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Continued
SUMMARY

COVID-19 is a respiratory tract infection that can affect multiple organ systems.
Predicting the severity and clinical outcome of individual patients is a major
unmet clinical need that remains challenging due to intra- and inter-patient
variability. Here, we longitudinally profiled and integratedmore than 150 clinical,
laboratory, and immunological parameters of 173 patients with mild to fatal
COVID-19. Using systems biology, we detected progressive dysregulation of
multiple parameters indicative of organ damage that correlated with disease
severity, particularly affecting kidneys, hepatobiliary system, and immune land-
scape. By performing unsupervised clustering and trajectory analysis, we identi-
fied T and B cell depletion as early indicators of a complicated disease course. In
addition, markers of hepatobiliary damage emerged as robust predictor of lethal
outcome in critically ill patients. This allowed us to propose a novel clinical COVID-
19 SeveriTy (COST) score that distinguishes complicated disease trajectories and
predicts lethal outcome in critically ill patients.

INTRODUCTION

The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which was first described in Wu-

han, China, is causing coronavirus disease 2019 (COVID-19) and an ongoing pandemic with more than one

million confirmed fatalities thus far (cdc.gov). The SARS-CoV-2 virus belongs to the coronavirus family and

primarily infects epithelial cells of the respiratory tract and vascular endothelium (Shang et al., 2020; Varga

et al., 2020). Patients with COVID-19 exhibit a wide range of symptoms and disease courses (Goyal et al.,

2020; Guan et al., 2020). Most patients suffer from mild clinical features such as fatigue, fever, and dry

coughs. However, some individuals develop viral pneumonia, or even severe acute respiratory distress syn-

drome (ARDS), sepsis, and septic shock with an overall case fatality rate of 5%. Factors that determine an

unfavorable disease outcome include age, sex, and preconditions such as arterial hypertension, chronic

respiratory diseases, or an impaired immune status (Jordan et al., 2020; Williamson et al., 2020). Observa-

tional COVID-19 studies have proposed to distinguish the infection into an early phase that is characterized

by viral replication in the respiratory system and a later stage of generalized inflammation (Knight et al.,

2020). Especially during the later phase, recent studies hypothesize that severe COVID-19 is associated

with a dysregulated immune response, hyperactivation, and lymphocyte depletion, yet the underlying dis-

ease mechanism and individual patient trajectories remain ill defined (Knight et al., 2020). Analysis of the

immune signature of COVID-19 revealed T cell depletion (Lucas et al., 2020) and distinct cytokine profiles

(Del Valle et al., 2020; Wang et al., 2020) in patients with complicated disease course. However, more so-

phisticated integration of clinical, laboratory, and immunological data are challenging owing to inter-indi-

vidual variability and difficult data acquisition. Although individual risk factors and clinical laboratory values

of a complicated disease course have been described (Braun et al., 2020; Dawood et al., 2020), advanced

analysis of the multitude of clinical and immunological factors to disentangle different clinical courses of

COVID-19 is highly warranted. Further integrative analysis of multidimensional data might help to under-

stand the complex interplay of viral infiltration, immune activation, and organ dysfunction that is crucial to

find sensitive biomarkers of poor outcome.
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Recent advances in unsupervised systems analysis have led to important milestones in genomics (Stuart

and Satija, 2019), epidemiologic studies (Wiemken and Kelley, 2020), and the understanding of complex

disease pathogenesis (Tong et al., 2020). For instance, the integration of laboratory and immunological

data shed light on the pathogenesis of sepsis and immune responses in patient subgroups that result in

different therapeutic and prognostic consequences (Davenport et al., 2016; Seymour et al., 2019). Thus,

integrative analysis of multi-dimensional data from patients can lead to individual therapeutic strategies

and precision medicine (Alballa and Al-Turaiki, 2021; Haendel et al., 2018; Jung et al., 2021).

Multi-omics approaches of peripheral blood mononuclear cells (PBMCs) and whole blood revealed a wide

range of dysregulations of the immunological landscape. COVID-19 is associated with a strong interferon-a

response across all cell types and severe disease courses, whereas convalescence in patients with moder-

ate COVID-19 was associated with expansion of granulysin+ CD4+ and CD8+ effector T cells (Zhang et al.,

2020). Similarly, HLA-DRhighCD11chigh inflammatory monocytes with interferon-a responses are already up-

regulated in mild COVID-19, whereas patients with severe COVID-19 have dysfunctional monocytes and

neutrophils (Schulte-Schrepping et al., 2020). Accordingly, single-cell analysis of bronchoalveolar lavage

(BAL) and lungs of patients and animal models of COVID-19 revealed clonal expansion of CD8+ cytotoxic

T cells and infiltration of pro-inflammatory monocytes from the periphery (Liao et al., 2020; Speranza et al.,

2021). However, a systems biology approach that additionally integrates routinely longitudinally assessed

laboratory parameters and vital signs with peripheral immunophenotyping of large cohorts offers the

chance for fast clinical translation of predictive measures.

Here, we longitudinally integrated biometrical, clinical, and detailed immunological profiles of a large pro-

spective cohort at the University Medical Center Hamburg-Eppendorf. Using the data of a cohort of 173

patients with COVID-19 with a diverse spectrum of outcomes we provide a comprehensive analysis of

more than 150 clinical, laboratory, and immunological parameters and demonstrate temporally distinct

patterns of organ dysfunction. More importantly, we find immune cell dysregulation as a pivotal determi-

nant of critical and lethal but not uncomplicated COVID-19. Of note, by exploiting unsupervised clustering

and trajectory analysis, we identified distinct laboratory and immunological parameters that together

robustly predicted lethal COVID-19 outcome. Therefore, our study provides a unique blueprint that al-

lowed us to assemble a novel risk stratification score for patients with COVID-19.

RESULTS

Study cohort

In order to detect prognostic patterns of COVID-19, we unselectively analyzed all consecutive patients who

were treated at the University Medical Center Hamburg-Eppendorf (UKE) from 13 February, 2020, until 3

July, 2020. In total, there were 113 male (65%) and 60 female (35%) patients. We graded disease severity

by WHO classification (who.int): 48 (28%) patients were classified with mild, 37 patients with moderate

(21%), 34 patients with severe (20%), and 28 patients with critical (16%) COVID-19. In 26 patients COVID-

19 resulted in a fatal outcome (15%). The median age was 59 (95% confidence interval 54.7–59.9) years,

and 148 patients were treated as inpatients, 70 patients (40.5%) were admitted to the intensive care unit

(ICU), 27 patients (15.6%) were transferred from other hospitals, and 25 patients (14.5%) were only treated

in the emergency room (detailed patient characteristics are provided in Table S1). On average, patients

had 2.9 preconditions and were most frequently diagnosed with hypertension (n = 66; 38.2%) or with dia-

betes mellitus (n = 34; 19.7%). Arterial hypertension, diabetes mellitus, cardiovascular diseases, cerebro-

vascular diseases, chronic obstructive pulmonary disease, hematologic malignancies, and in particular

pre-diagnosed lymphoma had a significant impact on COVID-19 disease severity (Figures S1A–S1C). More-

over, age, number of chronic preconditions, and length of the hospitalization significantly correlated with

disease severity (Figures S1D–S1E). Clinical, laboratory, and immunological data were routinely acquired

from patients with COVID-19. In total, we analyzed 40 immune cell subsets in these patients with

COVID-19 and additionally compared them with 39 healthy individuals (the study cohort is summarized

in Figure 1A).

Distinct laboratory signatures during early and late COVID-19

Integration of multiple, high-dimensional longitudinal parametric and non-parametric data can be chal-

lenging. Therefore, we first set out to identify laboratory and clinical signatures that distinguish early

(less than 6 days from diagnosis to sampling) from late (at least 6 days from diagnosis to sampling)

COVID-19 (Lescure et al., 2020). To substantiate pathophysiological changes, we summarized individual
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Figure 1. Systemic differences between early and late COVID-19

(A) Overview of our cohort, including healthy donors and patients with mild, moderate, severe, critical, and lethal COVID-

19 according to WHO criteria for classification. Patient cohort is detailed in Table S1.

(B and C) Overrepresentation analysis of clinical themes that drive diseases severity in early (B) and late (C) COVID-19.

Color scale represents negative log10 false discovery rate (FDR)-adjusted p value, and size shows the number of

parameters in the respective clinical theme. Definitions of clinical themes are provided in Table S2.

(D) Overrepresentation analysis of clinical themes that are enriched in clinical, laboratory, and immunological parameters

that define respective COVID-19 severity. Detailed analysis is specified in the STAR Methods section. Color shows

negative log10 FDR-adjusted p values. Dashed line represents significance level of negative log10 P = 0.05.

(E) Target plots of clinical themes that define respective early, late, or total COVID-19 severity. Negative adjusted log10 p

values are scaled for respective clinical theme between one (outer dashed line) and zero (inner dashed line).
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laboratory parameters into overarching pathophysiological themes with known organ specificity and

biomarker function (definitions of all themes are provided in Table S2). Subsequently, we calculated

whether individual parameters that significantly impacted disease severity during early and late COVID-

19 were quantitatively overrepresented within these defined themes. Of note, during the early phase of

the disease we detected a strong overrepresentation of pathologic serum and urine laboratory parameters

that significantly impacted disease severity (Figure 1B). In contrast, late COVID-19 was defined by changes

in blood counts and urine laboratory parameters (Figure 1C). These results are in accordance with large

observational studies that detected differential pathologic findings during early and late COVID-19

(Chen et al., 2020).

Next, we divided our patient cohort by theWHO classification (WHO reference number: WHO/2019-nCoV/

clinical/2020.5) into mild, moderate, severe, critical, and lethal COVID-19 to find pathological patterns of

disease progression. We combined immunological, clinical, and laboratory data and calculated dysregu-

lated parameters that were specific for each severity subgroup (summary of specific parameters for each

severity are provided in Table S3). Subsequently, we performed an overrepresentation analysis (Yu et al.,

2012). Reassuringly, we found that the inflammatory signature was significantly overrepresented across

all patients with COVID-19. By contrast, dysregulation of blood counts was only significantly enriched in

critical and lethal patients. Changes in the peripheral cellular immunological landscape were
iScience 24, 102752, July 23, 2021 3



Figure 2. COVID-19 is a multi-organ disease

(A) Unsupervised clustering of 60 clinical parameters that were available for more than 50 patients. The average value of

the respective parameter was used. Rows and columns are arranged by k-means-clustering. WHO severity, ICU

admission, and complicated disease course are annotated.
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Figure 2. Continued

(B–G) Analysis of systemic inflammatory (B; max. CRP, IL-6, ferritin), respiratory (C; min. O2-saturation, max. respiratory

rate, min. pH), hepatobiliary (C; max. ASAT, max. GGT, min. albumin), nephrological (D; min. GFR, max. Creatinine, max.

Urea), cardiological (E; max. pro-BNP, troponin T, LDH), and coagulation (G; max. D-dimers, INR, aPTT) parameters. The

average value of each individual was used. Relative time was adjusted to time of admission (t = 0) and time of discharge

(t = 1). The mean and standard error are shown.
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overrepresented during the early and late disease course in patients with lethal outcome and thereby,

possibly constituting predictive patterns (Figures 1D and 1E). In summary, we found profound differences

between early and late COVID-19 reaction patterns that differed according to severity. Complicated

COVID-19 correlated with changes of immune cell populations, whereas uncomplicated COVID-19 was

predominantly characterized by pathological laboratory parameters.
COVID-19 affects multiple organ systems

Next, we aimed to further resolve the predictive patterns into their individual determinants. In a first step,

we analyzed routinely available laboratory parameters to characterize the organ systems that were affected

in association with different COVID-19 severities. Despite inter-individual heterogeneity, k-means

clustering of all patients by laboratory parameters already separated different disease severities and in

particular patients with ICU admissions (Figure 2A). Of note, in-depth analysis of biomarkers indicative

of inflammation (Figures 2B and S2A) and involvement of the respiratory system (Figures 2C and S2B) as

well as the hepatobiliary system (Figures 2D and S2C) indicated a severe dysregulation independent of dis-

ease severity at early stages of the disease. In comparison with patients with COVID-19 with non-lethal out-

comes, patients who died from COVID-19 did not show a recovery of the laboratory dysregulations at later

disease stages. In patients with critical and lethal COVID-19, biomarkers of the renal (Figures 2E and S2D),

cardiovascular (Figures 2F and S2E), hemostatic (Figures 2G and S2F), and musculoskeletal system (Fig-

ure S2G) indicated a dysregulation during later disease stages. Together, our analysis of longitudinal

routinely collected laboratory and clinical data revealed systemic multiple organ dysregulations in patients

with COVID-19 that clearly correlated with disease severity.

In contrast, SARS-CoV-2 viral load as determined by PCR from nasopharyngeal swabs or the presence of

SARS-CoV-2-specific IgG antibodies at the day of admission did not correlate with disease severity (Fig-

ure S2H) underlining that a complicated disease course is unlikely to be entirely attributable to initial

high viral loads.

Although we and others (Goyal et al., 2020; Guan et al., 2020) describe multiple organ affections in COVID-

19, the temporal sequence of organ-specific manifestations remains elusive. Moreover, the pathogenesis

of COVID-19 is determined by different factors during acute and chronic infection (Jordan et al., 2020). To

find prognostic laboratory markers we analyzed early and late COVID-19 and compared maximal (Fig-

ure 3A) and minimal (Figure 3B) values for each parameter, as well as the longitudinal fold change. Longi-

tudinal markers that showed a significant change during the disease course at early and late time points

included an increase of ferritin and decrease of the hematocrit value. Of note, IL-6 levels significantly

rose during late but not early time points of the disease and thereby underline the importance of routinely

collected laboratory data to estimate disease trajectories (Figure 3C). Furthermore, reduction of the

glomerular filtration rate (GFR) and potassium serum levels were related to disease severity (Figure 3B).

Together, these important early biomarkers of poor outcome (Huang et al., 2020) might indicate volume

loss or redistribution, in addition to generalized inflammation. Higher levels of circulating IL-6 that have

been shown to correlate with respiratory failure in other studies (Grifoni et al., 2020) correlated with disease

severity during late COVID-19 in our cohort. Other parameters that were significantly changed in late, but

not early, disease included troponin T, pH value, and the mean corpuscular volume (Figure 3D). Potentially,

these changes display rather the consequences than the cause of earlier pathophysiological events and

they might be important determinants of the overall prognosis at later time points. Moreover, we identified

laboratory parameters that were significantly dysregulated during early and late disease but did not qualify

as longitudinal markers, since we did not detect significant temporal changes during the disease course.

These parameters included respiratory rate, raised D-dimers, and abnormal albumin (Figure 3E). As ex-

pected, we observed an increase of the maximal respiratory rate in mild, moderate, and severe COVID-

19. Of note, the maximal respiratory rate in patients with critical and lethal COVID-19 was comparable

with mild disease during early time points. At later stages of the disease the maximal respiratory rate of
iScience 24, 102752, July 23, 2021 5



Figure 3. Early, late, and longitudinal laboratory patterns of patients with COVID-19

(A and B) Maximal (A) and minimal (B) values of depicted 56 laboratory parameters from early (left) and late (middle) and

fold change from early to late (right) COVID-19. The average of all individuals from each disease severity is displayed.

Coloring shows Z score. WHO disease severity and significance are annotated. Significance was calculated using one-way

ANOVA.

(C–E) Longitudinal marker with significant differences between early and late COVID-19 (C), late marker that reached

significance in late but not early COVID-19 (D), and early and late marker (E) for disease severity in COVID-19.

(F) Blood count dysregulation (red blood cells, platelets, leukocytes) in early and late COVID-19. If not stated otherwise,

exact p values are provided in the figure and one-way ANOVA was used to test statistical significance. Exact n is provided

in Table S4. Individual data points and median are shown.
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critical and lethal COVID-19 was increased as well. Hypoxia and acidosis exclusively occurred in critical and

lethal disease courses. This might indicate a missing respiratory adaptation to hypoxia in critical and lethal

COVID-19 leading to acidosis. In addition, we found strong general dysregulation of blood counts that

correlated with poor outcome. In particular, the absolute number of red blood cells was decreased in se-

vere COVID-19 during the early and late phase, whereas platelet numbers were reduced especially during

the late phase of the disease. Reduction of platelet counts, together with a pathological increase of D-

dimer levels, the international normalized ratio (INR), and the activated partial thromboplastin time

(aPTT; Figure 3A) during the late disease phase of complicated COVID-19 underline the potential role
6 iScience 24, 102752, July 23, 2021
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of dysregulated coagulation for poor outcome in COVID-19 (Levi et al., 2020). In addition, the absolute

leukocyte count was increased at early and late disease stages (Figure 3F).

Together, we detected profound dysregulations of parameters specific for different organ systems and,

thereby, defined COVID-19 as a multi-organ disease. In addition, we identified differential organ-specific

biomarkers during the early and late stages of the disease. Although renal, respiratory, and hepatobiliary

systems were affected early in the disease course, our data indicate that cardiac and coagulative dysfunc-

tions occur only at later stages, possibly reflecting secondary changes.
Longitudinal immune profiling of COVID-19

Since blood count abnormalities were most prominent in patients with COVID-19, we next analyzed how

temporal changes of different immune cell populations contribute to the observed leukocytosis. We estab-

lished four immune cell panels that separately assessed lymphocyte subpopulations, regulatory T cells,

subsets of B cells, and myeloid immune cells (panel design and gating strategy provided in Figure S3).

Across all time points, we observed a decrease of the absolute number and relative frequency of lympho-

cytes (Figure 4A) that correlated with poor outcome. In particular, we found a decreased absolute number

of T cells (Figure 4B), CD4+ T cells (Figure 4C), CD8+ T cells (Figure 4D), and naive T cells (Figure 4E),

whereas their respective relative frequencies did not significantly differ. The relative frequency of regula-

tory T cells was slightly decreased in moderate, severe, and critical COVID-19 compared with mild disease

(Figure S4A). Our B cell panel showed a significant reduction of absolute B cell numbers at early and late

time points of patients with COVID-19 with lethal disease course (Figure 4F). We further analyzed B cell sub-

populations and found decreased frequencies of naive (Figure 4G) and resting memory B cells (Figure 4H),

which was dependent on disease severity. In contrast, we observed increased frequencies of tissue-like

(Figure 4I) and activated memory B cells (Figure 4J) in patients with lethal outcome. Tissue-like memory

B cells were also significantly upregulated in comparison with healthy donors (Figure S4B).

Recent studies have attributed the immunopathogenesis of COVID-19 to inflammatory cytokine signatures

that might lead to disturbances of the immune cell composition (Lucas et al., 2020). However, the predictive

value of temporal changes of the immune cell composition in combination with routinely collected data has

only been sparsely investigated. Therefore, we compared early and late time points by longitudinal flow

cytometry. Our analyses revealed differential patterns of T cells in mild versus lethal COVID-19 (Figures

4K–4M and S4C). Although the average T cell frequency increased over time in mild COVID-19, we

observed T cell depletion in longitudinal data of lethal COVID-19. This might be a reflection of T cell

exhaustion (Diao et al., 2020) or tissue homing (Yang et al., 2020a) in patients with COVID-19 with lethal

outcome. On the other hand, we observed that T cells were only transiently decreased and rapidly recov-

ered in patients with mild COVID-19. Longitudinal profiling of B cells showed a decrease of naive B cells

during mild COVID-19 (Figure S4D). Of note, changes in B cell populations associated with complicated

COVID-19 already appeared early in the disease course. This could indicate that formation of tissue-like

and activated memory B cells is an early event during COVID-19 progression potentially mediating

T cell exhaustion (Mathew et al., 2020).

In our myeloid cell panel, we observed an increase in the absolute count and frequency of neutrophils that

might explain the general leukocytosis in COVID-19 (Figures 5A and S5A).Wedid not observe differences in

the basophil count (Figures 5B and S5B) but detected a strong increase of peripheral eosinophilic (Figures

5C and S5C) and monocyte cell counts (Figures 5D and S5D) in patients with critical disease. By contrast,

natural killer cells (Figures 5E and S5E) as well as conventional and plasmacytoid dendritic cells (Figure 5F)

were reduced in patients with COVID-19 in comparison with healthy controls (all significant changes are

displayed in Figure 5G). In-depth analysis of myeloid subpopulations revealed an increase of CD16+

non-classical monocytes and CD16+P2X7high monocytes but decreased frequencies of classical monocytes

and non-CD2NK cells in patients with COVID-19 in comparison with healthy donors (Figures S5F–S5J). Lon-

gitudinal analysis revealed an increased frequency of basophils in severe and critical COVID-19 as well as a

decrease of NK cells in mild COVID-19, whereas patients with lethal disease course showed an increased

frequency of NK cells during late disease. Eosinophils were increased during late time points in mild, mod-

erate, severe, and critical COVID-19, which is in accordance with recent findings of a temporary type-2 (anti-

helminth) effector response in COVID-19 (Lucas et al., 2020). However, this increase was absent in patients

with lethal outcome (Figures 5H–5K), which might indicate an immunomodulatory function of eosinophils

during late COVID-19 that potentially counteracts hyperinflammation (Lee and Ashkar, 2018).
iScience 24, 102752, July 23, 2021 7



Figure 4. Longitudinal profiling of lymphocyte populations in COVID-19

(A–E) Absolute numbers (top row), frequency (middle row), and time course of absolute number (third row) of lymphocytes

(A, minimum), T cells (B, mean), CD4+ T cells (C, mean), CD8+ T cells (D, mean), and naive T cells (E, mean) of patients with

COVID-19. Relative time was adjusted to time of admission (t = 0) and time of discharge (t = 1). Exact n is provided in Table

S4.

(F–J) Absolute number of B cells (F), frequency of naive B cells (G), restingmemory B cells (H), tissue-like memory B cells (I),

and activated memory B cells (J) of patients with COVID-19. Exact n is provided in Table S4.

(K and L) Heatmap of shown parameters during early (K) and late (L) COVID-19. Color represents Z score.

(M) Heatmap of differences between early and late COVID-19 of shown parameters. Non-significant parameters are

colored in gray. Color scale represents signed negative log10 FDR-adjusted p value. If not stated otherwise exact p values

are provided in the figure and exact n is provided in Table S4. Individual data points are shown with median.
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In summary, we found a wide range of dysregulated immune phenotypes that were most pronounced in

critical COVID-19 and patients with lethal outcome. We observed an increased number of leukocytes,

mostly of neutrophils in patients with severe, critical and lethal outcome, and an increase of monocytes

and eosinophil counts in patients with critical disease. In contrast, disease severity was associated with

generalized lymphocytopenia and decreased T and B cell numbers. However, especially CD4+ and

CD8+ T cells were divergently regulated at early and late time points of uncomplicated and complicated

COVID-19, possibly indicating a key role for T cell exhaustion in the pathogenesis of COVID-19 (Mah-

moudi et al., 2020). Thus, these changes of the immune cell composition might be useful as predictive

biomarkers.
8 iScience 24, 102752, July 23, 2021



Figure 5. Innate immune dysfunction in COVID-19

(A–E) Absolute count (top row) and frequency (bottom row) of neutrophils (A), basophils (B), eosinophils (C), monocytes (D), and NK cells (E) in patients with

COVID-19. Significance was calculated using one-way ANOVA.

(F) Frequency of conventional (cDCs; top) and plasmacytoid dendritic cells (pDCs; bottom) of healthy donors and patients with uncomplicated (mild,

moderate) and complicated (severe, critical, lethal) COVID-19. Significance was calculated using one-way ANOVA.

(G) Volcano plot of subset frequencies. The dashed horizonal line represents significance level of negative log10 P = 0.05. Significant populations are labeled

in the figure. Significance and fold change were calculated by comparing frequency of the respective populations from each disease severity against each

other by Wilcoxon test.

(H–K) Frequency of basophils (H), neutrophils (I), eosinophils (J), and NK cells (K) from early and late time points of patients with mild, moderate, severe,

critical, and lethal COVID-19. Significance was calculated by FDR-adjusted Wilcoxon test. If not stated otherwise, exact p values are provided in the figure

and exact n is provided in Table S4. Individual data points are shown with median.
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Integrative systems analysis identifies specific patterns of complicated COVID-19

The rapid emergence (Dawood et al., 2020) and the variability of clinical outcomes (Ware, 2020) require

early prognostic indicators to robustly discriminate between complicated and uncomplicated COVID-19

for triage and treatment decisions. Thus, to test whether complicated COVID-19 displayed specific early

and late signatures, we applied an unbiased machine learning approach with early and late time points

from all patients using all available clinical, laboratory, and immunological data. We first filled missing

data using random forest modeling that is routinely used for clinical prediction models (Yang et al.,

2020b). Subsequently, we performed unsupervised clustering using the UMAP algorithm (Becht et al.,

2019). We identified three clusters that robustly separated mild (cluster 0) COVID-19 from patients with crit-

ical (cluster 1) and lethal (cluster 2) outcomes (Figure 6A). Reassuringly, ICU admissions were mainly

concentrated within clusters 1 and 2 (Figures 6B–6D; distribution of demographic parameters and respec-

tive preconditions are displayed in Figures S6A–S6R). Specific markers for cluster 1, which mostly included
iScience 24, 102752, July 23, 2021 9



Figure 6. Unsupervised clustering of laboratory, clinical, and immunological data

(A) Unsupervised clustering of early and late time points from our patient cohort. Three clusters were identified.

(B–D) Depiction of WHO disease severity (B), complicative disease courses (C), and patients with ICU admission (D). (E) Heatmap of top 10 defining

parameters for each cluster. Color shows Z score.

(F–L) Cluster defining laboratory parameters. T cells (F), creatine kinase (G), ferritin (H), lymphocytes (I), CD4+ T cells (J), leukocytes (K), and neutrophils (L) are

shown as violin plots with individuals data points (top row) or mapped onto UMAP plots (bottom row). Statistical significance was calculated using FDR-

adjusted Wilcoxon test.
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patients with critical disease courses, consisted of increased levels of urea, troponin T, creatine kinase,

proBNP, and gamma-glutamyl transferase (GGT). Cluster 2, which was enriched in lethal COVID-19, was

defined by an increase of the laboratory parameters ferritin and aspartate aminotransferase (ASAT) and
10 iScience 24, 102752, July 23, 2021
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also an enrichment of activated and tissue-like memory B cells (Figures 6E–6H). Of note, the results of our

unsupervised clustering indicated that dysregulation of laboratory markers, indicative of heart and kidney

failure was predictive of critical (cluster 1) but not lethal outcome. In addition, the unsupervised clustering

was shaped by cluster-dependent depletion of lymphocytes and CD4+ T cell counts (Figures 6I and

6J).Leukocyte and neutrophil counts were increased in cluster 1 in comparison with cluster 0, whereas these

populations were decreased in cluster 2 (Figures 6K and 6L). This might reflect divergent immune response

patterns in patients with critical COVID-19 and lethal outcome. Specifically, patients with critical COVID-19

developed an immune phenotype that was characterized by increased frequencies of peripheral myeloid

immune cell subsets, whereas patients with lethal outcome developed a general leukocytopenia.

Next, we aimed to identify parameters that predict the progression of disease severity from mild to lethal

COVID-19. By using pseudo-time-trajectory analysis we identified positioning of individuals from mild to

lethal disease along pseudo-time (Figure 7A). Strikingly, we observed a distinct separation between un-

complicated (mild, moderate, severe) and complicated (critical, lethal) disease trajectories, which allowed

us to extract key biomarkers of disease progression (Figures 7B, 7C, S7A, and S7B; distribution of demo-

graphic parameters and preconditions are displayed in Figures S7C–S7T). We identified three branches

that were enriched in patients with critical (branches 1 and 2) and lethal (branches 2 and 3) COVID-19.

The first two branches were characterized by reduction of lymphocytes, B cells, and T cells, whereas dam-

age of the hepatobiliary system, and in particular increased levels of alkaline phosphatase (AP), aspartate

amino-transferase, gamma glutamyl-transferase, was the key driver of the third branch (Figures 7D–7G).

Our results demonstrate that lymphocyte depletion is a key feature of disease progression. However, signs

of organ damage and especially damage of the hepatobiliary system as defined by increased levels of

ASAT, alanine aminotransferase (ALAT), GGT, and AP were highly predictive of a lethal outcome. Following

this notion, we analyzed ratios of liver enzymes that are routinely used to evaluate hepatocyte destruction.

We found that the ASAT/ALAT ratio was increased in the early phase of critical and lethal COVID-19 and

further increased over time in patients with lethal outcome (Figure S8A). In contrast, in recovering critically

ill patients we observed a decrease of ASAT/ALAT ratio over time. This was mirrored in patients with lethal

COVID-19, who showed a decrease of (ASAT + ALAT)/glutamate dehydrogenase (GLDH) ratio (Figure S8B)

and an increased GGT/ALAT ratio (Figure S8C), whereas we observed no differences in the ASAT/lactate

dehydrogenase (LDH) ratio that is indicative for hemolysis (Figure S8D). Thus, our data support the notion

of direct damage of hepatocytes during COVID-19 (Gupta et al., 2020).

In the next step, we sought to develop a clinical score that unequivocally differentiates uncomplicated from

complicated COVID-19. Therefore, we utilized the key parameters of disease progression that we identi-

fied by our unsupervised machine learning approach (COVID-19 SeveriTy score, COST score). In order

to establish our COST score, patients received one point for each value across all time points when their

maximal levels of (1) AP (U/I), (2) GGT (U/I), (3) or ASAT (U/I) exceeded 1.8 times of the upper reference value

or when the minimal counts of (4) lymphocytes (/mL), (5) B cells (/mL), (6) CD4+ T cells (/mL), or (7) platelets

(billion/l) fell below 60% of the lower reference value (summary of parameters and cutoffs for COST score

are provided in Table S5). By scoring all patients with a maximum COST score of seven, we found a strong

separation of patients with mild, uncomplicated (moderate, severe), and complicated (critical, lethal)

COVID-19. Of note, we could distinguish patients with lethal outcome from critically ill patients who scored

five or more points (Figures 7H–7J and S9A–S9C). Separation by the COST score was independent of pre-

existing hematologic malignancies (Figure S9D). This is important since this score relies on the assessment

of changes of immune subsets. In confirmation, patients who were admitted to the ICU had significantly

higher scores than patients who were treated on a regular ward (Figure S9E). Moreover, we were able to

predict different disease trajectories at the early and late phase of the disease (Figures 7K and S9F–

S9H). Of note, clinical chemistry signs of hepatobiliary damage emerged in the analysis as specific early

predictor of COVID-19 outcome. The COST score was independent of sex and age but, as expected, corre-

lated with demographic variables that predisposed to a complicated disease course (Figures S9I–S9M).

Since we faced the constraints that currently no large database with all necessary parameters for validation

of our novel score exists, we validated the individual parameters using data from external studies andmeta-

analyses that partly reported the parameters. By comparing the results from studies that exclusively

included non-lethal or lethal COVID-19 (data derived from covidanalytics.io; date of acquisition 09/03/

2020) we found decreased lymphocytes and platelets, as well as increased ASAT and GGT (Figures

S9N–S9Q) in patients with lethal outcomes, supporting the clinical validity of our newly established scoring

system.
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Figure 7. A combined clinical and immunological score robustly classifies complicated COVID-19

(A) Pseudo-time-trajectory analysis of patients with COVID-19. Three branches were identified and are labeled in the figure.

(B) Distribution of patients with mild, moderate, severe, critical, and lethal COVID-19 on the pseudo-time-trajectory.

(C) Pseudo-time is colored on the calculated trajectory.

(D) Changes in cell numbers (cells/ml) of B cells (top) and lymphocytes (bottom) in pseudo-time. Two kinetics from the first branch are shown. Color

represents WHO severity.

(E–G) Top eight parameters, ranked by negative log10 FDR-adjusted p values that define the first (E), second (F), and third (G) branch defined by branch

expression analysis modeling. Dashed line shows the significance level of negative log10 P = 0.05. Color shows significance level.

(H) Comparison of mild (n = 14), uncomplicated (n = 61; pooled moderate and severe), and complicated (n = 47; pooled critical and lethal) COVID-19.

Boxplot with median, interquartile range (IQR), and outliers are displayed.

(I and J) Frequency distribution of mild, uncomplicated, and complicated (I) and WHO severity classified (J) patients with COVID-19 according to our COST

score.

(K) Comparison of mild (n = 14), uncomplicated (n = 61; pooled moderate and severe), and complicated (n = 47; pooled critical and lethal) early COVID-19.

Boxplot with median, IQR, and outliers are displayed.

(L) ROC analysis of COST score (n = 122). If not stated otherwise, FDR-adjusted Wilcoxon-test was used and exact p values are displayed in the figure.
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Finally, we compared the capability of our COST score to predict lethal disease trajectories with the well-

established and clinically widely used sepsis scores Sepsis-related Organ-Failure Assessment score

(SOFA) and the Simplified-Acute-Physiology-Score II (SAPSII) in patients with severe, critical, and lethal

COVID-19 (Figures S10A and S10B). The COST score showed a statistically significant positive correlation

with SAPSII and SOFA scores (Figures S10C and S10D). Although receiver operating characteristic (ROC)

curves of the three scores revealed similar area under the curves (AUC) of SAPSII and SOFA scores, our

COST score achieved a significantly higher AUC in comparison with the SAPSII and SOFA scores across

the whole disease course (Figures 7L and S10E) and the first available time points (Figure S10F). Of note,

our COST score achieved similar AUCs with all patients (n = 122, AUC = 0.924; Figure 7L) and half of the

patients with available data (n = 61, AUC = 0.913; Figure S10E) underlining its internal validity. In sum-

mary, our results indicate a highly predictive accuracy of the COST score to detect lethal disease trajec-

tories in COVID-19.
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DISCUSSION

Early and robust identification of critical and lethal disease trajectories is one of themost pressing needs for

the clinical care of patients with COVID-19 (Bhatraju et al., 2020). Here, we used an unsupervised systems

approach to analyze multidimensional longitudinal data of patients who were treated for COVID-19 at the

University Medical Center Hamburg-Eppendorf with diverse outcomes. We identified novel biomarker sig-

natures that distinguish critically ill patients and predict lethal disease trajectories by grading patients with

the newly proposed COST score.

Longitudinal analysis of a well-defined cohort by a large number of routine laboratory parameters allowed

us to disentangle temporal patterns of biomarkers specific for organ dysfunctions at high resolution. Early

changes included laboratory and clinical parameters indicative of kidney damage, generalized volume

redistribution, and hypoxia. This supports recent studies that found a high prevalence of SARS-CoV-2 in-

filtrates in renal glomeruli (Puelles et al., 2020) and observational clinical studies that have correlated kidney

damage with multiorgan involvement (Gross et al., 2020). The early renal affection underlines its impor-

tance for the pathophysiology of the disease. However, the high prevalence of renal dysfunction in all

severity classes of COVID-19 limited its specificity as discriminative biomarker for critical or lethal trajec-

tories in our analysis. In contrast to the early renal involvement, clinical and laboratory biomarkers of car-

diovascular involvement, such as pro-BNP and troponin T, were elevated during late COVID-19. Thus,

our data indicate that cardiac complications might develop later or be a secondary complication of severe

pneumonia or sepsis but not directly due to SARS-CoV-2 infection itself. This is in accordance with post-

mortem histopathologic studies (Lindner et al., 2020).

We found profound dysregulations of the blood counts during early and late COVID-19 and characterized tem-

poral changes of various immune cell subsets. Althoughweobserved anoverall increase of leukocyte counts, we

observed depletion of lymphocytes that correlated with disease severity. This is supported by two meta-ana-

lyses that have shown that low lymphocyte counts correlated with severe COVID-19, in particular with admission

to ICU, ARDS, and mortality (Huang and Pranata, 2020; Zhao et al., 2020). Specifically, we found reduced abso-

lute counts of CD4+ T cells and CD8+ T cells as well as B cells. This is in line with results of large observational

studies from the UK (Laing et al., 2020) and China (Lucas et al., 2020) and functional studies that found higher

numbers of T cells expressing the exhaustion markers PD-1 and TIM-3 in severe COVID-19 (Diao et al., 2020;

Herrmann et al., 2020). Nevertheless, in complicated COVID-19 we observed increased relative frequencies

of activated and tissue-likememory B cells, whereas the relative frequencies of naive and restingmemory B cells

were reduced. Our longitudinal analysis revealed that recovery of T cells predicted amild disease course under-

lining its prognostic importance. In contrast, B cell changes developed during early COVID-19. This might indi-

cate that B cell-mediated overstimulation might drive T cell exhaustion (Diao et al., 2020) and that activated

memory B cells might be a source of IL-6 (Quinti et al., 2020), thereby fostering a poor disease outcome. We

recorded an overall increase of granulocyte counts in the peripheral blood of patients with severe and critical,

but not lethal, COVID-19, especially of neutrophils andmonocytes. This is in linewithmulti-omics data of PBMCs

of patients with COVID-19 that provided molecular insights into dysregulations of myeloid cells in severe

COVID-19 (Schulte-Schrepping et al., 2020). Lineage single-cell and lineage tracing analysis of lungs and

BALs of patients with COVID-19 revealed that tissue damage was mostly driven by infiltrating and not tissue-

residentmonocytes (Wauters et al., 2021). Histopathologic examinations of lung autopsies of deceased patients

revealed congestions ofmicro-vessels by formation of neutrophil extracellular traps (Leppkes et al., 2020).More-

over, neutrophil-induced oxidative stress has been proposed as a key pathophysiological mechanism of tissue

damage, thrombosis, and red blood cell pathology (Merad and Martin, 2020). Since the SARS-CoV-2 entry

genes ACE2, TMPRSS2, and CTSL are expressed on different cell types across multiple organ systems (Muus

et al., 2021) and patients with COVID-19 suffer from a wide range of extra-pulmonary manifestations, further

studies are warranted to analyze organ-specific activation of tissue-resident and infiltrating immune cells. Of in-

terest, we observed that eosinophils were sharply increased in patients with COVID-19, who developed severe

pneumonia, sepsis, or ARDS. Except for patients with lethal outcome, all patients with COVID-19 showed an

increased number of eosinophils in late but not in early phases of the disease, supporting studies that found

that severeCOVID-19 is associatedwith a type-2 anti-helminth response (Lucas et al., 2020).Of note, subtropical

and tropical countries with a high prevalence of helminth infection have a low prevalence of severe COVID-19

(Hays et al., 2020).

To facilitate clinical translation, we aimed to identify parameters that predict poor and specifically lethal

outcome. By exploiting unsupervised clustering of all clinical, laboratory, and immunological data, we
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identified three clusters that clearly separated uncomplicated (cluster 0) from complicated (cluster 1 and 2)

disease trajectories. We found a strong separation between critically ill patients with severe pneumonia,

sepsis, or ARDS who survived (cluster 1) and who died (cluster 2). A similar integrative approach using

genomic data from peripheral blood leukocytes of patients with sepsis who were admitted to the ICU

identified two distinct sepsis response signatures that correlated with mortality and required different

treatment strategies (Seymour et al., 2019). Subsequently, we identified key determinants of disease pro-

gression by performing pseudo-time-trajectory analysis (Trapnell et al., 2014). We found clear transitions in

patients with mild COVID-19 to those with lethal outcomes and identified different branches for critically ill

and lethal COVID-19. Key determinants of complicated disease outcomes were depletion of lymphocytes,

B cells, CD4+ T cells, and platelets. It is surprising that, among these patients, an increase of the hepato-

biliary parameters ASAT, GGT, and AP accurately defined patients with lethal outcome. Detailed analysis of

liver enzymes provided further evidence for the hypothesis that hepatocytes are damaged in critical and

lethal COVID-19. Of note, hepatobiliary damage has been sparsely described in case series and small

observational cohorts (Iavarone et al., 2020). Although histopathological studies could detect SARS-

CoV-2 by PCR in livers from deceased patients with COVID-19 (Lagana et al., 2020), it remains elusive

whether hepatocytes are directly infected by SARS-CoV-2 or whether they are destroyed by an overly reac-

tive immune response (Yan et al., 2014). Our results point toward a yet underappreciated role of liver

involvement for the pathogenesis of COVID-19 and as an important prognostic indicator for disease

progression.

Finally, we chose the most significantly regulated branch-defining parameters (lymphocyte count, CD4+

T cells, B cells, platelet count, ASAT, GGT, AP) and evaluated their dysregulation in our COVID-19 cohort

by creating the COST score. We could robustly separate mild, uncomplicated, and complicated disease

outcomes at early and late phases of the disease using this score. Of note, within the subgroup of patients

who suffered from sepsis, severe pneumonia, or ARDS, our score accurately separated patients with lethal

outcome from patients who survived. The prognostic separation of critically ill from lethal patients was

mainly dependent on the increase in laboratory parameters, indicative of hepatobiliary damage. Therefore,

our score might have to be adapted for these patient groups. However, recent studies have shown that pre-

existing liver pathologies, for example, liver cirrhosis, are a priori associated with worse disease outcome

(Iavarone et al., 2020). Thus, our score is likely not applicable to these patient groups.

In summary, we provide a comprehensive and longitudinal systems analysis of clinical, laboratory, and

immunological parameters of a large European cohort with COVID-19. This multi-parametric dataset

vividly illustrates that COVID-19 evolves in different phases, affects multiple organs, and is associated

with immunological dysregulations that qualify as key drivers of complicated disease outcomes. By unsu-

pervised analysis we identified that a combination of lymphocyte depletion was able to separate mild from

uncomplicated COVID-19 and that early hepatobiliary damage predicted later lethal outcome of critically

ill patients. We anticipate that our findings will help to understand the sequence of pathophysiological

events on different disease trajectories and may have direct therapeutic implications. Further functional

analysis and histopathologic examinations are needed to understand the exact role of the liver in the path-

ophysiology of COVID-19.
Limitations of the study

Limitations of our study are inherent to real-world single center studies. Although we were able to analyze

longitudinal data from 156 of 173 affected patients, samples from patients with mild disease who were only

seen at our emergency room were gained only once during the duration of this study. In addition, 27 pa-

tients were transferred from external hospitals; therefore, initial laboratory values were not available for

most of these patients for our analysis and they were only analyzed in the late COVID-19 group. Further-

more, not all parameters were available for each patient at all time points. Therefore, we chose to only

analyze parameters that were gained from more than 50 patients in order to obtain representative and

robust results. Furthermore, the effect of anti-infectives, such as remdesivir (Grein et al., 2020), or immuno-

suppressive agents, such as glucocorticoid treatments (Horby et al., 2021), was not taken into account for

our systems analysis. However, only a small subset of patients received specific treatments in this cohort.

Moreover, we did not find overrepresentation of therapy groups in our unsupervised clustering analysis,

therefore excluding systemic bias. Furthermore, another limitation of the COST score is the potential

need for acquisition of additional laboratory and immunological data. Other scores, as for example, the

c4 mortality score (Hundt et al., 2020), that are based on vital signs might be more feasible for immediate
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assessment of patients with COVID-19 regardless of the setting. However, the laboratory parameters of the

COST score are part of routinely collected panels. Since we aimed to establish a set of biomarkers for clin-

ical routine, we were limited in the number of parameters and cellular subsets that could be analyzed. For

example, we did not include Th17 and T follicular helper cells in our panel that each have been hypothe-

sized to play an important role in SARS-CoV-2 immunopathogenesis (Orlov et al., 2020). Since leukopenia is

a widely described diagnostic feature of COVID-19 many laboratories and commercial vendors offer

different immunological panels that can be integrated into diagnostic procedures. Prospectively, func-

tional analysis of additional cohorts for distribution, differentiation, phenotype, and cytokine secretion

of additional immune cell populations is required to refine biomarkers that can be established for clinical

testing. In addition, our COST score needs to be validated and compared against other COVID-19-specific

and other clinically widely used scores. Thus, further prospective studies of independent larger cohorts are

warranted for validation and refinement of the COST score, in terms of timing of laboratory data acquisi-

tion, validation in patients infected with SARS-CoV-2 variants, and special patient groups like transplant

patients, patients treated with monoclonal antibodies, or patients with partial immunity after vaccination

or previous COVID-19 infection.
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KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 BD Bioscience cat. #644611; RRID:AB_2870318

CD16/CD56 BD Bioscience cat. #644611; RRID:AB_2870318

CD45 BD Bioscience cat. #644611; RRID:AB_2870318

CD4 BD Bioscience cat. #644611; RRID:AB_2870318

CD19 BD Bioscience cat. #644611; RRID:AB_2870318

CD8 BD Bioscience cat. #644611; RRID:AB_2870318

CD25 BioLegend cat. #356106; RRID:AB_2561863

CD127 BD Biosciences cat. #557938; RRID:AB_2296056

CD4 BD Biosciences cat. #345771; RRID:AB_2868799

CXCR3 BioLegend cat. #353704; RRID:AB_10983066

HLA-DR BioLegend cat. #307606; RRID:AB_2339602

CD38 BioLegend cat. #303522; RRID:AB_10953960

CD21 BioLegend cat. #354912; RRID:AB_2561577

CD10 BioLegend cat. #312210; RRID:AB_314921

CD19 BioLegend cat. #302218; RRID:AB_314248

CD73 BD Biosciences cat. #562430; RRID:AB_11153119

CD27 BioLegend cat. #302835; RRID:AB_2561382

CD303 BioLegend cat. #354208; RRID:AB_2561364

CD123 BioLegend cat. #306006; RRID:AB_314580

CD16 BioLegend cat. #360712; RRID:AB_2562955

HLA-DR BioLegend cat. #307616; RRID:AB_493588

CD2 BioLegend cat. #300220; RRID:AB_2571989

CD11c BD Biosciences cat. #565806; RRID:AB_2869718

CD14 BioLegend cat. #301842; RRID:AB_2561946

Software and algorithms

R studio version 1.2.5.002 R studio https://www.rstudio.com/

R version 3.6.3 R https://www.r-project.org/

Seurat (v.3.2.3) Stuart et al. (2019) https://satijalab.org/seurat/

Monocle (v.2.18.0) Trapnell et al. (2014) https://github.com/cole-trapnell-lab/monocle-release

clusterProfiler (v.3.18.0) Yu et al. (2012) https://guangchuangyu.github.io/software/clusterProfiler/

pROC (v.1.17.0.1) Robin et al. (2011) https://rdrr.io/cran/pROC/man/roc.html

tidyverse (v.1.3.0) R environment https://www.tidyverse.org/

patchwork (v.1.1.1) R environment https://patchwork.data-imaginist.com/

outliers (v.0.14) R environment https://cran.r-project.org/web/packages/outliers/index.html

pheatmap (v.1.0.12) R environment https://www.rdocumentation.org/packages/

pheatmap/versions/1.0.12/topics/pheatmap

ggpubr (v.0.4.0) R environment https://cran.r-project.org/web/packages/ggpubr/index.html

ggsignif (v.0.6.0) R environment https://github.com/const-ae/ggsignif

ggcorrplot (v.0.1.3) R environment https://cran.r-project.org/web/packages/

ggcorrplot/readme/README.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

openxlsx (v.4.2.3) R environment https://cran.r-project.org/web/packages/openxlsx/index.html

randomForest (v.4.6-14) R environment https://www.rdocumentation.org/packages/

randomForest/versions/4.6-14/topics/randomForest

flashclust (v.1.01-2) R environment https://cran.r-project.org/web/packages/

flashClust/index.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and code should be directed to and will be fulfilled by the

Lead Contact, Julian Schulze zur Wiesch (j.schulze-zur-wiesch@uke.de)

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data are not publicly available due to ethical restrictions because their containing information could

compromise the privacy of the reported patients. All data reported in this paper will be shared by the

lead contact upon request.

� This paper does not report original code. All packages used are publicly available and are listed in

the key resource table. Scripts for analysis are available from the lead contact upon request.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study approval

All participants gave written consent in this study that was approved by the local ethic board. Patient char-

acteristics are provided in Figure S1 and Table S1.

Study design

This was a prospective study of consecutive patients with COVID-19 who were admitted to the University

Medical Center Hamburg-Eppendorf from 13th February 2020 until 3rd July 2020. All samples were centrally

stored. All participants gave written consent in this study that was approved by the local ethic board. All

patients with COVID-19 where positive for SARS-CoV-2 by PCR or had SARS-CoV-2 specific antibody titers.

The severity of COVID-19 into mild, moderate, severe, critical, lethal disease courses was classified using

the WHO criteria (WHO reference number: WHO/2019-nCoV/clinical/2020.5; date of acquisition 08/10/

2020). The WHO classification was based on the most affected pathologies per day during the longitudinal

disease trajectories. We included 113 male (65%) and 60 female (35%) patients. The mean age was 57.3

years. Patient characteristics and impact of sex and age on disease severity are provided in Figure S1

and Table S1. In order to simplify the visualization of the trajectories, we summarized moderate and severe

to uncomplicated and critical and lethal to complicated COVID-19 for some of the visualizations as detailed

in the respective figure legends (Figures 6C, 7H, 7I, S7A, S7B, S9A, S9D, and S9F). For deep immune

profiling of myeloid subsets, we summarized mild and moderate as uncomplicated and severe, critical

and lethal as complicated COVID-19 (Figures 5F, S4B, and S5A). Infection with SARS-CoV-2 was confirmed

in all patients by PCR. We defined early disease as less than six days from day of diagnosis to time point of

sampling and late disease as at least six days from day of diagnosis to time point of sampling. Data from

covidanalytics.io was acquired at 09/03/2020.

UKE COVID-19 standard operation diagnostic procedures

Patients with positive SARS-CoV-2 RT-PCR were hospitalized when they showed clinical symptoms

requiring hospitalization or we found radiological evidence of infiltrates (CT, chest radiograph) and the
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patient suffered from pre-existing risk factors. Patients were admitted to the ICU when oxygen saturation

was below 90% during oxygen insufflation of maximum of 4 liters/minute, respiratory rate above 22/min,

systolic blood pressure below 100 mmHg or we found elevated lactate levels. On day of admission, all pa-

tients received oropharyngeal swab for SARS-CoV-2 RT-PCR and if necessary, for multiplex-PCR for other

respiratory pathogens, 12-lead ECG, chest radiograph for all patients, low-dose chest computed tomog-

raphy scan (CT) if clinically necessary and blood cultures. Furthermore, they we draw blood to analyze lab-

oratory parameters, including complete blood count, urea, creatinine, glomerular filtration rate, ASAT,

ALAT, total bilirubin, gamma-GT, alkaline phosphatase, LDH, C-reactive protein (CRP), procalcitonin,

venous blood gases, blood sugar level, HbA1C (in patients > 45 years), coagulation screen, D-dimers,

fibrinogen, proBNP, creatine kinase, albumin, ferritin, interleukin 6. At the day of admission vital signs (ox-

ygen saturation, respiratory rate, blood pressure, heart rate), body temperature, GlasgowComa Scale, clin-

ical risk factors and symptoms were documented. During the inpatient stay vital signs were assessed daily

and oxygen saturation was measured thrice per day. Depending on the disease course further diagnostics

such as radiologic imaging, echocardiography or laboratory parameters were acquired.
METHOD DETAILS

Laboratory parameters

Laboratory parameters were recorded by standard procedures of the UKE. We only included parameters

for subsequent analysis that were available for at least 50 patients. In total, we analyzed 159 parameters that

consisted of 67 immunological, 92 laboratory and vital parameters. For every patient, laboratory parame-

ters of at least one time point were available. Longitudinal laboratory data were available or 156 patients.

The SARS-CoV-2 antibody status was available for 42 patients. In total, standard immunological profiling

(Leukocytes counts and relative percentage of T cells, B cells, CD4+ T cells, CD8+ T cells, monocytes, neu-

trophiles, eosinophiles, basophiles) were available for 131 patients for at least one time point, and from 101

patients for early as well as late time points. Deep immune subset-, and immune cell activation profiling was

available for 76 patients for at least one time point and of 52 patients for early as well as late time points. In

depth profiling of myeloid subsets was available of 16 patients for early, and for 21 patients for late time

points. For all healthy patients were laboratory data available and for 18 healthy patients deep immune

profiling. In average laboratory parameters from 25 different time points were available for each patient.

All analyzed parameters and respective number of patients in total and divided into WHO disease sever-

ities, or early and late time points are provided in Table S4. Antibody titers against SARS-CoV-2 and PCR

cycle threshold values from nasopharyngeal swabs described in (Pflüger et al., 2020) , were available for 74

patients. Detailed number of individuals used for each analysis are mentioned in the respective figure

legend and are listed in Table S4. The ‘‘Relative time’’ in Figures 2 and 4 were calculated by aligning the

time points of data acquisition to the time of admission (t = 0) and time of discharge (t = 1). Thus, all indi-

viduals of each WHO severity were visualized for the depicted parameters. The fold change in Figure 3 was

calculated by dividing the maximal (Figure 3A) or minimal (Figure 3B) values of the late time point by the

maximal or minimal values of the early time point. Thus, we calculated the relative change of maximal and

minimal values of each parameter of late time points in comparison to early time points.
Flow cytometry phenotyping

Staining was performed on 50 ml (lymphocyte subsets) or 100 ml (regulatory T cell, B cell and myeloid dif-

ferentiation panels) whole blood samples containing EDTA as an anticoagulant. The whole blood samples

were incubated for 15min at room temperature in the dark with the antibody cocktails listed in Table S6 and

in the Key Resource Table. Erythrocytes were lysed by addition of 500 ml FACS Lysing Solution (BD Biosci-

ences) and incubated for a further 15 min before analysis on a FACS Canto II flow cytometer (BD Biosci-

ences). Analysis of lymphocyte subsets and regulatory T cells was performed with Diva software (BD Bio-

sciences), panels for B cell and myeloid differentiation were analyzed using FlowJo software (TreeStar).
Overrepresentation tests

To analyze biological, immunological and diagnostic themes over time in our COVID-19 cohort, we

compiled 18 groups (immune system, immune cells, immune activation, blood count, electrolytes, vital

parameter, coagulation, inflammation, organ damage, red blood cell pathology, urine pathology, labora-

tory parameter, respiration, destruction parameter, endocrinology, hepatobiliary, cardiologic, nephrolog-

ical parameters) that consisted of well-known and widely established parameters. To define the themes, we

only used parameters that were acquired for at least three individuals for each WHO severity group to
20 iScience 24, 102752, July 23, 2021



ll
OPEN ACCESS

iScience
Article
obtain statistical meaningful results. The themes and respective defining parameters are provided in Table

S2. First, we performed 1-way-ANOVA with all parameters for early (Figure 1B), and late (Figure 1C) time

points to identify dynamic parameters across all disease severities. P-values were FDR-adjusted. For

each time point, the parameters were ranked by negative log10 adjusted P values (most significant param-

eter at the top, least significant parameter at the end/bottom). Subsequently, we tested overrepresenta-

tion of our themes in ranked lists of parameters by hypergeometric testing using the GSEA (gene set

enrichment analysis) function of clusterProfiler (v.3.18.0) (Yu et al., 2012). P-values were FDR-adjusted for

multiple comparisons. Results were visualized leveraging non-circular cnet-plots.

Disease severity specific parameters

To find parameters that were specific for respective COVID-19 WHO disease severity, we compared

average, maximal and minimal values of early and late time points of each parameter from each WHO

group with each other by Wilcoxon-test with FDR-adjustment for multiple comparisons. Significant results

were considered an adjusted P-value < 0.05. Subsequently, we only took into account the most significant

statistical values (maximal or minimal or average) for each parameter. Thus, every parameter is only repre-

sented once per disease severity. Therefore, for each disease severity, we filtered out parameters that were

significant in comparison to every other severity group and specific for respective disease severity. The

computational analysis was performed with tidyverse (v.1.3.0) and stats (v.4.2.0) packages. overrepresenta-

tion tests of our themes with disease severity defining parameters by hypergeometric testing were

performed as described above with clusterProfiler (v.3.18.0). P-values were FDR-adjusted for multiple com-

parisons. Results were visualized as lollipop-plots.

Unsupervised clustering analysis

Unsupervised clustering and heatmap visualization of laboratory parameters that is shown in Figure 2A was

performed using the pheatmap (v.1.0.12) package. We only included parameters that were available for

more than 50 patients. Pearson correlation was applied to calculate the relative distance and dendrograms

were calculated using the hclust function from the flashclust (v.1.01-2) package with default parameters.

Data was linearly column-wise scaled to the 99th percentile to exclude outliers. To identify markers of se-

vere COVID-19 we used an unsupervised systems approach. We used early (less than six days from symp-

tom onset to sampling) and late (at least six days from symptom onset to sampling) time points from each

patient as input (173 patients with COVID-193 2 time points = 246 column variables). We excluded patients

with more than 170 missing parameters. We included all laboratory, immunological and vital parameters

but excluded parameters that were absent in at least 200 individuals. After filtering, we analyzed 233 pa-

tients from two different time points and 170 parameters. We used the random forest algorithm of the ran-

domForest (v.4.6-14) package with 300 trees and 1000 iteration with WHO severity as classifier to impute

missing data. Otherwise default parameters were used. Next, we performed logarithmic scaling and per-

formed unsupervised clustering with 10 principal components using the UMAP algorithm according to the

Seurat (v.3.2.3) pipeline using default parameters. Cluster-defining parameters were calculated using FDR-

adjusted Wilcoxon-test. Subsequent pseudo-time-trajectory analysis was performed using the monocle

(v.2.18.0) pipeline with default parameters. Parameters that uniquely define late-lethal COVID-19 were pro-

vided as endpoint-input for pseudo-time-calculations. Branched expression analysis modeling was used to

identify branch-dependent parameters. We defined three branches as number of the output.

Score

We included the following seven parameters for our predictive COVID-19 score that were significant in the

resulting three branches of our pseudo-time trajectory analysis (see above): Lymphocytes (/ mL), CD4+

T cells (/ mL), B cells (/ mL), platelets (billion/l), alkaline phosphatase (U/l), GGT (U/l) and ASAT (U/l). For

122 patients all necessary parameters were available and thus, were used to validate our score (for patients

with mild n = 14, uncomplicated n = 61, complicated n = 47 disease course). For comparison with SAPS II

and SOFA score, we included 61 patients with parameters available for calculating all three scores. Patients

received a point for each value when during the disease they exceeded 1.8 times the upper reference of AP

(U/l), GGT (U/l) and ASAT (U/l) or fell below 0.6 times the lower reference of lymphocytes (/ mL), CD4+ T cells

(/ mL), B cells (/ mL), platelets (billion/l). The components and respective cutoffs we used to calculate the

COST score are available in Table S5. SOFA and SAPS II and our score were available for 61 patients.

Correlation was calculated using Pearson’s R. We calculated ROC curves of COST, SOFA and SAPS II score

using pROC package (v.1.17.0.1) using default parameters. Significance was calculated using the boot-

strapping method with 10000 iterations.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data was analyzed within the R environment (Version 1.2.5.002) on a Mac OS X. The following R packages

were used for analysis and visualization: tidyverse (v.1.3.0), patchwork (v.1.1.1), outliers (v.0.14), pheatmap

(v.1.0.12), ggpubr (v.0.4.0), ggsignif (v.0.6.0), ggcorrplot (v.0.1.3), openxlsx (v.4.2.3), randomForest (v.4.6-14)

, flashclust (v.1.01-2), Seurat (v.3.2.3) (Stuart et al., 2019), clusterprofiler (v.3.18.0) (Yu et al., 2012), monocle

(v.2.18.0) (Trapnell et al., 2014), pROC (v.1.17.0.1) (Robin et al., 2011). Detailed analysis is specified in the

respective section of the results and in the figure legends. Unless stated otherwise comparisons between

two experimental groups are presented as violin plot or dots with median and differences were determined

using unpaired Wilcoxon-Mann-Whitney-test and were FDR-corrected for multiple comparisons. Unless

stated otherwise comparisons between more than two groups were analyzed by 1-way-ANOVA. Correla-

tions were analyzed using Pearson’s correlation. We excluded values as outlier that exceeded the 99th

percentile based on chi-square approximation. Overrepresentation of diagnostic themes was calculated

by hypergeometric testing.
ADDITIONAL RESOURCES

COVID-19 disease severity was classified by WHO (WHO reference number: WHO/2019-nCoV/clinical/

2020.5; date of acquisition 08/10/2020). Data of external cohorts for validation were derived from covida-

nalytics.io (date of acquisition 09/03/2020).
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