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Abstract
SARS-CoV-2 is an enveloped positive-sense RNA virus, contain crown-like spikes on its surface, exceptional of large RNA 
genome, and a special replication machinery. Common symptoms of SARS-CoV-2 include cough, common cold, fever, sore 
throat, and a variety of severe acute respiratory disease (SARD) such as pneumonia. SARS-CoV-2 infects epithelial cells, 
T-cells, macrophages, and dendritic cells and also influences the production and implantation of pro-inflammatory cytokines 
and chemokines. Repurposing of various drugs during this emergency condition can reduce the rate of mortality as well as 
time and cost. Two druggable protein and enzyme targets have been selected in this review article due to their crucial role 
in the viral life cycle. The eukaryotic translation initiation factor (eIF4A), cyclophilin, nucleocapsid protein, spike protein, 
Angiotensin-converting enzyme 2 (ACE2), 3-chymotrypsin-like cysteine protease (3CLpro), and RNA-dependent RNA 
polymerase (RdRp) play significant role in early and late phase of SARS-CoV-2 replication and translation. This review 
paper is based on the rationale of inhibiting of various SARS-CoV-2 proteins and enzymes as novel therapeutic approaches 
for the management and treatment of patients with SARS-CoV-2 infection. We also discussed the structural and functional 
relationship of different proteins and enzymes to develop therapeutic approaches for novel coronavirus SARS-CoV-2.

Keywords SARS-CoV-2 · Epidemiology · Pathogenesis · eIF4A · Cyclophilin · Nucleocapsid protein · Spike protein · 
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Abbreviations
SARS-CoV-2  Severe acute respiratory syndrome 

coronavirus-2
SARD  Severe acute respiratory disease
BCoV  Bovine CoVs infectious
IBV  Bronchitis virus
TGEV  Transmissible Gastric Enteritis Virus
RBD  Receptor Binding Domain
DPP4  Dipeptidyl-peptidase 4
eIF4A  Eukaryotic translation initiation factor 4 A
Cyps  Cyclophilins
ALV  Alisporivir
HCV  Hepatitis C virus
NTD  N terminal domain
CTD  C-terminal domain

IRF-3  Interferon regulatory factor-3
ACE2  Angiotensin-converting enzyme
RdRp  RNA-dependent RNA polymerase

Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) is a highly transmissible and pathogenic coronavirus 
that mainly affects the human respiratory system. SARS-
CoV-2 is responsible for two distinct endemics like Middle 
East respiratory syndrome (MERS) and acute respiratory 
syndrome (SARS), which have significant affected on pub-
lic health (Raoult et al. 2020). SARS-CoV-2 is named due 
to the presence of crown-like spikes on their surface and 
consisted of four sub-groups, called as alpha, beta, gamma, 
and delta (Fehr and Perlman, 2015). It is a positive sense-
stranded RNA virus with 29,891 bases; among these, 96% 
bases are identical to a bat coronavirus (CoVs), at the full 
level of genome stage, and share 79.6% of gene similar-
ity with SARS-CoV (Denison et al. 2011). SARS-CoV-2 
encodes spike (S) protein consisting of a receptor-binding 
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domain (RBD) that binds to the angiotensin-converting 
enzyme-2 (ACE-2) of humans and facilitates membrane 
fusion as well as virus uptake into human lungs (Fig. 1) 
(Hofmann and Pöhlmann, 2004). SARS-CoV-2 enter into 
human cells and capture the protein synthesis machinery to 
synthesize the viral proteins for replication and prolifera-
tion (Hofmann and Pöhlmann, 2004). SARS-CoV-2 con-
tains the largest genomic structure (26.4–31.7 kb) among all 
known RNA viruses. Large numbers of small open reading 
frames (ORFs) are present between the various conserved 
genes [ORF1ab, spike (S), envelope (E), membrane (M), 
nucleocapsid (N)] and the nucleocapsid genes of various 
CoVs lineages (Mousavizadeh and Ghasemi, 2020). The 
viral genomes consist of distinctive characteristics, includ-
ing a unique N-terminal fragment within the spike protein. 
Genes for main structural proteins in all SARS-CoV-2 occur 
in 5′–3′ order, such as S, E, M, and N. A typical SARS-
CoV-2 contains at least six ORFs in their genome. ORF1a 
and ORF1b provide a frameshift between two polypeptides 
that are pp1a and pp1ab (Prajapat et al. 2020). These pol-
ypeptides are converted into 16 nsps (nsp1-16) by virally 
encoded chymotrypsin-like protease (3CLpro) or main pro-
tease (Mpro) and one or two papain-like proteases. ORFs 
10,11 encode four specific structural proteins containing S, 
E, M, N proteins on one-third of the genome near to the 
3′-terminus (van Boheemen et al. 2012). In addition to these 
four main structural proteins, such as HE protein, 3a/b pro-
tein and 4a/b protein are encoded by various CoVs (Fig. 2) 
(Chen et al. 2020). Such mature proteins are responsible for 
maintaining genomic structural integrity maintenance and 
virus replication roles.

The genome gets transcribed after the virus enters into 
host cell. The reproduction and transcription of the CoVs 
genome occur on cytoplasmic membrane and regulate 
by the viral replicate (Shulla et al. 2011). It is assumed 
that the replicase complex has consisted of approximately 
16 subunits and a various cellular protein. In addition to 

RNA-dependent RNA polymerase (RdRp), RNA helicase, 
and activities of proteases which are common in many 
RNA viruses, CoVs replicase is known to use a variety of 
RNA-dependent processing enzymes which are not pre-
sent in other RNA viruses, including a putative specific 
sequence of endoribonuclease, 3′- to 5′-exoribonuclease, 
2′-O-ribose methyltransferase, ADP ribose 1′-phosphatase, 
and cyclic phosphodiesterase behaviors in a subset of group 
2 CoVs (Sola et al. 2015; Ziebuhr, 2005). The proteins are 
packaged on the cellular membranes and genomic RNA is 
introduced by budding from the internal cell membrane as 
the mature particles emerge (Almazán et al. 2006). SARS-
CoV-2 N-proteins have 3 distinct and highly conserved 
domains include 2 structural and independently folded 
structural regions, known as N terminal domain (NTD/
domain 1) and C-terminal domain (CTD/domain 3), sepa-
rated by intrinsic disordered central region (RNA-binding 
domain/domain 2) (Fig. 3) (Huang et al. 2004).

Number of patients were hospitalized with initial diag-
nosis of unknown pneumonia in December 2019. Available 
studies have indicated that bat may be the potential reser-
voir of SARS-CoV, which cause serious illness in humans 
and agricultural animals. However, there is no confirma-
tion to date that SARS-CoV-2 was originated from the sea-
food market but bats are the ideal repository for a variety 
of SARS-CoV-2, including MERS-CoV and SARS-CoV 
(Guo et al., 2020). The genome sequencing of COVID-19 
was analyzed and found 96.2% similar to Bat CoV RaTG13 
because both types of viruses might be shared the same 
ancestor (Zhang et al. 2020a, b).

Drug repurposing against SARS‑CoV‑2

Repurposing various drugs during this emergency condi-
tion can control the rate of mortality and reduces both time- 
and cost-effective product development (Singh et al. 2020). 
Repurposing is scientific research currently underway to 
develop safe and effective treatments for COVID-19. Drug 
repurposing strategy is favorable options and considered to 
be gold standard for development new drugs. In addition, 
drug repurposing lies basically on structure-based design 
prediction of efficacy and off-drug target toxicity (Farha and 
Brown, 2019). During COVID-19 pandemic, some antiviral 
medications, previously used as treatments for HIV/AIDS, 
Malaria, MERS, and SARS, have investigated for COVID-
19 and some of them undergo to clinical trials investigations 
(Senanayake, 2020).

Numbers of antiviral agents have been tested in early 
phase of clinical trials which showed beneficial results with 
minimum adverse effects. These molecules inhibit viral 
replication by targeting viral enzymes or their functions 

Fig. 1  Structure of severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2)
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and used to treat SARS-CoV-2 patients (Abd El-Aziz and 
Stockand, 2020). Umifenovir is a membrane fusion inhibi-
tor that inhibits the viral entry and ritonavir/lopinavir is the 
combination of drugs that target viral protease, which is well 
approved for influenza and HIV indications (Andersen et al. 
2020). These molecules are currently under phase II clini-
cal trial (75 patients) for COVID-19-related pneumonia in 
various combinations. The treatment course included 75 mg 
oseltamivir oral administration, 500 mg ritonavir, 500 mg 
lopinavir, and 250 mg ganciclovir intravenous administration 
for 3–14 days (Wu et al. 2020). These antiviral molecules 
were used with a safety track record in human patients. 
Remdesivir is a viral RNA-dependent polymerase inhibi-
tor for mild and moderate COVID-19 under investigation 
at phase III level (Harrison, 2020). Chloroquine was found 
to have antiviral activity at the entry and post-entry stages 
of COVID-19 infection, in addition to its immune-modu-
lating actions (Cao et al. 2020). The viral RNA polymerase 
inhibitor favipiravir is also under a phase II clinical trial for 
COVID-19-related pneumonia. So, these therapeutic drugs 
could be considered for treatment of CoVs infection after 

found beneficial effects in clinical trials (Li et al. 2020). 
Additionally, there is a large number of compounds that 
are under developmental phases (Fig. 3). These compounds 
include EIDD-2801 as a clinical molecule which has shown 
high therapeutic potential activity against SARS-CoV-2 
infection (Zhang et al. 2020a, b).

Modern drug discovery, propelled by computational 
modeling and bioinformatics, has enabled virtual screen-
ing of biologically active compounds for hit identifi-
cation and lead optimization. There are two types of 
simulation methods perform, like structure-based and 
ligand-based, to discover a new drug (Lionta et al. 2014). 
Therefore, these techniques are useful for development 
of drugs to inhibit SARS-CoV-2-associated infection. 
Several experiments have used molecular docking tech-
nology for virtual screening and repurposing of existing 
medications and natural products as a solution for the 
COVID-19 pandemic (Lionta et al. 2014). However, the 
discovery of multi-targeted, receptor selective, and low 
toxicity compounds is also equally important to over-
come SARS-CoV-2 infection. According to the new 

Fig. 2  The genomic structure and phylogenetic of severe acute res-
piratory syndrome coronavirus-2 (SARS-CoV-2): a The phylogenetic 
tree of coronavirus with the new COVID-19 shown in green color. 
b The genome structure of four genera of coronaviruses (CoVs): two 
long polypeptides with 16 nonstructural proteins initiated from Pp1a 
to pp1b represent. E, S, M, and N are consisted of the four structural 
proteins envelope, spike, membrane, and nucleocapsid. Abbrevia-

tions: CoVs, coronavirus; HE, hemagglutinin-esterase. HCoV, human 
coronavirus; HKU, coronaviruses identified by Hong Kong Univer-
sity; MHV, murine hepatitis virus; IBV, infectious bronchitis virus; 
TGEV, transmissible gastroenteritis virus; HCoV-229E, human coro-
navirus OC43; MERS‐CoV, Middle East respiratory syndrome coro-
navirus

1385Naunyn-Schmiedeberg’s Archives of Pharmacology (2021) 394:1383–1402



1 3

study, virtual screening of new antiviral compounds 
against SARS-CoV-2 would also be useful to elucidate 
other vaccines like antibody and protein preparation 
(Chowdhury, 2020). Beclabuvir and Saquinavir were 
identified as the good candidates for SARS-CoV-2 ther-
apy based on virtual high throughput screening (HTS) 
of clinically approved drugs and the structure of SARS-
CoV-2 Mpro determined by X-ray diffraction technology 
(Quimque et al. 2020). HTS is an automated process used 

in drug discovery for identification of hits from library 
compounds, which are pharmacologically active like 
proteins, antibodies, peptides, and inhibitors. HTS can 
be used for screening most promising drug candidates 
for efficacy analysis and development of new antivirus 
drugs (Talluri, 2020). HTS of large compound libraries 
(approved drugs by FDA, proteins, peptides, antibodies, 
and inhibitors) have identified effective antiviral candi-
dates against SARS-CoV-2 infection (Touret et al. 2020).

Fig. 3  Structure of severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) nucleocapsid protein and target sites of potential 
antiviral agents. The virion enters by endocytosis or direct fusion of 
cell through viral membranes. The viral genome is translated into 
two polyproteins, which are cleaved by two viral proteases (3CLpro 
PLpro) to generate a large replication and transcription complex 
orchestrating genome replication and synthesis of mRNAs. New 

viral genomes recruit viral structural proteins to generate new viri-
ons released by exocytosis process. Red arrow indicates the poten-
tial inhibitors used to inhibit various targets. Abbreviations: 3CLpro, 
chymotrypsin-like protease; PLpro, papain-like protease; 3UTR, 3 
untranslated region; 5UTR, 5 untranslated region; pp 1 ab, polypep-
tide 1ab; CYP, cyclophilin; RdRP, RNA-dependent RNA polymerase
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Targeting antiviral protein

eIF4A protein

Eukaryotic translation initiation factor 4 A (eIF4A) is a mem-
ber of the DEAD-box protein helices family. It consists of two 
recA-like domains that are separated by flexible hinge region 
in the center, lined by conserved motifs. This conserved motif 
is called DEAD box which contains amino acids like aspar-
tic acid, glutamic acid, and alanine (Andreou and Kloster-
meier, 2013). The motif of eIF4A interacts with nucleic acid, 
involved in ATP binding and ATPase activity. As a conse-
quence, eIF4A has been demonstrated to have RNA-depend-
ent ATPase activity, ATP-dependent duplex RNA unwinding 
activity, and also involved in initiation of translation shown 
in Fig. 4. The activity of eIF4A is synchronized with com-
plementary initiation factors of translation, which propagate 
its all activities as well as interaction with RNA for protein 
synthesis (Andreou and Klostermeier, 2013; Andreou et al. 
2017). Furthermore, major functions of eIF4A are to remove 
secondary multifaceted structures within the 5′-untranslated 
region and to displace proteins attached to mRNA during 
protein synthesis (Hilbert et al. 2011). The eIF4A protein is 
a key factor involved in translation during viral protein forma-
tion and mediating infection. A study demonstrated that viral 
mRNA uses eIF4A for synthesis of its protein (Montero et al. 
2019). Genomic mRNAs of SARS-CoV-2 have a 5-cap struc-
ture and go through cap-dependent translation via eIF4F. The 
eIF4A is a part of eIF4F protein complex which is associated 
with other two translation initiation factors such as eIF4E and 
eIF4G, in turn connected with eIF4A which is further con-
nected with eIF4E (Nakagawa et al. 2016). In the cap-depend-
ent mechanism of translation, the viral mRNA is engaged with 
eIF4F protein complex, consisted of three functional proteins: 
eIF4E, eIF4A, and eIF4G. The eIF4A and eIF4F are essen-
tial for recruitment of ribosomes for protein synthesis during 
SARS-CoV-2 infection. Consequently, eIF4A is important for 
controlling translation and regulating gene expression at the 
translational level (Montero et al. 2019).

Recently, research has revealed that specific inhibi-
tion of eIF4A can block viral replication and thus help 
the immune system for establishing an effective antivi-
ral response. Inhibition of eIF4A with synthetic or natu-
ral antiviral drugs shows similar inhibition of replica-
tion and translation in SARS-CoV-2. Similarly, natural 
compounds like silvestrol and rocaglamide have been 
reported as a precise inhibitor of eIF4A in viral trans-
lation using virus-infected primary cells (Fig. 5). It is 
also revealed to retain an inhibitory activity toward Ebola 
virus in viral-infected human macrophages (Nebigil et al. 
2020). Additionally, another study conducted using 
human embryonic lung fibroblast (MRC-5) cells infected 
with CoVs has demonstrated that inhibits eIF4A by sil-
vestrol leads to separation of cap-dependent viral mRNA 
translation. Silvestrol has been shown protection against 
MERS-CoV and HCoV-229E with EC50 = 1.3 nM and 
3 nM respectively (Song et al., 2019). Morever, Zotati-
fin is another inhibitor of eIF4A recently comes under 
clinical trials for treatment of SARV-CoV-2 (Biedenkopf 
et al. 2017), which inhibit an enzyme responsible for 
unwinding of messenger RNA structures initiate their 
translation into proteins (Prabhu et al. 2020). The Zotati-
fin has shown potent anti-proliferative activity through 
inhibition of eIF4 against a group of B-cell lymphoma 
cell lines (Müller et al. 2018). Furthermore, in vivo study 
is separated in which influenza virus–infected cells were 
treated with Pateamine A and Silvestrol. They found that 
inhibition of viral protein synthesis and prevention of 
viral genome replication through inhibition of eIF4A 
binding with mRNA can overcome infection. Pateamine 
A irreversibly binds to eIF4A and produces long-term 
inhibition of IAV replication with least cellular toxic-
ity (Slaine et al. 2017). In addition, pateamine A dis-
rupts interaction with eIF4G and decreases the levels 
of eIF4A present in the eIF4F complex. Flavaglines are 
cyclopenta [b] benzofurans found in Aglaia and use as a 
traditional Chinese medicine. These compounds work by 
targeting the eIF4A translation initiation factor and the 

Fig. 4  Structure of eukaryotic translation initiation factor 4 A 
(eIF4A). DEAD box proteins are one of the conserved motifs, con-
sisted of amino acid sequence of proteins containing aspartic acid-

glutamic acid-alanine-aspartic acid. Abbreviations: ATP, adenosine 
triphosphate; RNA, ribonucleic acid
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scaffold proteins prohibitins-1 and 2 (PHB1/2) to per-
form antiviral activity against different types of viruses, 
including SARS-CoV-2 (Nebigil et al. 2020). Flavaglines 
stabilize the eIF4A and 5′UTR interaction by altering 
the conformation of both mRNA and eIF4A. As a result, 
eIF4A recycling is blocked, which leads to an inhibition 
of cap-dependent translation. 40S, small ribosome subu-
nit, m7G, and 7-methylguanosine found at the 5′ end of 
the mRNA to which eIF4E binds (Dmitriev et al. 2020).

Hippuristanol is a polyhydroxysteroid obtained from 
the golden fan coral Isis hippuris. It interacts with the 
C‐terminal domain of eIF4A via motifs V and prevents 
the binding of RNA. Hippuristanol is a selective inhibi-
tor of eIF4A because of the high sequence variance of 
motifs V and VI through DEAD-box helicases (Karthik 
et al. 2014). Antiviral activity of hippuristanol has been 

reported against several viruses such as the norovirus 
and encephalomyocarditis virus (EMCV) and the two 
positive‐stranded RNA viruses, and human T cell leu-
kemia virus type 1 (HTLV‐1) (Tsumuraya et al. 2011; 
Taroncher-Oldenburg et al., 2021).

Plitidepsin was clinically approved for the treatment of 
multiple myeloma with a well-established pharmacoki-
netics and safety profile (White et al. 2021). Plitidepsin 
inhibits the activity of eEF1A and is predicted to inter-
act with the same binding site as didemnin B, which is 
structurally linked to plitidepsin. Plitidepsin has showed 
better results in a phase I/II clinical trial for the treatment 
of COVID-19 and is moving forward into a phase II/III 
COVID-19 (Amanat et al. 2020). Hence, eIF4A could be 
utilized as a therapeutic intervention target in COVID-19 
infections and may obtain promising results in future.

Fig. 5  Mechanism of nucleocapsid inhibitor and eiF4A inhibitor. 
Inhibition of eIF4A with synthetic or natural antiviral drugs prevents 
replication and translation in SARS-CoV-2. Pateamine A and silves-
trol irreversibly bind with eiF4A and inhibit the binding of eiF4A 
with mRNA. On the other hand, nucleocapsid block the phosphoryla-
tion of IRF3 which in turn cause transcription of INF, H3, and PJ34 

which are inhibitors of nucleocapsid. These inhibitors reduced the N 
protein’s binding affinity with IRF3, which leads to the activation of 
INF and hindered viral replication. Abbreviations: IRF-3, interferon 
regulatory factor-3; eiF4A, eukaryotic translation initiation factor 4 
A; NF-kB, nuclear factor kappa B; INF, interferon; TBK1, TANK-
binding kinase
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Cyclophilin

Cyclophilins (Cyps) are sub-group of immunophilins 
belong to enzyme peptidyl-prolyl cis/trans isomerases 
family. Cyps are present in the cells of prokaryote and 
eukaryotes organisms, and regulate intracellular protein 
synthesis, folding, and transportation, and replication of 
RNA viruses, such as influenza A virus, HIV, and HCV 
(Liu and Zhu, 2020). Totally 80 iso-forms of different 
molecular masses have been illustrated in human tissues. 
Out of these isoforms, seven are major Cyps present in 
humans such as Cyclophilin A, Cyclophilin B, Cyclophi-
lin C, Cyclophilin D, Cyclophilin E, Cyclophilin 40, and 
Cyclophilin NK. Cyps are present in both extracellular 
and intracellular space of the cell and secreted in response 
to a variety of stimuli having different natures and inten-
sity (O’Meara et al. 2020). The extracellular cyps like 
Cyclophilin A and Cyclophilin B are concerned with cell 
to cell communication. Cyps are also involved in vari-
ous signaling pathways such as mitochondrial apoptosis, 
inflammation, RNA splicing, and adaptive immunity 
(Thompson et al. 2019). Cyps bind to the CD147 cell 
membrane receptor as well as heparins and then initiate 
arrays of signaling pathways in the cell which are con-
cerned with inflammatory outcomes. In addition, CypA 
is also competent to control human IFN-I reaction to viral 
infections (Rajiv and Davis, 2018).

Moreover, Cyclophilin A and Cyclophilin B play impor-
tant role in replication of many viruses including CoVs, 
human immunodeficiency virus (HIV), hepatitis C virus 
(HCV), measles virus, and influenza A virus (Zhou et al. 
2012). A study demonstrated that Cyclophilin A is an essen-
tial cyps that acts as binding factors for SARS-CoV-2 pro-
teins and required for SARS-CoV-2 proliferation (von Hahn 
and Ciesek, 2015). Another study conducted using plasmon 
resonance biosensor technology reported the interaction of 
Cyclophilin A with nucleocapsid (N) protein of SARS-CoV. 
This statement gets confirmed by another technique in which 
they observed Cyclophilin A as one of the cellular proteins 
integrated into purified SARS-CoV-2 particles by using spec-
trometric pro-filing (Luo et al. 2004; Tanaka et al. 2017). Fur-
thermore, research using nucleocapsid protein (NP) of SARS-
CoV showed that segment of Val235-Pro369 of SARS-NP 
interact with human Cyclophilin A (hCypA) more accurately 
and SARS-NP loop Trp302-Pro310 lock into the catalytic-site 
of hCypA with the help of hydrogen bonding indicate hCypA 
binds NP of SARS-CoV with high affinity, resulting in Cyclo-
philin A play important role in the replication and growth of 
SARS-CoV-2 (Carbajo-Lozoya et al. 2012).

Collectively, this information revealed the significant 
functions of Cyclophilin A in intervening SARS-CoV-2 
infections and inhibition of Cyclophilin A can be a target 
for the advancement of anti-viral therapy. Similarly, Cyp 

inhibitor Alisporivir (ALV) has been demonstrated to 
inhibit viral replication in SARS-CoV, MERS-CoV, MHV, 
and HCoV-229E infected in different culture cells (Dawar 
et al. 2017). Cyclophilin inhibitors can inhibit the replication 
and infection of SARS-CoV-2 into host cells via interact-
ing with CD147 (Liu and Zhu, 2020). ALV with ribavirin 
has been revealed to enhance the antiviral response during 
chronic HCV infection treatment in phase III clinical trials. 
Although more than a 100-fold higher concentration of ALV 
required for SARS-CoV inhibition in cell culture than that 
required for inhibition of HCV replication. However, ALV 
has been showed to lack of antiviral activity against SARS-
CoV mouse model recommending that the drug might not be 
well matched for CoVs infection treatment (De Wilde et al. 
2017). Various non-immunosuppressive cyclophilin inhibi-
tors are developed, such as NIM811, SCY-635, sangliferins, 
CRV431, and STG175. Available studies have reported that 
many of these inhibitors can effectively inhibit the replica-
tion of hCoV-229E, and indicated its potential for human 
SARS-CoVs infection (Liu and Zhu, 2020). On the other 
hand, Cyp is still an attention-grabbing target and inhibition 
of Cyclophilin A is valuable for overwhelming viral infec-
tions leading to the advancement of host-directed anti-CoVs 
therapy.

Nucleocapsid protein

The nucleocapsid protein (N) is a fundamental RNA-binding 
protein fixed in the 3′ end portion of the viral genome, which 
plays an imperative function in viral infection through their 
structural and functional activities. The N proteins from dif-
ferent types of SARS-CoV-2 have difference in length and 
primary sequence (Surjit and Lal, 2008). However, some 
motifs of N protein with functional application are con-
served and have a three-discrete and extremely conserved 
domain association according to sequence similarity. Out of 
these three, two domains, i.e., N terminal domain (NTD) and 
C-terminal domain (CTD) are independently folded struc-
tural regions. The former domain is also known as domain 1 
and later as domain 3. These two domains are separated by 
central region RNA-binding domain/domain 2 (Li, 2016).

Functionally N protein of SARS-CoV-2 has been 
informed to be valuable for the packaging of viral genome 
via interacting with genome RNA and leads to formation of 
elongated, stretchy, helical ribonucleoprotein (RNP) com-
plexes known as viral nucleocapsid. N protein also interre-
lates with the membrane protein of virus during participat-
ing in viral assembly (Chang et al. 2014). Moreover, several 
studies have verified that N protein is essential for RNA 
replication of SARS-CoV-2. The involvement of N protein in 
the synthesis of RNA is carried out through only two steps: 
firstly, intracellularly co-localization of SARS-CoV N pro-
tein with elements of replicase during the commencement of 
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infection and secondly, depends on translocation of N pro-
tein responsible for initiation of gRNA infection (McBride 
et al. 2014).

SARS-CoV-infected cells inhibit the production of 
interferon with the help of SARS-CoV N protein (Shah 
et al. 2020). Thus, N protein acts as a β interferon (IF-β) 
antagonist. The mechanism behind the inhibition of IF-β 
synthesis by N protein might be due to blockage of inter-
feron regulatory factor-3 (IRF-3) and nuclear factor kappa 
B (NF-kB) (Frieman and Baric, 2008). Both IRF-3 and 
NF-kB are important transcription factors, essential for 
interferon gene expression. So, inhibition of the interferon 
response is liable to contribute to the SARS-CoV patho-
genesis (DeDiego et al. 2014).

Therefore, N protein of SARS-CoV-2 is involved during 
viral infection and inhibition of N protein may be useful 
to combat viral infection. The new molecules synthesized 
such as N protein inhibitors prevent the interaction between 
RNA and N protein, resulting in inhibition of viral repli-
cation during infection (Prajapat et al. 2020). Likewise, in 
silico virtual study developed compound H3 as a blocker 
for SARS-CoV-2 NPs which has been further verified by 
X-ray crystallography (Zhou et al. 2020). Moreover, N-(6-
oxo-5, 6-dihydro phenanthridin-2-yl) (N, N-dimethyl amino) 
acetamide hydro-chloride (PJ34) is another N protein inhibi-
tor which has been developed using virtual screening. This 
inhibitor decreased the binding capacity of N proteins with 
RNA and precluded replication of virus (Wang et al. 2016). 
Consequently, the discovery of novel NP-targeting agents is 
very beneficial for the treatment of COVID-19 infections.

Envelope protein

The envelope protein of SARS-CoV-2 is a short, chief viral 
structural protein containing 76 to 109 amino acids (Kuo 
et al. 2007). Moreover, the primary and secondary structure 
confirms that E protein, having a short hydrophilic amino 
terminus, exposed in the membrane toward the cytoplasmic 
side which consisted of 7–12 amino acids along with large 
hydrophobic transmembrane cytoplasmic domain consisted 
of 25 amino acids (Li et al. 2014). The hydrophobic region 
of the transmembrane domain contains at least one predicted 
amphipathic α-helix which upon oligomerizes form an ion-
conductive pore in membrane (Torres et al. 2007). Studies 
revealed that E protein contains a binding motif known as 
the postsynaptic density protein 95 (PSD95)/Drosophila 
disk large tumor suppressor (Dlg1)/(PDZ)-binding motif 
(PBM), which are located at the last four amino acids of 
carboxyl terminus (Teoh et al. 2010). The PDZ domain is 
a protein–protein interaction unit that binds with carboxyl 
terminus of target proteins, involved in the viral infection 
(Hung and Sheng, 2002). Some interaction partners are 
capable to binding with PBM of E protein and are thought 

to be involved in the pathogenesis of COVID-19 (Jimenez-
Guardeño et al., 2014).

Despite its enigmatic nature, several studies are conducted 
to date to demonstrate the function of E protein. The interac-
tion between the cytoplasmic units of the E and M protein 
drives VLP production suggesting that E protein participates 
in viral assembly, release of virions, and crucial to the patho-
genesis of the virus (Hogue and Machamer, 2007; Ye and 
Hogue, 2007). The E protein is also involved in maintaining 
the morphogenesis and phenotype of virus. This phenotype 
suggests that E protein is essential for creating the mem-
brane curvature, which is necessary to acquire the rounded 
and stable virions. Similar to other viruses, the E protein of 
SARS-CoV-2 was shown to form membrane channels with 
selectivity for monovalent cations along with enhanced the 
membrane permeability of bacterial and mammalian cells 
(Madan et al. 2005). This channel-forming activity of SARS-
CoV-2 E protein was recently comprehensive to the human 
coronavirus 229E (HCoV-229E), MHV, and IBV (Wilson 
et al. 2004). More interestingly, the channels formed by E 
proteins show greater preference for sodium ions  (Na+2) 
over potassium ions  (K+2), but in contrast, the ion channels 
formed by the E protein of coronavirus HCoV-229E exhibit 
greater preference for potassium ions  (K+2) over sodium ions 
 (Na+2) (Wilson et al. 2006).

Hexamethylene amiloride (HMA) is an amiloride analog 
which blocks the ion channel activity of HIV, HCV, and 
dengue virus (Ewart et al. 2002). This molecule could also 
inhibit the ion channel activity of the HCoV-229E, suggest-
ing a more divergent structure of coronavirus E protein. 
Furthermore, HMA is also able to inhibit the replication of 
HCoV-229E along with MHV, but not the replication of a 
recombinant MHV with deletion of the entire E gene (Wil-
son et al. 2006). These results indicate that the ion chan-
nel activity of coronavirus E protein is important for virus 
replication.

Spike protein and ACE2

After immense research work, the researchers now revealed 
that COVID-19 is an enveloped virus. This envelope con-
tains a number of unique spike-like proteins known as S-gly-
coproteins, which is a clove-shaped type I-transmembrane 
protein that allow the entry of viral into target cells (Mittal 
et al. 2020). The S-glycoprotein is made of two smaller pro-
tein subunits S1 and S2 and shares 76% amino acid identity 
(Coutard et al. 2020).

The S1 part is consisted of receptor-binding domain 
(RBD) that interacts with the peptidase domain (PD) of ACE 
2 while the S2 subunit is cleaved by the host proteases in 
post-interaction and causes membrane fusion (Shang et al. 
2020). Entry depends on the binding of the S1 surface unit 
to a cellular receptor, which promotes viral attachment to 
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the target cell surface. SARS-S engages ACE2 as the entry 
receptor and uses the TMPRSS2 cell serine protease for 
the priming of S proteins (Hoffmann et al. 2020). SARS-
CoV-2 protein association with ACE2 (cellular receptor) 
is the central determinant of the COVID-19 host system. 
The central domain of COVID-19 spike in other beta-CoVs 
spike is homologous to a related region, which is a spe-
cific contract ACE2. Evidence indicates that human alpha-
CoVs, such as NL-63, also uses ACE2 receptor (Ortega et al. 
2020) and might have provided this linking loop. The spike 
replacement with one or two amino acids may have signifi-
cant effects on COVID-19 spike activity and human ACE2 
receptor. The S-protein binds with ACE2 by fusing with 
plasma membrane and releases RNA genome. This leads to 
replication and initiates exocytosis thereby releases number 
of virus species inside the host alveolar cells (Fig. 6).

Increased prevalence of COVID-19 is also implicated for 
viral entry and modulation of the rennin angiotensin mecha-
nism, which is propagated by the downregulation of ACE2 
expression on the plasma membrane arising from infection 
with SARS-CoV-2 (Robson, 2020). In many models of lung 
injury, ACE2 has been publicized to be pneumoprotective 
because of its impact on angiotensin II degradation (Sparks 
et al. 2011). During the infection with SARS-CoV-2, the 
production of ACE2, downregulation the SARS-CoV-2 
receptors, on the surface of cells. The cause of this down-
regulation seems to be attributed due to internalization of 
ACE2 after the initiation of SARS-CoV-2 (Perrotta et al. 
2020) and the activation of TNFα or metalloproteases of 
Adams family. Because they cleave the extracellular ACE2 
domain from the trans-membranous domain sheds into 
the media (Gheblawi et al. 2020). ACE2 shows pneumo-
protective impact on acute lung damage triggered by acid 
damage (Kuba et al. 2005) and addition of a recombinant 
fusion protein comprising of SARS S protein (Hamming 
et al. 2004). These findings concluded that SARS-CoV-2 S 
protein binds to receptor of the host cell and activates the 
membrane fusion process of virus that take part in virus 
invasion process. The SARS-CoV-2 is replicated in myocar-
dium whereas pulmonary inflammation is correlated with 
ACE2 (Hamming et al. 2004). Several proteases, includ-
ing cathepsin L, have been reported to affect SARS-CoV-2 
entry through cleavage of the S-protein and activation of its 
membrane fusion activity (Simmons et al. 2013).

Several types of vaccinations and antiviral drugs, based 
on S protein, have been evaluated. A study has shown that 
vaccines can be grounded on the S proteins consisted of 
full-length S protein, viral vector, DNA, recombinant S 
protein, and recombinant RBD protein (Kaur and Gupta, 
2020). In vitro analysis of S-based antiviral treatments is 
comprised of RBD-ACE2 blockers, S cleavage inhibitors, 
fusion center inhibitors, neutralizing antibodies, protease 
inhibitors, S-protein inhibitors, and minor interfering RNAs 

(Cannalire et al. 2020). There are some recombinant com-
plexes such as IFN with ribavirin known to partially reduce 
COVID-19 infection.

Monoclonal antibodies mainly target the S1 subunit and 
fusion inhibitors bind to S2 subunit, which could be effective 
therapeutic target for the treatment of COVID-19 infections 
(Millet and Whittaker, 2014). A serine endoprotease, furin, 
cleaves off S1–S2 could be a suitable anti-COVID-19 agent 
(Gioia et al. 2020). Griffithsin is a lectin derived from red 
algae, which binds to spike glycoprotein of SARS-COV and 
HIV glycoprotein 120. However, delivery mechanisms and 
the efficacy of S inhibitors are generally re-evaluated for 
the prevention or treatment of COVID-19 (O’KEEFE et al. 
2010; Wondmkun and Mohammed, 2020).

The RBD of SARS-CoV-2 has a higher ability to bind 
with ACE2 than CoVs and acts as binding receptors for 
COVID-19. Gurwitz recommended the use of accessible 
angiotensin receptor 1 (AT1R) antagonists, such as losar-
tan, as a therapy to minimize COVID-19 infection intensity 
(Matsuyama et al. 2010). Treatment is focused on the detec-
tion and production of unique and efficient monoclonal anti-
bodies to treat COVID-19 infection such as Bevacizumab 
(NCT04305106), Meplazumab (NCT04275245), and Toci-
lizumab (NCT04317092).

SSAA09E2 inhibits the S-ACE2 interaction, SSAA09E1 
inhibits the host protease cathepsin L, and SSAA09E1 
prevents the fusion of the host and viral cell membranes 
(Adedeji et al. 2013). Kao et al. identified 18 small mol-
ecules, targeted the virus entry into human cells through 
S-ACE-2 (Kao et al. 2004). VE607 showed a strong inhi-
bition of SARS-pseudovirus entry in 293 T cells. Other 
two molecules luteolin and tetra-O-galloyl beta-D-glucose 
showed significant inhibition of SARS-CoV and SARS-
pseudovirus infection (Kao et al. 2004; Wu et al. 2005). 
Monoclonal antibodies generated by immunizing spike 
protein of SERS-CoV or B-cells of CoV-infected person. 
M396 is a monoclonal antibody that competes with RBD 
binding (PDB ID: 2DD8) (Prabakaran et al. 2006). Spike-
specific monoclonal antibodies 80R and CR301 block 
S-ACE-2 interactions and neutralize the human SARS-CoV 
(HKu39849 and Tor2) and palm civet strain infections (Du 
et al. 2009; Prajapat et al. 2020). However, further work 
is required to confirm the mechanism of inhibiting SARS‐
CoV‐2 and reducing associated infection.

3CLpro and PLpro

The non-structural proteins 3CLpro and PLpro are the 
major component of SARS-CoV-2 and play an important 
role in viral replication by translating polyproteins from 
viral RNA-genome to active functional proteins (Astuti, 
2020). Genomes of SARS-CoV-2 are comprised of two 
open reading frames ORF1a and ORF1b, encoded by host 
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ribosomes into two respective viral polyproteins pp1a and 
pp1ab. ORF1a contains two cysteine proteases, a pro-
tease specific to papain (PLpro) and a protease specific 

to 3CLpro (Othman et al. 2020). Although PLpro cuts 
the polyprotein’s first three cleavage sites, and 3CLpro 
is accountable for cleavage of subsequent 11 positions 

Activates

TMPRSS2

Cell membrane

ACE2

Attachment

Translation

Release of RNA genome

Fusion with endosomal membrane

Enters into vesicles

Moved to Golgi body

sRNA read by ER

Assembly and budding

Released viruses

into host alveolar cells 

Exocytosis

ER

mRNA

Fusion with plasma membrane 

Replicase

Nucleus

RNA Replication

Fig. 6  Schematic representation of SARS-CoV-2 spike attachment 
protein using cellular attachment factor ACE2 for its pathogenesis. 
The S-protein binds with ACE2 by fusing with plasma membrane 
and releases RNA genome. This leads to replication and initiate exo-
cytosis of virus species inside the host alveolar cells. Green arrow 

signifies activation/enhancement and the red arrow signifies inhibi-
tion/negative impact; blue arrow shows permeability. Abbreviations: 
ACE-2, Angiotensin-converting enzyme-2; TMPRSS2, Transmem-
brane protease serine 2; RNA, ribonucleic acid; mRNA, messenger 
ribonucleic acid; ER, endoplasmic reticulum
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culminating in a sum of 16 non-structural proteins (nsp) 
released into SARS-CoV-2. The 3CLpro controlled the 
activities of SARS-CoV-2 replication complex, represents 
as an attractive target for SARA-CoV-2 therapy. Both 
3CLpro crystal structures revealed that each monomer 
contains structural domains like domains I and II con-
struct of chymotrypsin-like framework with a catalytic 
cysteine and are linked via an extended loop toward a third 
C-terminal domain (Al-Tawfiq et al. 2020). 3CLpro mon-
omer domain contains further domain I (residues 8–101), 
domain II (residues 102–184), and domain III (residues 
201–303). The large loop binds to domain II and III (resi-
dues 185–200). The effective zone of 3CLpro seems to 
have a Cys-His catalytic dyad (Cys145 and His41) found 
at a distinct length between domains I and II (Ulferts 
et al. 2010). At the proteolytic stage, both 3CLpro carry 
glutamine at positions P1 and leucine (low hydrophobic 
residues) at positions P2, P3, and P4 respectively. Limited 
residues are expected at positions P1′ and P2′; however, 
position P3′ shows no clear preference. Recently, it has 
been reported that the structure of 3CLpro from SARS-
CoV2 (PDB code 6LU7) and the accessible assembly of 
3CLpro from CoV (PDB code 1UK4) contain two main 
proteases differentiated by only 12 amino acids, with α 
carbon atoms all present at a distance 1 nm away from the 
3CLpro active site (ul Qamar et al. 2020). The substrate-
binding pockets of COVID-19 are main proteases that 
exhibit an amazingly high level of some residues partici-
pated in substrate binding, including the CYS145-HIS41 
dyad, and HIS163/HIS172/GLU166. The latter residues 
are supposed to deliver the introductory gateway for the 
substrate in the active state of the protomer (ul Qamar 
et al. 2020). Two viral proteases, PLpro and 3CLpro, pro-
cess ORFs and construct 16 non-structural proteins that 
are essential for the membrane-associated duplication 
complex. PLpro has been observed to be multipurpose 
enzymes with deISGylating (deletion of ISG15 conjugates 
from host cell factors) and deubiquitinating (cleavage of 
ubiquitin from host cell factors) properties (Chuck et al. 
2010). In addition, the PLpro C-terminus of nsp3 con-
tains transmembrane domains that anchor the dsDNA, 
unwinding/RNA binding domain, which are essential 
for replications (Neuman, 2016). PLpro is a most drug 
targeting area due to their involvement in the viral poly-
proteins into mature nsp3 and assisting the coronavirus 
into host immune response by competing interaction with 
ubiquitin and ISG15 on host-cell proteins (Kouznetsova 
et al. 2020). Although there is no any protease inhibitor 
available for treatment of MERS, SARS, and COVID-19 
but various studies showed that MERS, SARS-CoV, and 
SARS-CoV-2 PLpro are underway and evidenced that 
such protease inhibitors can prevent SARS-CoV-2 repli-
cation in cultured cells.

RNA‑dependent RNA polymerase

The RNA-dependent RNA polymerase (RdRp) or nsp12 is 
a core component of the virus replication and transcription 
complex. All RNA viruses and some DNA viruses encode 
RdRp that is required for SARS-CoV-2 transcription, rep-
lication, and are involved in synthesis of genomic and sub-
genomic RNAs (Wang et al. 2021). The RdRp complex of 
SARS-CoV-2 is consisted of a nsp 12 core catalytic unit, 
nsp7-nsp8 (nsp8-1) heterodimer, additional nsp8 subunit 
(nsp8-2), and nsp12 for virus RNA replication (Peng et al. 
2020). The polymerase RdRp domain is located on the 
C-terminus and a retained amino acid sequence of Ser-Asp-
Asp (Báez-Santos et al., 2015). RdRp also acts as therapeu-
tic target due to important role in replication of the RNA 
genome. Furthermore, there is absence of counterpart to 
RdRp in mammalian cells, and inhibition of this does not 
cause target-related side effects (Tian et al. 2021). Phar-
maceutical companies are still looking to develop effective 
RdRp inhibitors and block viral replication. There are two 
known classes of RdRp inhibitors: nucleoside analog inhibi-
tors (NIs) and non-nucleoside analog inhibitors (NNIs) are 
used for treatments of virus infections (Tian et al. 2021). The 
well-known RdRp inhibitors are nucleoside analogs such 
as favipiravir, ribavirin, penciclovir, remdesivir, Sofosbuvir, 
EIDD‐2801, and galidesivir which are under investigation 
for the treatment of SARS‐CoV‐2 infection. Remdesivir is 
a prodrug of an adenosine nucleotide analog, which is under 
the clinical trial phase III for COVID-19 treatments. Based 
on clinical trial data, remdesivir got emergency use permit 
in the United States (US) on May 1, 2020, and a special 
approval for emergency use in Japan on May 7, 2020 (Lamb, 
2020) and in Taiwan in late May 2020 with safety ensure.

Favipiravir is an antiviral drug that selectively and 
potently inhibits the RdRp of RNA viruses. It under-
goes intracellular phosphoribosylation into favipiravir 
ribofuranosyl-5′-triphosphate (favipiravir-RTP) (Furuta et al. 
2017). Active favipiravir-RTP acts as a nascent RNA strand 
elongation terminator by competing with purine nucleosides 
for RdRp binding (Sangawa et al. 2013). Some comparative 
study has found that favipiravir exerts more powerful anti-
viral activity against COVID-19 due to faster viral clearance 
and a higher improvement rate in chest imaging than lopina-
vir/ritonavir-treated patients (Furuta et al. 2017).

Ribavirin show antiviral activity against a wide range of 
DNA and RNA viruses. Due to broad-spectrum antiviral effi-
cacy of ribavirin, used as an antiviral therapy during the out-
breaks of extreme SARS in 2003 and MERS in 2012 (Stock-
man et al. 2006; Momattin et al. 2013). The National Health 
Commission of China recommended intravenous infusion of 
ribavirin (500 mg) in combination with lopinavir/ritonavir or 
interferon in the most recent COVID-19 diagnosis and treat-
ment plan (Wang et al. 2020).
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1 3

Daclatasvir and sofosbuvir are well-effective and tolerated 
antiviral drugs against HCV. Sofosbuvir has a broad antiviral 
activity against various viruses, including Dengue and Zika 
virus. Based on experimental in silico and in vitro report that 
sofosbuvir/daclatasvir and ribavirin binds to RdRp of SARS-
CoV-2 (Eslami et al. 2020). The clinivaltrials.gov and Chinese 
Clinical Trail Registry (ChiCTR) websites show several ongo-
ing randomized controlled trials of RdRp inhibitors, which are 
mention in Table 1. Some studies has suggested that theaflavin 
is a natural product, which can be used as a lead compound 
for developing a SARS‐CoV‐2 inhibitor via targeting RdRp 
(Raj et al., 2020). The exact in vivo effect of these drugs is 
yet unclear, however, and further finding may confirm the 
mechanism of inhibiting SARS‐CoV‐2 and reducing associ-
ated infections.

Neuraminidase and M2 ion‑channel protein

Neuraminidase plays an important role in cleavage of terminal 
sialic acid residues from glycoconjugates and is essential for 
virus replication and infectivity (Akhtar, 2020). Neuramini-
dase inhibitors (oseltamivir, zanamivir, and peramivir) are not 
expected to be effective against COVID-19 due to absence 
of this enzyme in SARS-CoV-2. Moreover, oseltamivir with 
ganciclovir and lopinavir/ritonavir was found beneficial to 
treat COVID-19 infections in Wuhan city (Chu et al. 2020; 
Huang et al. 2020). In silico study also found that combina-
tion of oseltamivir-lopinavir-ritonavir c had synergistic effects 
against SARS-CoV-2 (Muralidharan et al. 2020). In Indonesia 
and Singapore, oseltamivir is currently being used as a recom-
mended COVID-19 treatment option.

The M2 channel protein is essential viral envelope protein 
for maintaining pH across the viral envelope, and plays an 
important role during entry and movement across the trans-
Golgi host cell membrane during viral maturation (Skehel 
et al. 1978). Previous studies have shown that amantadine 
could block the p7 protein of HCV, which is crucial to form 
ion channels in host cell membranes (Griffin et al. 2003). In 
1973, amantadine was found to have a potent antiviral effect 
against coronavirus 229E in vitro, and later, it was able to 
block SARS-CoV’s protein-membrane channel activity. Fur-
thermore, amantadine showed good antiviral activity against 
SARS-CoV-2 (Frediansyah et al. 2020) but more molecular 
analysis determines its specificity toward particular statin.

Conclusion and future perspective

SARS-CoV-2 a is single-stranded positive RNA virus and uses 
several host viral proteins and cellular components to com-
plete its replication cycle, including the steps of viral entry, 
replication. Development of drug and vaccine against the 
SARS-CoV-2 is a challenging job due to lack of predictive 

in vitro and animal model, insufficient knowledge regarding 
underlying mechanism of action of disease, lack of targets 
and biomarkers, and a high rate of failed clinical trials. We 
need to know more structural biology, life cycle details, which 
can speed up the drug/vaccine development process against 
SARS-CoV-2. Again, to avoid these types of pandemic insult, 
strict vigilance of viral infection and understanding of viral 
protein and enzyme structure are necessary. Several series of 
small-molecule SARS-CoV-2 inhibitors targeting these pro-
tein and enzymes (eIF4A, cyclophilin, nucleocapsid protein, 
spike protein, ACE2, 3CLpro, and RdRp) have discussed in 
our article. However, most of them were tested in vitro, while 
only a small percentage of these compounds have been evalu-
ated in animal study, and few have advanced into clinical trial 
study. Therefore, further studies should be focused on explor-
ing novel strategies to identify new anti-CoVs compounds, 
elaborated their mechanism of action, improving the efficacy 
of anti-CoVs compounds, and evaluating the in vivo efficacy 
and safety of these compounds in different preclinical and 
clinical studies. Furthermore, development of small-molecule 
CoVs inhibitors with high efficacy and low toxicity will be 
brought for treatment of SARS-CoV-2 infection and related 
disease in the future.
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