylori colonization, nutrition, and pathogenesis. HpHtrA 
mutant strain has been shown to be more susceptible to 
induced stress [211].

Overall, htrA is an important gene with important intra-
cellular and extracellular functions [214]. All H. pylori pos-
sess htrA [162, 214]. H. pylori isolates can secret HtrA at a 
similar rate. The rate of secretion is about 9,600 HtrA mol-
ecules per cell [215]. In a study by Yeh, a 100% prevalence 
rate of htrA was reported. According to the investigation, the 
presence of htrA-171 polymorphism resulted in a higher rate 
of gastric cancer. This protease is important for the patho-
gen to survive extreme temperature, pH, and salt concentra-
tion [216] and could be a target for anti-H pylori therapy. 
However, more studies are still needed to fully understand 
whether htrA genetic polymorphism has a significant asso-
ciation with the development of gastric cancer and other 
diseases and the mechanisms involved in the associations.

Catalase

Catalase (KatA) is one of the most abundant protein-enzyme 
in both plant and animal cells. It converts hydrogen peroxide 
(H2O2) into water (H2O). For example, in a study by Lek-
meechai et al. [217], it was shown that KatA facilitated the 
neutralization of H2O2 and NaClO, shielding H. pylori from 
oxidative stress. Also, inside the cytoplasm and periplasm, 
and sometimes on the surface, they play roles in various 
pathological processes such as inflammation, apoptosis inhi-
bition, as well as tumour formation resulting from mutagen-
esis. H. pylori produce high catalase content as one of its 
highly expressed proteins and are more resistant to inhibi-
tion by cyanide or amino triazole compared to catalase from 

other species [218]. It has been proven to protect H. pylori 
from oxidant activities and oxidative stresses [219]. It also 
protects the bacteria from complement-mediated killings 
[220], thus, facilitating bacterial survival and colonization.

Other virulence factors that play an important role in the 
pathogenesis of H. pylori are summarized in Table 1.

Conclusion

H. pylori successfully colonize the host with the help of its 
adhesins. The pathogen produces several effector proteins/
toxins responsible for damage to the host tissues. The gas-
tric epithelium layers form an interface between H. pylori and 
the host. Interestingly, this bacterium can navigate between 
two different shapes depending on the physiological activity 
required. The morphology of H. pylori may also have a spe-
cific function on host–pathogen interaction. Understanding 
how this organism uses its shape to its advantage and how 
it influences clinical outcomes will be crucial as it will help 
properly decipher how it can survive and establish infection. 
However, the problems associated with H. pylori eradication 
may likely increase in the near future based on the increasing 
infection rates in addition to the gastroduodenal pathological 
outcomes. More studies are needed to properly understand and 
characterize all the virulence factors and determine how they 
are linked to gastrointestinal diseases.
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