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1  | INTRODUC TION

Microbes can be detrimental or vital to our health, our environment, 
and our economy. Much of applied microbiology strives to control 
these species, by promoting the growth of beneficial species, and 
suppressing that of harmful ones. We have achieved huge break-
throughs over centuries in eliminating pathogens and preventing 
dangerous diseases in humans, animals, and plants. At the same 

time, microbes have played important roles in enhancing agriculture 
and food production (Wolfe & Dutton,  2015), and more recently 
in the production of biofuels or other chemicals (Antoni, Zverlov, 
& Schwarz,  2007; Giri, Shitut, & Kost,  2020; Quin & Schmidt-
Dannert,  2014; Ryan Georgianna & Mayfield,  2012), and in the 
degradation or “bioremediation” of toxic compounds, such as heavy 
metals or waste water (Atashgahi et al., 2018; Bertrand et al., 2015; 
Dixit et al., 2015; Kang, Kwon, & So,  2016; Zaccaria et  al.,  2020). 

 

Received: 12 August 2019  |  Revised: 3 June 2020  |  Accepted: 22 June 2020

DOI: 10.1111/eva.13050  

O R I G I N A L  A R T I C L E

Controlling evolutionary dynamics to optimize microbial 
bioremediation

Shota Shibasaki  |   Sara Mitri

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

Department of Fundamental Microbiology, 
University of Lausanne, Lausanne, 
Switzerland

Correspondence
Sara Mitri, Department of Fundamental 
Microbiology, University of Lausanne, 
Lausanne, Switzerland.
Email: sara.mitri@unil.ch

Funding information
European Research Council, Grant/Award 
Number: 715097; Nakajima Foundation; 
Université de Lausanne

Abstract
Some microbes have a fascinating ability to degrade compounds that are toxic for hu-
mans in a process called bioremediation. Although these traits help microbes survive 
the toxins, carrying them can be costly if the benefit of detoxification is shared by 
all surrounding microbes, whether they detoxify or not. Detoxification can thereby 
be seen as a public goods game, where nondegrading mutants can sweep through 
the population and collapse bioremediation. Here, we constructed an evolutionary 
game theoretical model to optimize bioremediation in a chemostat initially containing 
“cooperating” (detoxifying) microbes. We consider two types of mutants: “cheaters” 
that do not detoxify, and mutants that become resistant to the toxin through private 
mechanisms that do not benefit others. By manipulating the concentration and flow 
rate of a toxin into the chemostat, we identified conditions where cooperators can 
exclude cheaters that differ in their private resistance. However, eventually, cheaters 
are bound to invade. To overcome this inevitable outcome and maximize detoxifica-
tion efficiency, cooperators can be periodically reinoculated into the population. Our 
study investigates the outcome of an evolutionary game combining both public and 
private goods and demonstrates how environmental parameters can be used to con-
trol evolutionary dynamics in practical applications.
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Despite these exciting advances, these approaches remain only par-
tially successful. In medical microbiology, the emergence of resistant 
pathogens has led to a life-threatening global health crisis (Tacconelli 
et al., 2018). On the engineering side, we lack sufficient understand-
ing to maximize the benefits gained from microbes, in terms of pro-
duction rates or the efficiency of degradation of toxic compounds 
(Giri et al., 2020).

In all the examples above, there are two obstacles for controlling 
microbes. First, microbes’ response to changes in their environment 
and to the behavior of neighboring cells may cause the extinction 
of species that contribute to community function or that protect 
against pathogens (ecological instability). Second, their large popu-
lation size and short generation times mean that microbes quickly 
acquire mutations that can lead to evolutionary instability. Species 
can thereby gain resistance to antibiotics or lose their ability to per-
form a desired community function (Akita & Kamo,  2015; Bull & 
Barrick, 2017; Kumar, Maschke, Friehs, & Schügerl, 1991; Rugbjerg, 
Myling-Petersen, Porse, Sarup-Lytzen, & Sommer, 2018; Rugbjerg, 
Sarup-Lytzen, Nagy, & Sommer,  2018). In the bioremediation of 
heavy metals, for example, mutants that do not degrade these harm-
ful compounds may invade the original population (Ellis, Lilley, Lacey, 
Murrell, & Godfray, 2007; O'Brien, Hodgson, & Buckling, 2014) and 
exclude it. To optimize the functional efficiency of a microbial sys-
tem, therefore, we need to consider both ecological and evolution-
ary dynamics of microbial populations (Schuster et al., 2010).

In this study, we focus in on a bioremediation problem and de-
velop a mathematical model to investigate the simple case of a single 
species degrading a toxic compound in a chemostat. We first explore 
its ecological and evolutionary stability and, second, use this knowl-
edge to optimize the efficiency of toxin degradation over time. In our 
model, we assume that toxins are harmful to the microbes (e.g., heavy 
metals), who degrade them by secreting a costly product (e.g., extra-
cellular enzymes). The benefit of degrading toxins is shared by the 
whole population as, for simplicity, our model does not include spatial 
structure. Toxin degradation can therefore be regarded as a public 
goods game (Broom, Pattni, & Rychtář, 2018; Samuelson, 1954), as de-
fined in microbiology (Hummert et al., 2014; Smith & Schuster, 2019; 
West, Diggle, Buckling, Gardner, & Griffin, 2007). It is important to 
note that not all bioremediation systems correspond to public goods 
games (e.g., Röling et al., 2002; Smith, Graham, & Cleland, 1998), but 
here we focus on a subset of these systems where the compound to 
be degraded is toxic to the microbes and its degradation is costly. In 
such a system, the evolutionary instability of bioremediation is ex-
pected (Ellis et al., 2007; O'Brien et al., 2014).

In our model, microbes can adopt one of four strategies: They 
can be product secretors that pay a cost to contribute to the public 
good (cooperators) or nonsecretors that do not (cheaters) (see O'Brien 
et al.  (2014) for an empirical example). In addition, microbes can be 
sensitive to the toxins or can acquire resistance, for example, by acti-
vating efflux pumps to expel toxins from within the cell (Blair, Webber, 
Baylay, Ogbolu, & Piddock, 2015; Bottery, Wood, & Brockhurst, 
2016; Rojo-Molinero, Macià, & Oliver,  2019), or thickening the cell 
wall. In essence, public good secretion can also be seen as a form of 

extracellular resistance to the toxin. In other words, here we consider 
toxin resistance through private or public means, whereby a cell ben-
efits only itself or also the remaining population, respectively.

The population and evolutionary dynamics are then analyzed 
using evolutionary game theory, where a strategy is considered to 
be evolutionarily stable if it is not invaded by mutants with another 
strategy (Maynard Smith & Price, 1973). Evolutionary game theory 
typically considers the frequencies of strategies (i.e., frequencies 
sum to one), for example, in the replicator dynamics (Cressman & 
Tao, 2014). Here, however, since toxin concentration decreases with 
the absolute number or density of degrader microbes (cooperators), 
our model describes the dynamics of the densities of strategies (as in 
Hauert, Holmes, and Doebeli (2006); Hauert, Wakano, and Doebeli 
(2008); Gokhale & Hauert,  2016). And since the microbes’ death 
rate depends on toxin concentration in the environment and their 
resistance level, our model also includes environmental feedback (as 
in Gong, Gao, and Cao ( 2018); Tilman, Plotkin, and Akçay (2020); 
Weitz, Eksin, Paarporn, Brown, and Ratcliff (2016)), where each 
strategy affects the environment differently, and the changing envi-
ronment affects the fitness of each strategy differently.

We use this model to derive a protocol for optimal toxin degra-
dation. We first show that cooperators that secrete toxin-degrading 
enzymes are excluded by cheaters that do not, if they have the same 
level of resistance to the toxin. This recapitulates a well-known result 
that can be explained by the tragedy of the commons (Hardin, 1968). 
However, we then show that cooperators can invade a population 
of cheaters if their level of toxin resistance is different. Since we as-
sume that cheaters are unlikely to quickly acquire double mutations 
leading to cooperators with a different resistance level, maintaining 
degradation is only possible if we periodically inoculate these coop-
erators back into the chemostat. The success of this approach relies 
on the ability of cooperators to invade cheaters of different resis-
tance. We then calculate the values of the experimentally controlla-
ble parameters (inoculation probabilities of cooperators, chemostat 
dilution rates, and inflowing toxin concentrations) that maximize the 
cumulative efficiency of detoxification.

In sum, our model combines population dynamics, evolution-
ary dynamics, and environmental feedback to optimize a popula-
tion-level function. Integrating ecology and evolution into microbial 
public goods games is increasingly appreciated in microbial applica-
tions (Moreno-Fenoll, Cavaliere, Martínez-García, & Poyatos, 2017; 
Sanchez & Gore, 2013). And while optimizing bioremediation is the 
case study we are considering here, our approach of controlling evo-
lutionary dynamics by changing environmental parameters can be 
applied to many other microbial functions.

2  | MODEL

In our scenario (Figure 1a), cells can take on one of four strategies 
depending on whether they produce the enzymes that degrade the 
toxin (cooperate) or not (cheat), and whether the cells are resistant 
to the toxin (resistant) or not (sensitive): sensitive cooperator (sCo), 
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sensitive cheater (sCh), resistant cooperator (rCo), and resistant 
cheater (rCh).

We begin by defining the bacterial population dynamics 
in our system. The dynamics of the density x of each strategy 
i∈{sCo, sCh, rCo, rCh} in a chemostat are defined by growth, death, 
and dilution out of the chemostat:

[Correction added on 13 August 2020, after first online publica-
tion: The equation 1 has been corrected.] 

where ri is the intrinsic growth rate of strategy i due to nutrients 
that are not explicitly defined in the model, δi(T) is the death rate of 
strategy i given toxin concentration T, and α is the dilution rate. The 
total densities of the four strategies 

∑

ixi should be lower or equal to 
one in Equation (1); that is, the carrying capacity is equal to one in 
the absence of death or dilution. In this formulation, a useful proxy 
for fitness is the ratio between intrinsic growth and death at a given 
toxin concentration, whether death is by toxin or by dilution:

At an equilibrium, Wi(T)=1∕
�

1−
∑

jxj
�

should be satisfied for any 
strategy i that exists in the chemostat (xi  >  0). In addition, when 
Wi(T) > Wj(T), strategy i increases faster or decreases slower than 
strategy j. For simplicity, this basic model assumes that strategies 
cannot mutate into each other. We extend it to include mutations 
in Appendix S5.

First, the intrinsic growth rates in this model differ depend-
ing on the costs each strategy pays. Cooperators pay a cost, cd, 
for producing degrading enzymes, which are regarded as a public 
good since they reduce environmental toxicity and the death rate 
of all cells independently of their strategy. In addition, toxin re-
sistance carries a cost, cr. Such fitness costs, where resistant cells 
have lower fitness than sensitive ones in the absence of toxins, 
have been observed in many species (Andersson & Hughes, 2010; 
Andersson & Levin,  1999; San Millan & MacLean,  2019). In con-
trast to the production of degrading enzymes, however, where all 
cells benefit from decreased toxicity, the evolution of resistance 
can be regarded as an investment into a private good, where only 
the resistant cells themselves benefit. Assuming that the costs are 
additive, the intrinsic growth rate ri of each strategy is defined as 
follows:

(1)
dxi

��
=xi

[

ri

(

1−
∑

j

xj

)

−�i (T)−�

]

,

(2)Wi (T)≡
ri

�i (T)+�
.

(3a)rsCo= r
(

1−cd
)

F I G U R E  1   Schematic illustration of the model and examples of the dynamics. (a) In our scenario, a fluid with toxin concentration Tin 
flows into the chemostat, while the same amount of fluid with toxin concentration T flows out. The dilution rate of the chemostat is α. Each 
cell can exhibit one of four strategies: sensitive cooperator (sCo), resistant cooperator (rCo), sensitive cheater (sCh), or resistant cheater 
(rCh). Cooperators produce enzymes that degrade the toxin, while cheaters do not. The toxin kills cells depending on its concentration, but 
resistant cells have a lower death rate compared to sensitive cells. Whether the cells are cooperators or cheaters is independent of their 
resistance level and vice versa. (b–e) Examples of the dynamics in the absence of mutation are shown (a.u. = “arbitrary units”). In each panel, 
the black solid line represents the toxin concentration T and the dashed black line the toxin concentration flowing into the chemostat Tin. 
Detoxification efficiency at each time-point is proportional to the vertical distance between dashed and solid black lines. Other colored lines 
represent the cell densities of one of the four strategies (solid dark green: sCo, dashed dark green: rCo, thick lime green: sCh). (b) sCo grows 
and degrades the toxins. (c) sCo is invaded and excluded by sCh. (d) rCo is invaded and excluded by sCo. (e) sCh is invaded and excluded by 
rCo. Note that the initial conditions in (c–e) are the stable equilibria of the mono-culture of the resident strategies, while in (b) we begin with 
a low density of sCo and T(0) = Tin. Parameter values are α = 0.1, Tin = 0.2 (e) or 0.3 (otherwise), fmax = 0.5, Kd = 0.2, r = 1, cd = 0.15, cr = 0.2 
(e) or 0.3 (otherwise), dmax = 1, Ks = 0.2 (e) or 0.3 (otherwise), Kr = 0.6, and n = 1 (e) or 3 (otherwise)

(a) (b) (c)

(d) (e)
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where r is the maximum intrinsic growth rate.
Cellular death rate δi(T) increases with toxin concentration T, and 

is represented by a Hill equation as is common in models of death by 
drugs (Chou, 2006):

where dmax is the maximum death rate, Ki is the half maximal 
toxin concentration of strategy i, and n is the Hill coefficient, which 
determines the steepness of the function. Resistance can be mod-
eled either by increasing Ki or decreasing n (Sampah, Shen, Jilek, & 
Siliciano, 2011). Here, we assume that resistant cells have a larger K 
than sensitive cells Kr > Ks, such that they reach dmax at a higher toxin 
concentration than the sensitive cells. Note that the toxin concen-
tration T changes over time, as described below.

Due to the dilution in the chemostat, a proportion of cells of each 
strategy i flows out of the chemostat. The dilution rate into and out 
of the system is denoted by α

To describe the population dynamics of each strategy, however, 
it is necessary to also formulate the dynamics of the toxin concen-
tration because it affects the microbes’ death rate, and because the 
toxin concentration changes over time as cooperators detoxify it. 
The dynamics of the toxin concentration T in the chemostat are de-
fined by the concentration flowing into and out of the chemostat, 
and detoxification by cooperators:

where Tin is the toxin concentration flowing into the chemo-
stat, and f(xCo) is the degradation rate, which is assumed to follow a 
Michaelis–Menten function:

where xCo=xsCo+xrCo, that is, the sum of sensitive and resistant 
cooperators. Whether cooperators are resistant or sensitive has no 
impact on toxin degradation. Kd represents the density of coopera-
tors xCo that gives half the maximum of f(xCo). All parameters of the 
model are listed in Table 1

(3b)rsCh= r

(3c)rrCo= r
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1−cd−cr
)

(3d)rrCh= r
(

1−cr
)

,

(4)�i (T;K)=dmax

Tn

Tn+Kn

i

,

(5)dT

dt
=�Tin− f

(

xCo
)

T−�T,

(6)f
(

xCo
)

= fmax

xCo

xCo+Kd

,

Notation Range Description

α (0, 1] dilution rate of the chemostat

r (0, 1] maximum intrinsic growth rate of 
the microbe

cd (0, 1] cost of cooperation (production of 
the degrading enzyme)

cr (0, 1] cost of resistance to the toxin

dmax (0, 1] maximum death rate by toxin

Ks [0, Kr) half maximal effective toxin 
concentration of the sensitive cells

Kr (Ks, 1] half maximal effective toxin 
concentration of the resistant cells

n (0, ∞] Hill coefficient

Tin (0, 1] toxin concentration flowing into the 
system

fmax (0, 1] maximum degradation rate of the 
toxin

Kd (0, 1] half maximal effective cooperator 
density of the degradation rate

μ1 [0, 1] mutation probability in the function 
of detoxification

μ2 [0, 1] mutation probability in the 
resistance level

m1 [0, 1] inoculation probability of sCo

m2 [0, 1] inoculation probability of rCo

TA B L E  1   List of parameters
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As the goal of this study is to maximize the efficiency of detox-
ification, we define detoxification efficiencyϕ as the difference be-
tween the toxin concentration flowing into and out of the chemostat 
multiplied by the dilution rate:

With this definition, ϕ is proportional to the amount of detoxi-
fied liquid and is composed of the degree of detoxification and the 
amount of liquid flowing out of the chemostat. Although this equa-
tion gives the efficiency at any time t, we mainly focus on the effi-
ciency at an equilibrium.

3  | RESULTS

3.1 | All strategies can persist in mono-cultures with 
no mutation

We first analyze whether cooperators and cheaters can persist in 
mono-culture. Remember that only cooperators produce public 
goods that degrade the toxin and thereby increase the survival of 
all cells in the chemostat. When a few cooperators (either sensitive 
or resistant, 0<xi(0)≪1, i∈{sCo, rCo}) are introduced into the sys-
tem, they increase and converge to an equilibrium of positive density 
(Figure 1b) if and only if

(7)�
(

�, Tin, T
)

=�
(

Tin−T
)

.

(8)ri>𝛿i

(

Tin
)

+𝛼⟺Wi

(

Tin
)

>1,

F I G U R E  2   Short-term evolutionary dynamics of pairwise invasions. (a, f) Diagrams of pairwise invasion analysis when a single mutation 
(a) or double mutations (f) occur. A → B represents that A is invaded by B, and the color of each arrow shows the condition for successful 
invasion. Black arrows represent successful invasion regardless of the toxin concentration, while pink and blue arrows represent toxin 
concentration-dependent invasion (that invasion succeeds when the toxin concentration is low or high, or when the toxin concentrations are 
intermediate, respectively). (b–e, g–j) Examples of an invasion state space for each pair of strategies. A → B represents that A is a resident 
strategy and B is an invader. Pairs of sCo and sCh, and rCo and rCh are omitted since cheaters are fitter than cooperators in these pairs, 
regardless of the parameter values. In the yellow areas, the resident strategies are not invaded by the invaders, while the invasion succeeds 
in the orange areas. Each solid line is a boundary under which the resident strategy persists in mono-culture. The dashed line in each 
panel represents where the fitness proxy W of resident and invader strategies are equal at an equilibrium reached in a mono-culture of the 
resident strategy. Note that residents can coexist with invaders under certain conditions (see Appendix S3). Parameter values in (b–e, g–j) 
are fmax = 0.5, Kd = 0.2, r = 1, cd = 0.15, cr = 0.2, dmax = 1, Ks = 0.3, Kr = 0.6, and n = 3. Note that panels (b–e, g–j) are examples of the state 
space given the parameter values; different parameter values will show different invasion landscapes

(a)

(b) (c)

(d) (e)

(f)

(g) (h)

(i) (j)
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where i is the focal strategy (see Appendix S1 for derivation). By 
solving   dT∕dt=0, dxi∕dt=0, one can find a trivial equilibrium (xi = 0) 
and one or more nontrivial equilibria 

(

T∗, x∗
i
>0

)

 that should satisfy:

which we can calculate numerically using Newton's method.
In the absence of cooperators, we assume that the toxin con-

centration is equal to the incoming toxin because cooperators are 
the only degrader cells. In the case of a mono-culture of cheaters 
then, T=Tin regardless of cell density, and their density at a stable 
equilibrium x∗

i
, i∈{sCh, rCh} is positive and given by Equation (9b) if 

inequality (8) holds (see Appendix S1 for details). From now on, we 
focus on conditions where cell density converges to a positive value 
in mono-culture (i.e., where inequality (8) holds).

3.2 | Cheaters can invade a population of 
cooperators

Next, we ask what happens when a cheater mutant invades a popu-
lation of cooperators at its nontrivial equilibrium or vice versa.

Cheater mutants can invade and exclude a population of cooper-
ators at any toxin concentration and independently of whether they 
are both sensitive or both resistant, as long as the resident and mu-
tant have the same resistance levels (e.g., sCo and sCh) (Figures 1c, 
and 2a). In contrast, cooperators are unable to invade a population 
of cheaters of the same resistance level at any toxin concentra-
tion. These findings recapitulate the classical result that cheaters 
will always dominate in a well-mixed environment (West, Griffin, & 
Gardner, 2007) because cooperators pay a cost for producing de-
grading enzymes, but are as sensitive to the toxin as cheaters. In 
other words, the tragedy of commons (Hardin, 1968) occurs in this 
case.

3.3 | Toxin concentration determines invasion of 
sensitive and resistant cells

For mutants that differ in their private resistance level (e.g., sCo 
and rCo), the toxin concentration determines whether invasion suc-
ceeds or not (Figure 2b–e). Intuitively, this is because the benefit of 
being resistant to the toxin is quite low when its concentration is 
very low. Similarly, when toxin concentration is very high, the death 
rate of the resistant strain is close to that of the sensitive strain and 
too high to compensate for the cost of private resistance. Under 
these conditions, sensitive cells can invade a population of resist-
ant ones (Figure 1D). Instead, resistant cells can invade a population 

of sensitive cells when the toxin concentration in the chemostat is 
intermediate. Two strategies that differ only in their resistance level 
never stably coexist (see Appendix S3 for derivation).

3.4 | Cooperators can invade and coexist with 
cheaters of different resistance levels

Thus far, we have considered whether mutants can invade a resident 
population that differs in only one trait, their private or their pub-
lic resistance (i.e., cooperative toxin degradation). While we assume 
that the time to reach an equilibrium following a single mutant inva-
sion is shorter than the time for a second mutation to occur, we nev-
ertheless explore invasions by such double mutants here (Figure 2f). 
Depending on the concentration of toxins, rCo and sCh can invade 
each other’s populations, as can sCo and rCh (Figure 2g–j). This de-
pendency on toxicity follows the same logic as for the invasion of a 
resistant mutant into a sensitive population described above: When 
the toxin concentration is intermediate, rCo has a much lower death 
rate than sCh, and the benefit of resistance exceeds the sum of the 
cost of cooperation cd and resistance cr (Figure 1e). If, on the other 
hand, the toxin concentration is either too low or too high, resistance 
to the toxin does not provide enough of an advantage to overcome 
its cost, leading instead to the invasion of sCh into a population of 
rCo. The same logic, albeit with different thresholds, can explain the 
invasion of sCo into rCh and vice versa (Figure 2g–j). In sum, inva-
sions of double mutants into resident populations that differ in both 
public and private resistance depend on toxin concentrations (see 
Appendix S2).

Once a mutant has invaded, whether it will coexist with the res-
ident population is unclear because, as cooperators increase, toxin 
concentration decreases, which changes the fitness landscape. In 
other words, increasing cooperator density can decrease the fitness 
difference between cooperators and cheaters. In Appendix S3, we 
show that cooperators and cheaters of different resistance levels 
(e.g., rCo and sCh) can indeed stably coexist at certain parameter 
ranges. Nevertheless, these two coexisting strains can then be in-
vaded by cheaters with different resistance (e.g., rCh), which ex-
cludes the other two strategies (see Appendix S4). In other words, 
cooperators are never evolutionarily stable because they can be in-
vaded and excluded by cheaters of the same resistance level, as we 
show next.

3.5 | In the long-term, cooperators are unlikely to 
be maintained

Having analyzed the outcomes of the invasion of all mutants in the 
short-term (Figure 2a,f), we can now predict how the population in 
the chemostat will change in the long-term. Regardless of which 
type we start with, as cells mutate, the population will transition be-
tween different genotypic “states,” which can be represented by the 
state transition diagram in Figure 3. The probability of cooperators 

(9)T∗ =
�Tin

�+ f
(

x∗
i

) ,

(9b)x∗
i
=1−

�i

(

T∗
)

+�

ri
,
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mutating into cheaters or vice versa is given by μ1, while μ2 is the 
probability to change the level of resistance. For simplicity, we as-
sume that these mutation probabilities are very small. Once a mu-
tation occurs, we use Equation (1) as outlined above to take us to 
the following equilibrium state. We assume that no further muta-
tions will occur before the equilibrium is reached, but relaxing this 
assumption does not alter the overall dynamics (Appendix S7). For 
example, sCh will appear in the population of sCo with probability μ1 
(1–μ2) and exclude it. Then, rCh can appear in the population of sCh 
with probability (1–μ1) μ2, but may invade or not, depending on the 
toxin concentration (Figure 3).

Although in principle cooperators can invade a population of 
cheaters that differ in the level of resistance (e.g., rCo can invade 
sCh), (a) invasion success depends on α and Tin, (b) double mutations 
are expected to be rare (μ1 μ2 is close to 0), and (c) if a cheater mutant 
of the same resistance as the cooperator invades (e.g., rCh), it will 
dominate the population and replace the cooperators. Accordingly, 
it is very difficult to maintain cooperators in the chemostat due to 
natural selection. This brings us to one of the main findings of the 
study: Even though cooperators and cheaters can coexist under 
some conditions, to maintain costly microbial detoxification, it is 
necessary to inoculate cooperators manually and to change α and 
Tin to favor their survival. Crucially, though, because cooperators 
are able to invade cheaters of opposite sensitivity, these inocula-
tions can maintain cooperators—and thereby detoxification—in the 
short-term. In the following sections, we show how to control the 
values of α and Tin and inoculation probabilities to maximize the 
efficiency of detoxification.

3.6 | Culture conditions can be controlled to 
optimize detoxification efficiency

Ultimately, our goal is to maximize the efficiency of detoxification 
ϕ, which depends on the absolute abundance of the two types of 
cooperators in the chemostat. In turn, these abundances can be con-
trolled by changing the culture conditions through two parameters: 
the dilution rate α and the toxin concentration flowing into the che-
mostat Tin.

To maximize the objective function in Equation (7), we consider 
three stable equilibrium states with different toxin concentrations 
flowing out of the chemostat: (a) T = Tin when only cheaters are pres-
ent, regardless of the values of α and Tin; (b) T=T

†

ij
when cooperators 

i coexist with cheaters j, which have different resistant levels; and 
(c) T=T∗

i
 when only one type of cooperators i is present. In the latter 

two cases, one can calculate the equilibria (analytically or numeri-
cally) and their corresponding detoxification efficiency ϕ for each 
culture condition (values of α and Tin). We can then find the optimal 
culture conditions that maximize this efficiency (Figure 4), although 
the equilibrium can be ecologically unstable for some parameter 
values.

Intuitively, the maximum efficiency is larger in a mono-culture 
of cooperators than in a co-culture of cooperators and cheaters of 
different levels of resistance (see Appendix S6). If cheaters can be 
excluded from the population by changing α and Tin, the optimal 
strategy for cultivation is (a) to exclude the cheaters by adjusting the 
culture conditions and then (b) to change the culture conditions to 
maximize the productivity of a mono-culture of cooperators.

F I G U R E  3   Schematic illustration 
of the state transitions for long-
term evolutionary dynamics. Arrows 
represent state transitions resulting 
from natural selection. Solid arrows 
show transitions that are independent 
of toxin concentration, and dashed 
arrows transitions that depend on toxin 
concentration, here depicted for a 
given Tin and α. The transition from sCo 
to rCo and vice versa does not occur 
if cooperators coexist with cheaters. 
Values along the arrows represent state 
transition probabilities
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3.7 | Inoculating cooperators to optimize 
detoxification efficiency

Above, we showed that even though they are unlikely to appear by 
double mutation, cooperators can invade a population of cheaters if 
their level of resistance is different (Figure 3). Instead of waiting for 
these mutants to arise naturally, it would be more efficient to manu-
ally inoculate cooperators into the population, and to change α and 
Tin to allow them to invade successfully and to exclude the cheaters. 

Assuming that we cannot observe the prevalence of each strategy 
at will, the problem is how often to inoculate sensitive or resistant 
cooperators to maximize detoxification efficiency over time. If co-
operator inoculation probabilities are too small, cheaters will domi-
nate the population, leading to a detoxification efficiency of zero. 
If they are too large, we may inoculate cooperators unnecessarily 
(e.g., sCo into a mono-culture of sCo) or when they cannot invade 
(e.g., sCo into a mono-culture of sCh). Such unfavorable inocula-
tions can be costly because they can require a higher inflowing toxin 

F I G U R E  4   Optimal detoxification 
at each equilibrium. The efficiency of 
detoxification at an equilibrium state 
ϕ(α, Tin, T) given α and Tin is represented 
by color in each panel: (a) only sCo, (b) 
coexistence of sCo with rCh, (c) only 
rCo, and (d) coexistence of rCo with sCh. 
The red stars represent the maximum 
efficiency of detoxification in each. In 
the areas above the dashed gray lines in 
panels (a) and (c), the cooperator cannot 
persist in mono-culture (inequality 8). 
Parameter values are fmax = 0.5, Kd = 0.2, 
r = 1, cd = 0.15, cr = 0.3, dmax = 1, Ks = 0.3, 
Kr = 0.5, and n = 1 (a, b) or n = 3 (c, d). 
We used different values of n in the top 
and bottom rows to allow cooperators to 
coexist with cheaters with a different level 
of resistance

(a) (b)

(c) (d)

F I G U R E  5   Optimization problem assuming that resistance mutations do not occur. (a) A simplified schematic illustration of the state 
transition diagram when μ2 = 0 and cooperators can exclude cheaters of different resistance levels. A →B represents a transition from state 
A to state B. Colored arrows represent transitions that occur through the introduction of sensitive and resistant cooperators in blue and 
pink, respectively. Dashed arrows indicate transient states where two strategies coexist. The full diagram containing 14 states is shown 
in Figure A.9. (b) The optimal values of m1 and m2 (the blue and pink solid lines, respectively) which maximize the cumulative efficiency 
defined by Equation (S.67) calculated using Dynamic Programming. The two dashed lines represent the values of m1 and m2 which maximize 
Equation (11). The initial state of the population is a mono-culture of sCo. Around 1,000 time steps, the optimal values of m1 and m2 for 
Equation (S.67) converge to the values which maximize Equation (11). In practice, the detoxification efficiency at each of the 14 states of the 
model as well the mutation probabilities would be experimentally measured and plugged into the model to calculate the values of m1 and m2 
that would maximize cumulative efficiency. The plot above was generated using the following fictitious values, as an illustration: μ1 = 0.01, 
μ2 = 0, ϕ = {0.4, 0.2, 0, 0.15, 0.3, 0.15, 0, 0.2, 0.35, 0.35, 0.3, 0, 0.2, 0}. See Appendix S7 for more detail

(a) (b)
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concentration Tin, and result in reduced detoxification efficiency for 
some time.

To optimize cooperator inoculation probabilities m1 and m2 for 
the sensitive or resistant cooperators, respectively, we consider pop-
ulation state transitions as a Markov chain with discrete time steps s 
and find the values of m1 and m2 that maximize the total amount of 
toxin degradation (Figure 5a and S9). Transitions in this Markov chain 
model can occur either due to mutations at probabilities �=

(

�1,�2

)

or inoculations at probabilities m=
(

m1,m2

)

, resulting in the transi-
tion matrix P (m;�). The state distribution vector �(s)=

(

�i(s)
)

where 
πi (s) is the probability that the population is in state i at time step 
s (
∑

i�i(s)=1 for s=0, 1,⋯,∞). Because the Markov chain is ergodic 
when cooperators can exclude cheaters that differ in their resis-
tance level (Figure 5a, but see Appendix S7 for a case where coop-
erators cannot exclude cheaters), the probability distribution of the 
population states converges to a unique stationary distribution �∗in 
the limit of s → ∞, regardless of the initial distribution �(0):

Even though the transitions are probabilistic, we assume that the 
establishment of strategies following mutation or inoculation (i.e., 
short-term dynamics) is deterministic. Relaxing this assumption by 
introducing an establishment probability ε into the transition matrix 
P (m;�) does not change the ergodicity of the Markov chain, and we 

arrive at the stationary distribution in the same manner. In Appendix 
S7, we show how to calculate the expected cumulative efficiency of 
detoxification Φ from the beginning of the cultivation to time step 
s (defined in Equation (A.67)). This calculation is somewhat cumber-
some, but for large s, Φ is approximately proportional (see Appendix 
S7) to the expected efficiency of detoxification at the stationary dis-
tribution �∗:

To maximize the expected cumulative detoxification efficiency 
Φ, therefore, we can calculate m that maximizes Equation (11). In Box 
1, we show an example of how to use this approach in practice.

4  | DISCUSSION

In this study, we have shown how to control the ecological and evo-
lutionary dynamics of a microbial population growing in a chemostat 
in order to optimize the bioremediation of a toxic liquid. Public goods 
games where cooperators increase the growth rates of surrounding 
cells at a cost to themselves have been extensively studied, both 
empirically and theoretically (Allen, McNally, Popat, & Brown, 2016; 
Gokhale & Hauert, 2016; Griffin, West, & Buckling, 2004; Hauert 

(10)�
∗ (m;�)=�

∗ (m;�)P (m;�) .

(11)Φ
⋀

(m;�)≡
�

i

�i�
∗
i
(m;�).

Box 1 An example of optimizing detoxification 
efficiency.

Imagine that we have set up the experimental system described, 
and would like to compute the optimal inoculation probabilities. 
We first need to define the Markov chain to make predictions, 
and second, we need to experimentally measure the parameters 
of our bacterial strains, in particular their degradation efficiency 
ϕi at each of the different states i of the Markov chain.
To establish the Markov chain, we begin with a few simplify-
ing assumptions: (i) that μ2 = 0, such that cooperators can only 
invade a population of cheaters that differ in the level of re-
sistance by inoculation, and (ii) that mutations and the manual 
inoculation of a cooperator strategy can occur only in a mono-
culture (i.e., at most two strategies can exist simultaneously in 
the population). We further assume that the parameters are in 
a range where at certain (α, Tin), (iii) sCo and rCo can mutually 
exclude each other, and (iv) sCo and rCo can exclude rCh and 
sCh, respectively. Under these assumptions (we relax (i) below 
and (ii)–(iv) in Appendix S7), the Markov chain consists of at 
least 14 states: four mono-culture situations, six transient situ-
ations where two strategies coexist, and four situations where 
the introduction of cooperators is unfavorable (see Fig. S.9 for 
the diagram). A simplified schematic of this model is shown in 
Figure 5a.

By experimentally measuring mutation probabilities � and detoxi-
fication efficiencies �=

(

C�i

)

 for each state i, where C is a positive 
constant to change the time scale of ϕi into a discrete time step, 
we can calculate the probability distribution � (s,m)=

(

�i (s,m)
)

 as 
a function of time step s and inoculation probabilities m=

(

m1,m2

)

. Then, Dynamic Programming (DP) provides the optimal m that 
will maximize the cumulative expected detoxification efficiency Φ 
when the experiment finishes at time step s. Starting from a mono-
culture of sCo, the two solid lines in Figure 5b represent m1 and 
m2 provided by DP given some fictitious yet reasonable values of 
� and ϕ. At first, the optimal values of m1 and m2 are zero, because 
the state of the population is most likely to be a mono-culture of 
sCo, in which case inoculating cooperators would be pointless. 
However, as time passes, mutations will arise, and the population is 
likely to transition to a state of sCh mono-culture; then, the optimal 
values of m1 and m2 increase. At about 1,000 time steps, the op-
timal values of m1 and m2 converge to the values which maximize 
detoxification efficiency at the stationary distribution Φ

⋀

 described 
by Equation (11). When μ2 > 0 (relaxing assumption (i)), the number 
of states increases and the state transition diagram becomes more 
complex. As long as the Markov chain is ergodic, however, it is pos-
sible to find the stationary distribution �∗ and the optimal values of 
m1 and m2 that maximize Equation (11). We show how to find the 
optima for nonergodic Markov chains in Appendix S7.



     |  2469SHIBASAKI and MITRI

et al., 2006, 2008; Sanchez & Gore, 2013). Rather than increasing 
the growth rate of others, cooperators in our model degrade toxic 
compounds, which decreases the death rate of surrounding cells 
(O'Brien et al., 2014). This scenario enables us to introduce the evo-
lution of resistance to the toxin, for example, through efflux pumps, 
as a private good, which we base on studies of drug–dose effect and 
resistance to it (Chou, 2006; Sampah et al., 2011). Unsurprisingly, 
cheaters always exclude cooperators with the same private resist-
ance level because detoxification is costly (West, Griffin, et al., 
2007). We show, however, that because the benefit of private re-
sistance depends on the toxin concentration in the chemostat, co-
operators can invade a population of cheaters that differ in their 
private resistance. The co-occurrence of two strains that differ both 
in their degradation ability as well as their resistance level is unlikely 
to suddenly arise by mutation, especially if we assume that muta-
tions are rare. To maintain the degradation of toxins, therefore, it is 
necessary to periodically inoculate cooperators into the chemostat 
while changing the dilution rate and inflowing toxin concentration to 
guarantee invasion success.

Optimal values for these parameters (cooperator inoculation 
probabilities, dilution rate, and inflowing toxin concentration) that 
maximize the detoxification efficiency of the system can be calcu-
lated using our model. As input, the model requires experimental 
measurements of growth and death rates of the chosen microbe and 
its mutants (i.e., intrinsic growth rate of each strategy ri, maximum 
death rate dmax, Hill coefficient n, median-effect toxin concentra-
tions Ks, Kr, and degradation efficiencies ϕ of cooperators).

Our model and its results can also apply to problems other than 
bioremediation that involve survival in toxic environments. In essence, 
we are studying the evolutionary dynamics of public resistance (which 
is cooperative) and private resistance (which is not). Consider, analo-
gously, two types of antibiotic resistance mechanisms: Public mecha-
nisms are costly and benefit the producing cell as well as its neighbors 
such as extracellular secretion of antibiotic-degrading enzymes (e.g., 
β-lactamases (Yurtsev, Chao, Datta, Artemova, & Gore,  2013)), and 
private resistance mechanisms only benefit the producing cells, such 
as efflux pumps. The evolutionary dynamics in a scenario whereby 
cells can switch between these different resistance mechanisms and 
being sensitive to the antibiotic correspond to Figure  2a,f. In this 
case, however, an objective function would aim to minimize rather 
than maximize the densities of the most resistant strains. Another 
interesting aspect is that the benefits of resistance depend on toxin 
concentration in the chemostat, which is affected by the density of 
cooperators and the toxin concentration flowing into the chemostat. 
In other words, the public goods game affects the benefit of the pri-
vate goods. This is why cooperators can invade a population of cheat-
ers when they differ in their resistance level (Figure 2f).

Of course, our model relies on a number of assumptions and fo-
cuses only on a subset of possible bioremediation systems. First, we 
assume that only cooperators can detoxify. In reality, sensitive cells 
(cooperators or cheaters) may decrease toxin concentrations by pas-
sively absorbing them (Bottery et al., 2016). Including toxin absorption 
would not change our findings because (a) cooperators decrease toxin 

concentration more effectively than cheaters with the same resis-
tance levels, (b) the invasion analysis is still valid, and (c) we can still 
calculate the optimal inoculation probabilities as shown in Section 3.7. 
If toxin absorption by sensitive cells is significant, sCh could be better 
detoxifiers than rCo. In this case, it would be unnecessary to inoculate 
rCo to optimize the detoxification efficiency. Second, we only con-
sider extracellular toxin degradation (e.g., by enzyme secretion), while 
toxins can also be degraded inside cells (O'Brien & Buckling, 2015). 
For intracellular degradation, a different functional form of detoxifi-
cation f(xCo) would be necessary, but we expect similar results as long 
as this function increases monotonically with the density of coopera-
tors. Indeed, the invasion analysis is independent of the form of f(xCo). 
Similarly, we assume that toxins kill the microbes and that their deg-
radation does not contribute to growth. In reality, many compounds 
that are undesirable for humans are instead used as substrates by mi-
crobes (Atashgahi et al., 2018). This latter case is simpler than the one 
we consider here, since detoxification is no longer cooperative and 
there is no risk of cheaters arising and collapsing the system. Finally, 
detoxification may carry a negligible cost, for example, if it the toxic 
compound is neutralized by a change in pH, which occurs naturally 
due to a microbe’s metabolism.

Another issue is how to define detoxification efficiency ϕ. Rather 
than Equation  (7), one could, for example, define ϕ as the time 
needed for the toxins to decrease to a negligible concentration. This 
would change the optimal culture conditions α and Tin, but not the 
procedure to find the optimal introduction probabilities of cooper-
ators m, which are independent of the formulation of ϕ. Our model 
also fixes some parameters, such as the Hill coefficient n, which 
can evolve in reality (Sampah et al., 2011). Similarly, the cost of re-
sistance cr can decrease over time due to compensatory evolution 
(Andersson & Hughes, 2010; San Millan et al., 2014). Allowing these 
parameters to evolve would make it more difficult for sCo to invade 
rCh because the relative fitness of rCh will increase.

We also assume that our system is well mixed and that there are 
no spatial gradients within the chemostat. Spatial structure, for ex-
ample, whereby detoxifying enzymes diffuse slowly through the che-
mostat and have a patchy distribution can favor the coexistence of 
cooperators and cheaters (Allison, 2005). Indeed, previous empirical 
bioremediation studies have reported coexistence of cooperators 
with cheaters (Ellis et al., 2007; O'Brien et al., 2014). Theoretically, this 
may be due to a difference of resistance levels between cooperators 
and cheaters as we show here, but a simpler explanation would be the 
presence of spatial gradients. Relaxing the assumption of a perfectly 
well-mixed chemostat would make the persistence of cooperators 
easier. It may also increase the public benefit of toxin resistance, which 
we have considered to be private here (Rojo-Molinero et al., 2019).

Finally, there may be other ways of periodically introducing co-
operators. Experimentally, our constant inoculation probabilities 
represent a situation where stock strains of cooperators would be 
manually added into the chemostat. If instead, multiple chemostats 
are running in parallel, another way of introducing cooperators would 
be to exchange certain amounts of fluids between chemostats. 
Ecologically, this would correspond to migration among patches, 
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and the optimal migration probabilities would depend on the prob-
ability distribution of the different strategies in each chemostat. 
Comparing the optimal introduction probabilities and the cumulative 
efficiency of detoxification between the model presented here and a 
multi-chemostat system is left for future work.

In summary, we have combined an ecological model with evolu-
tionary game theory to develop a protocol for the control and optimi-
zation of a bioremediation system by microbes, and guard it against 
collapse through the emergence of cheaters. More broadly speaking, 
our scenario motivates the integration of important elements from 
ecological models, such as population densities and environmental 
feedback, into evolutionary game theory. In essence, our model can 
be adapted to any practical applications involving costly microbial 
traits, where manipulating environmental conditions can be used to 
control evolutionary dynamics. Achieving this will allow us to better 
anticipate evolutionary change in microbial systems that we strive 
to control, whether this involves increasing toxin degradation as 
we have shown here, the production of public goods such as useful 
chemicals, or eliminating antibiotic resistant pathogens.
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