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The determination of multiphase flow parameters such as flow pattern, pressure drop and liquid holdup, is a very 
challenging and valuable problem in chemical, oil and gas industries, especially during transportation. There are 
two main approaches to solve this problem in literature: data based algorithms and mechanistic models. Although 
data based methods may achieve better prediction accuracy, they fail to explain the two-phase characteristics 
(i.e. pressure gradient, holdup, gas and liquid local velocities, etc.). Recently, many approaches have been made 
for establishing a unified mechanistic model for steady-state two-phase flow to predict accurately the mentioned 
properties. This paper proposes a novel data-driven methodology for selecting closure relationships from the 
models included in the unified model. A decision tree based model is built based on a data driven methodology 
developed from a 27670 points data set and later tested for flow pattern prediction in a set made of 9224 
observations. The closure relationship selection model achieved high accuracy in classifying flow regimes for 
a wide range of two-phase flow conditions. Intermittent flow registering the highest accuracy (86.32%) and 
annular flow the lowest (49.11%). The results show that less than 10% of global accuracy is lost compared to 
direct data based algorithms, which is explained by the worse performance presented for atypical values and 
zones close to boundaries between flow patterns.
1. Introduction

Multiphase flows in pipes are complex physical processes which are 
very common in chemical industry (Picchi and Poesio, 2017). For exam-

ple, during petroleum transportation, fluids are pushed upwards from 
oil wells using gas injection, water and steam to improve the produc-

tion rate of the system. Once the product is extracted, it is taken to 
processing facilities through a pipeline system, where the complexity of 
the process depends on the ground conditions of the area that in hilly-

terrain carries to a wide range of pipe inclination angles. Accordingly, 
for design and planning of fluid transportation systems it is very impor-

tant to correctly estimate and predict multiphase flow parameters such 
as flow regime, pressure gradient, hold-up, gas and liquid velocities and 
shear stress.

One of the main properties in the study of two-phase flows is the 
flow regime, which makes reference to the spatial distribution of the 
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gas and liquid phases during the flow in pipes. The correct estimation 
of the regimes is fundamental in two-phase analysis, taking into ac-

count that design variables such as pressure drop, phase holdup, rate of 
chemical reaction and others, are strongly related to the registered flow 
pattern (Pereyra et al., 2012). There are two main approaches to predict 
the flow regime in a particular configuration. Firstly, there are direct 
methods based on data analysis that, considering different sets of vari-

ables, can estimate the flow type. Taking into account that flow patterns 
depend on parameters such as pipe inclination, diameter and length, 
physical properties of the phases, and superficial velocities (Shippen 
and Bailey, 2012), many machine learning approaches have been de-

veloped in the last years to identify flow patterns (e.g. Xie et al. (2004); 
Al-Naser et al. (2016); Amaya-Gómez et al. (2019)). These methodolo-

gies can achieve high predictive performance (e.g. accuracy), however, 
they are difficult to interpret do not predict simultaneously more two-

phase flow characteristics apart of the specific regime.
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Fig. 1. Illustration of flow patterns. In the top: (a) bubble flow and (b) annular flow. At the bottom: (c) stratified and (d) intermittent flow types.
The second approach to predict flow patterns, is the use of mechanis-

tic models that rely on theoretical equations to derive flow parameters. 
These methods can predict both, the flow pattern and the two-phase 
characteristics, but they require the definitions of a set of models named 
closure relationships. The closure relationships required are: liquid en-

trainment, gas-liquid interfacial friction, wall friction, mixture friction, 
slug length, slug holdup, slug drift velocity and slug translational ve-

locity (Zhang et al. (2003a)). The main drawback of these models is 
the difficulty on the selection of the correct equations that explain the 
closure relationships.

The main aim of this work is to develop a data-driven methodol-

ogy to select correctly the closure relationships of each submodel of the 
Unified Mechanistic Model for steady-state two-phase flow, using di-

mensionless numbers as input and a database of horizontal flows, and 
to calibrate the performance of the proposed approach on two-phase 
flow pattern prediction. The results of this analysis offer a starting point 
for the study of model selection based on machine learning in fluid dy-

namics, which in addition to flow pattern prediction, provides a great 
estimation of other properties such as pressure drop and liquid hold-

up, key aspects in the design process and real time control strategies. 
Ultimately, this novel approach would pretend to combine the good 
predictive performance of the pure data-driven models with the capac-

ity of the mechanistic models to explain much more characteristics of 
the flow in pipes.

The methodology that is proposed, is built as an ensemble of tree 
based models (similar to random forest or boosted trees), which is 
trained based on the ability to explain the correct flow regime (consid-

ering a 4 class taxonomy: bubble, annular, stratified and intermittent). 
The difference with a direct prediction model is that the type of flow is 
predicted by the set of equations, and the model selects the equations 
with better prediction at each point of the input space (dimensionless 
numbers). After implementing the model, an accuracy of 74.84% was 
registered for flow pattern prediction using the combinations of closure 
relationships obtained for each point of the test set from the algorithm. 
As expected, most misclassifications were presented for observations 
located in the boundaries between similar flow regimes like annular-

stratified and bubble-intermittent. For stratified (ST) and intermittent

(IT) flow regimes, the method shows high accuracies, whereas for bub-

ble (BF) and annular (A) flow types, the predictive performance was not 
as good.

The rest of the paper is organized as follows: Section 2 explains 
multiphase flow patterns, the origin of the data base, the dimension-

less numbers included in the study, and the structure and origin of the 
Unified Mechanistic Model for steady-state two-phase flow. Section 3

describes the machine learning literature background and the proposed 
methodology. Section 4 shows the results of the implementation based 
on the metrics established previously. Section 5 develops a brief analy-

sis of the results making special emphasis on misclassification problems. 
Conclusions and future work are presented in section 6.
2

2. Background

When gases and liquids flow simultaneously in a pipe, depending on 
a wide number of variables, the phases can distribute themselves in a 
variety of configurations. The configuration is determined by the inter-

face distribution, which results in different flow characteristics (Pereyra 
et al., 2012). The overlapping between flow regimes, especially at the 
transition zones makes the identification a difficult work and introduces 
metering errors (Bratland, 2008).

There is not convention in the number of flow patterns in two-phase 
flow due to overlapping and characterization subjectivity, especially 
at the transition zones. Four multiphase flow patterns are considered 
in this work: bubble, intermittent, annular and stratified, which visual 
characteristics are shown in Fig. 1.

In bubble flow (BF), the gas phase is distributed as discrete bubbles 
in a continuous liquid phase, for the case of horizontal flow and inclined 
pipes, the presence of bubbles is higher in the zones which are closer to 
the top of the pipe (Taitel and Barnea, 2015).

Intermittent flow (IT) is registered when the inventory of liquid in 
the pipe is distributed in a non-uniform way in the axial direction, for 
horizontal flow, plugs or slugs of liquid separated by gas zones fill the 
whole cross-section of the pipe with a stratified liquid layer flowing 
along the bottom. For annular flow (A), the liquid flows as a continuous 
film in the border of the pipe due to high velocity of the gas. The last 
flow regime considered was stratified flow (ST), for which liquid flows 
along the bottom of the pipe and gas at the top (Taitel and Barnea, 
2015).

2.1. Estimation of flow regime and the unified mechanistic model for 
steady-state two-phase flow

Several studies have used experimental data to estimate a statistical 
(or machine learning) model that can predict the flow regime given 
observable inputs. The direct methodologies, do not use theoretical 
equations that help to explain the phenomenon. Among the most repre-

sentative studies, Xie et al. (2004) used a transportable artificial neural 
network for the classification of flow regimes in three phase gas/liq-

uid/pulp fiber systems by using pressure signals as input. Tan et al. 
(2007) used features extracted from Electrical Resistance Tomography 
(ERT) data as input of a Support Vector Machine (SVM) algorithm to 
recognize the flow regime. Ozbayoglu and Yuksel (2012) implemented 
a back propagation neural network model for flow pattern identification 
and a regression tree for liquid holdup estimation. Al-Naser et al. (2016)

used ANN for flow pattern identification with a preprocessing stage us-

ing natural logarithmic normalization, to reduce overlapping between 
flow patterns. Amaya-Gómez et al. (2019) proposed a Bayesian super-

vised algorithm with a novel visualization tool for flow pattern maps. 
Recently, deep learning has provided good results in predicting flow 
pattern (e.g. Ezzatabadipour et al. (2017)).

From the methods that rely on mechanistic models, the Unified Flow 
Model proposed in Zhang et al. (2003a), represents one of the most sig-

nificant advances to better determine the multiphase flow properties in 
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Fig. 2. Graphical description of the equation selection model.
pipes. Their model predicts flow pattern transitions, pressure gradient, 
liquid holdup and slug characteristics for all angles from -90◦ to 90◦

from horizontal. Considering slug flow (a subclass of intermittent flow) 
shares transition boundaries with all the other flow regimes, the unified 
model presented by Zhang bases its calculations on the dynamics of this 
flow regime. With this, equations of slug flow are used to calculate the 
slug characteristics and also predict transitions from slug flow to other 
regimes.

The closure relationships included in the Unified Mechanistic Model 
for steady-state two-phase flow consist basically of empirical (or semi-

empirical) equations, established by many authors among different 
studies for different fluid combinations and property values (appendix 
A.2), which can be classified in 8 main models: Entrainment Model, In-

terfacial Friction Model, Wall Friction Model, Mixture Friction Model, 
Slug Model, Slug Body Holdup Model, Slug Drift Velocity Model and 
Slug Translational Velocity Model. As mentioned before, these models 
explain different factors that affect the flow behavior like the wall fric-

tion, interface friction and transition boundaries between slug flow and 
other flow regimes, which are essential for predicting the pattern.

Due to the huge number of possible combinations of equations that 
can be generated from the 8 subgroups of equations included in the 
model, 4 equations were selected from the 4 most important models 
taking into account expert criteria: entrainment models, interfacial fric-

tion models, slug body holdup models and slug drift velocity models, 
leaving the most popular closure relationship in the others.

2.2. Dimensionless numbers

Four dimensionless numbers were estimated from the original vari-

ables included in the data base: the modified Froude number (Fr), 
Weber number (We), Lockhart-Martinelli parameter (Xm) and Eotvos 
number (Eo). The inclusion of these numbers seeks to establish a global 
model and not one adjusted to the range of the variables included orig-

inally.

The modified Froude number and the Lockhart-Martinelli parameter 
(which expresses the superficial pressure gradient ratio), regulate the 
transition boundaries from segregated to non-segregated flow as well as 
annular to non-annular flow. These numbers have been used by authors 
like Graham et al. (1999) for estimating the void fraction, and Thome 
(2003) to deduce the transition from annular flow to intermittent flow.

On the other side, Weber and Eotvos number explain the bubble ag-

glomeration that carries to the differentiation between bubble flow and 
non-bubble flow (Pereyra et al., 2012). In the case of Weber number, 
if the surface tension of the fluid decreases (we are greater) bubbles 
will tend to decrease because of higher momentum transfer between 
the phases. Authors like Zhao and Rezkallah (1993) used this number 
to determine the boundary between different regimes like bubble flow, 
annular flow and slug flow at microgravity conditions.

Eotvos number was used by Clift et al. (2005) to characterize 
shape regimes for bubbles and drops in unhindered gravitational mo-

tion liquids, additionally Ullmann and Brauner (2007) used this non-

dimensional number to analyze the relation between pipe diameter and 
flow pattern transitions.
3

2.3. Experimental data

An experimental data base collected by Pereyra et al. (2012) , which 
consists of the most relevant studies on flow pattern prediction was 
used. The earliest set of data is in Shoham (1982), acquired in 50.8 and 
25.4 mm pipe diameters utilizing air-water at atmospheric conditions, 
which was the first study covering systematically all the inclinations 
angles, from -90◦ to +90◦. Lin (1985) developed horizontal flow exper-

iments in 25.4 mm and 95.4 mm diameter pipes, varying the superficial 
gas velocity between 0.8 and 200 m/s. Four years later, Kouba (1986)

using air-kerosene, studied slug-flow in a horizontal 76.2 mm diame-

ter pipe. Afterward, Kokal (1987) carried out a study of two-phase flow 
patterns in horizontal and slightly inclined horizontal flow, using 25.8, 
51.2 and 76.3 mm diameter pipes, with air and light oil as working 
fluid. On the next decade, Wilkens (1997) developed a study for two 
phase gas-liquid flows at 0◦, 1◦ and 90◦ angles. Only his data for oil 
and CO2 were considered in the present study. Later, Manabe (2001)

analyzed the relation between pressure and flow pattern for oil-natural 
gas systems using 0◦, 1◦ and 90◦ inclinations. Mata et al. (2002) worked 
on a flow pattern map for high viscosity oil and air in a 50.8 mm hor-

izontal pipe. Three years later, Gokcal (2005) developed a study in a 
50.8 mm diameter horizontal pipe for two different liquid viscosities: 
181 and 587 mPa.s. The complete origin of the data is explained in 
detail in the appendix A.1.

The data base consists of a total 37649 experimental data points 
with information related with fluid properties such as density, viscos-

ity and surface tension, pipe configuration parameters like angle and 
diameter, and operational conditions like liquid and gas velocity. The 
previously mentioned variables were used to calculate values of fluid 
dimensionless numbers, which make the model results scalable to other 
variable values not included in the data base. 755 points that did not 
registered flow pattern were deleted.

3. Methodology

It is important to recall that the purpose of the method is not to 
predict directly a response variable (e.g. flow type) given some input 
values. That would be the solved by a standard machine learning predic-

tive algorithm (e.g. boosting, support vector machine, artificial neural 
networks, etc.). Instead, our objective is to solve an inverse problem, 
that is, we aim to select the combination of theoretical model equations 
that better predicts the observed flow pattern. This creates a difficult 
problem given that the main purpose is to estimate a function from 
the dimensionless numbers space (𝕏 ∈ ℝ𝑘) to the theoretical equation 
models space (𝔼) that contains 𝐸 number of models resulted from all 
combinations. However, the observed data correspond to 𝑛 independent 
duplets (𝑥𝑖, 𝑧𝑖), where 𝑧𝑖 is the type of flow in observation 𝑖. The equa-

tion model 𝑒𝑖 is not directly observed. Fig. 2 presents a schematic view 
of the estimation problem.

The objective is to estimate the function 𝑔∗ ∶ 𝕏 → 𝔼 from the data. 
One option would be to first estimate the direct predictive function 
𝑓 ∗ ∶𝕏 → ℤ and then to select for each point 𝑥 ∈𝕏 the model in 𝔼 that 
predicts the expected flow 𝑓 ∗(𝑥). However, this approach has two main 
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drawbacks: (i) in the majority of points 𝑥, there are several models 
(𝑒 ∈ 𝔼) that predict the expected flow class (no unique solution), and 
(ii) the selection of the flow class that each model does is deterministic, 
and therefore, the partition generated in 𝕏 may be very sensitive and 
difficult to interpret.

To obtain a smooth and unique estimator 𝑔̂, we assume that for each 
𝑥, the flow class selection made by equation 𝑒, which we call 𝑒𝑥 ∈ ℤ, 
is the result of a soft-thresholding process where 𝑒𝑥 = argmax𝑧∈ℤ 𝑏

𝑒,𝑥
𝑧 , 

and 𝑏𝑒,𝑥𝑧 are relative belief weights that are larger when the equation 𝑒
has a larger propensity to select flow type 𝑧 for a particular 𝑥. For all 
considerations in this study, the weights 𝑏𝑒,𝑥𝑧 for all 𝑒 ∈ 𝔼 may be re-

scaled to a mass probability function 𝑃𝑒𝑥 . Therefore, the target function

𝑔∗ may be defined on each 𝑥 as

𝑔∗(𝑥) = argmax
𝑒∈𝔼

𝑃𝑍,𝑒𝑥

(
𝑍 = 𝑒𝑥|𝑋 = 𝑥

)
= argmax

𝑒∈𝔼

∑
𝑧∈ℤ

𝑃𝑍 (𝑍 = 𝑧|𝑋 = 𝑥)𝑏𝑒,𝑥
𝑧

.

(1)

Consequently, a logical estimator 𝑔̂(𝑥) corresponds to the equation 
model 𝑒 such that a local calculation (on a neighborhood of 𝑥) of 
the proportion of points that 𝑒 predicts correctly is the largest. With 
this logic, it is possible to adapt local machine learning methods for 
classification. We use a modification of the bagged classification trees 
ensemble algorithm. In the following sections we present a brief expla-

nation of the statistical and machine learning models that inspired the 
methodology, followed by a detailed description of the developed algo-

rithm. Afterwards, metrics to measure the performance of the method 
are described.

3.1. Decision tree

Decision trees are statistical models which are learnt from a given 
training data set to perform a classification or regression task (Aldrich 
and Auret, 2013). Training data set is made of a response vector Z ∈ℝ𝑛

and an input matrix X ∈ ℝ𝑛×𝑘 with number of columns equal to num-

ber of variables, and both with 𝑛 observations. When Z is a categorical 
variable (also known as factor), the model is called a classification tree, 
while in the case of a continuous response the model is known as re-

gression tree.

The fundamental point behind the algorithm for building decision 
tree models is to recursively split the input data space (𝕏) to generate a 
particular number of regions with a higher purity index for the output 
(in the case of classification). Purity is a measure for how homogeneous 
is the classification of the class with the majority of votes in each re-

gion. High purity, means that the partition has a good fit of the data. 
The purity index is established based on the task the model is seeking 
to solve, establishing measures like the gini index for classification or 
the least-squares deviation for regression. When the method stops iter-

ating and the data-driven subspaces have been found, simple models 
or values are fitted to each of the obtained regions. Therefore, a deci-

sion tree consists in a set of non-overlapping local models with regions 
determined by a recursively data driven partition of the training data 
space.

3.2. Purity index

As mentioned before, literature has established many purity indexes 
to measure the performance of classification trees, nevertheless, the task 
treated in this paper is a model selection problem, for which purity 
indexes have not been developed.

For this study development we used the flow pattern as the re-

sponse variable for measuring the perfromance of the model selection 
method, and therefore, our problem can be compared with a classi-

fication rather than regression task. The main difference between a 
classification model and the one developed in this paper, is that for 
each observation we have as much estimated responses as combina-

tions of model equations implemented, while in a regular classification 
4

problem there is only an estimated response per point. Taking into ac-

count this, we proposed a new purity index to help us selecting the best 
combination of equations of the Unified Flow Model based on the flow 
regime prediction. First, for each observation data point, we calculate 
𝑌 , the vector of binary variables that represents for each model com-

bination if the observed flow pattern is predicted correctly or not, for 
example:

𝑌𝑖 = (1,0,1,1,0,… ,1) ∈ℝ𝐸,

where 𝐸 i the number of models considered (for the present case 𝐸 =
256), and 𝑖 = 1, … , 𝑛. Each position, is filled with 1 if the selected model 
predicts correctly the flow pattern or 0 otherwise.

Once the response vector 𝑌𝑖 is obtained for each point, it is possible 
to calculate 𝑦̂𝑝 ∈ℝ𝐸 for each region of the partition (𝑝 = 1, … , 𝑃 ), which 
consists of the total points classified correctly by each combination of 
equations, like a multinomial distribution. 𝑃 stands for the total number 
of partitions the decision tree has in the current iteration. Therefore,

𝑌𝑝 =
∑
𝑖∈𝑅𝑝

𝑌𝑖, (2)

where the sum is over the points in the region 𝑅𝑝. After this vector is 
built up for each region, the values were taken and organized decreas-

ingly, to get the combinations of equations ordered from the best to the 
worst. That is, 𝑌𝑝 = (𝑦[1]𝑝 , 𝑦[2]𝑝 , ⋯ , 𝑦[𝐸]

𝑝 ), where 𝑦[1]𝑝 is the largest value of 
𝑌𝑝. Taking the resulting vector of this process it was possible to establish 
a purity index for model selection

Purity index =
∑
𝑝∈𝑃

2𝑦[1]
𝑝

− 𝑦[2]
𝑝

. (3)

The purity index we defined seeks to find the best combination of equa-

tions for each partition (first term) and differentiate the accuracy of 
this model from the others (second term). If this term is maximized, 
we obtain a good estimation 𝑔̂ according to the definition of the target 
function (1). That is, a high purity index means that the selected equa-

tion model predicts well on region 𝑝 (𝑦[1]𝑝 is large), and also, the rest of 
equations do not predict as well (implying that 𝑏𝑒,𝑥𝑧 is large for the best 
model).

3.3. Bagging

The main advantage of decision tree algorithms relates to their ca-

pability to fit almost any data distribution, nevertheless, this can be 
considered also as a problem if we analyze noisy distributions, which 
can be erroneously over-fitted. The over-fitting can be reduced signifi-

cantly by restricting the complexity of the tree using a stopping criterion 
or by combining decision tree models in ensembles with methods such 
as random forest, boosting and bagging (Aldrich and Auret, 2013).

Bagging, also called bootstrap aggregation, is a general-purpose pro-

cedure for reducing the variance of machine learning methods that is 
frequently used for decision tree ensembles (James et al., 2013). This 
method starts by generating a group of new data sets with the same 
size of the original one by sampling randomly with replacement (boot-

strapping). Once the new sets are created, the same machine learning 
algorithm is applied to each one to obtain different data driven models. 
For classification problems, the final answer for each observation is the 
most frequently class registered by the resulting models.

3.4. Proposed method

We propose a tree based method, using bagging to reduce overfitting 
(the variance of the method), for selecting accurately equations from 
the Unified Flow Model. The method starts by dividing the sample into 
a training set and a test set for a later validation. Once the data set is 
divided, bootstrapping is applied to the training data set to generate 
100 new data sets by sampling randomly with replacement. For each 
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Fig. 3. Confusion matrix structure. The diagonal contains the number of points 
well classified for each flow type.

data set, a 15 partitions data tree is built up for model selection using 
the purity index introduced previously. The established tree-growing 
process is based in popular algorithms such as CART (Breiman et al., 
1984) and C4.5 (Quinlan, 2014), which create subspaces by recursively 
searching for a partition on a single input variable that registers the 
greatest reduction in impurity for the output variable.

The tree construction starts by setting the vector 𝑌𝑖 to each ob-

servation and estimating the total correctly classified points by each 
combination of equations for the database without partitions in 𝑌𝑝. 
Once these vectors are estimated, the purity index is calculated based 
on the original 𝑌𝑝 vector, taking the best two combinations of equations 
for the non-divided database. In the first partition, the method searches 
recursively for a division in each single input, calculating the change in 
the purity index for each possibility, which means, nxm changes in the 
index are estimated, where n stands for the number of observations and 
m for the number of input variables, drawing the first partition over the 
input and observation that registers the greatest change. For the sec-

ond partition the same procedure is repeated, but with a 𝑌𝑝 vector for 
each subset. This time, the method goes over all the observations for 
each input variable, searching initially in the first subset and then in 
the second one, which means that when the method finds the best par-

tition in terms of the purity index, the division is drawn for the value 
of the input variable only in the subset the observation is located. The 
previously explained procedure is repeated until the tree reaches 15 
partitions and 16 subsets are created. Once the subsets are generated, 
the best combination of equations of the Unified Flow Model is assigned 
to each one.

This tree growing process runs simultaneously for each data set gen-

erated by bootstrapping, until the 100th tree is generated. After this 
procedure is over, the method selects the best combination of equations 
for each observation by taking the most frequent selection over all the 
trees and estimates the flow pattern taking the values of the input vari-

ables.

3.5. Evaluation metrics

Taking into account that the proposed method is a model selection 
tool, which result is used for estimating the flow pattern, it is not possi-

ble to build a ROC curve or estimate an AUC considering that the result 
is a flow regime and not a probability, which makes it impossible to 
establish a threshold that can be changed in order to estimate differ-

ent values of sensitivity and specificity. Based on this, the proportion of 
correct classifications (accuracy) was established as the most suitable 
metric for the problem.

For estimating this metric, it is necessary to build a confusion ma-

trix first, which allows a more detailed analysis of the final result. The 
confusion matrix is a table, where each row represents the classes of the 
real values and each column represents the class of the predicted values

(see Fig. 3).
5

Each 𝑥𝑖,𝑗 is the number of observations that corresponds to the class 
𝑖 and are predicted as 𝑗. Based on this it is possible to establish the 
accuracy as shown in the next equation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑖 𝑥𝑖𝑖∑
𝑖

∑
𝑗 𝑥𝑖𝑗

A confusion matrix was built for each data set (train and test) for 
measuring the performance and estimating the accuracy in the model 
construction and validation. The information registered in the confusion 
matrices was also used to analyze which flow regime registered the 
worst classification rate and the causes of the misclassification.

Additionally, the variable importance was estimated for each of the 
inputs by calculating the change in the purity index generated by the 
partitions associated with each variable for each tree. This procedure 
was repeated for all the grown trees to establish the variable importance 
as the percentage of the total purity index change explained by the 
input.

4. Results

This section starts by showing the results obtained for one of the 
decision trees that were grown and its interpretation, followed by the 
confusion matrix obtained for the test data sets, ending with the results 
registered for the variable importance. After implementing all the pro-

posed methodology, accuracies of 75.75% and 74.84% were registered 
for the training and test sets respectively. Also, significant values were 
obtained for variable importance by three inputs (Xm, Eo and Fr), while 
one input (We) presented a low importance on the equation selection.

4.1. Decision tree results

Fig. 4 shows the results for a tree grown based on these inputs, 
where left and right branches represent the positive and negative out-

come of the condition respectively.

Taking into account that the proposed methodology is based in bag-

ging (a non-deterministic algorithm), the trees generated can change for 
each iteration, considering that the data sets created by bootstrapping 
take observations randomly. The grown trees are made of 15 conditions 
which take to 16 leafs that return a number related to a combination of 
closure relationships. The final combination selected by the model, was 
the most frequent sequence returned by the total constructed trees.

4.2. Comparison of model prediction

As mentioned before, after running the tree based model proposed, 
over the test set, the accuracy obtained for the flow pattern prediction 
was 74.84%, with 6903 correctly classified points from the total 9224 
experimental observations as shown in Table 1.

The left side of the table shows the total number of points, correctly 
classified observations and percentage of accuracy per flow pattern. For 
example, in the case of bubble flow (BF) from the total of 912 exper-

imental points, 494 (54.17%) were successfully predicted. A deeper 
analysis of the table shows that the best accuracy was registered for 
intermittent flow (86.32%) while annular flow registered the worst 
(49.11%).

Right side of the table shows the confusion matrix for test set. The 
values registered for the annular regime row present additional causes 
of the poor performance of the classification for this pattern. Looking 
at the values related with intermittent flow and segregated flow for this 
row, it can be seen that 340 (23.25%) and 389 (26.60%) were wrongly 
classified into these groups respectively.

4.3. Variable importance

After building the whole tree based model described before and an-

alyzing its performance on flow pattern classification, it was possible to 
estimate the importance of the variables as established in section 3.5.
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Fig. 4. Estimated decision tree. At each node on split is performed. The left branches represent that the condition is true and the right branches that is false. The 
circles at the final leafs contain the reference number of the predicted combination of closure relationships.
Table 1

Predictive performance of the model evaluated on the test set. The total number 
of points for testing was 9224, and the total accuracy was 0.7484. The right part 
of the table presents the confusion matrix.

Accuracy Confusion matrix

Total Correct Accuracy [%] BF IT A ST

BF 912 494 54.17 494 363 5 50

IT 4489 3875 86.32 251 3875 118 245

A 1462 718 49.11 15 340 718 389

ST 2361 1816 76.91 53 357 135 1816

Total 9224 6903 74.84 813 4935 976 2500

Fig. 5. Variable importance measured as percentage of contribution of each 
predictor to the objective function.

As shown in Fig. 5 the variables that registered the greatest val-

ues for variable importance were Ettvos number, Lockhart-Martinelli 
parameter and the modified Froud number.

Considering the connection between non-dimensional numbers and 
flow patterns explained in section 2.3, the values registered for Xm and 
Fr result consistent with the theoretical relations reported in literature, 
taking into account both dimensionless numbers establish boundaries 
between segregated and non-segregated flow, as well as annular and 
non-annular flow, cases that represent 41.59% of the train set. Follow-

ing the previous analysis, it results expected to register a low value for 
Weber number importance considering it provides a boundary between 
non-bubble and bubble flow, which represents only 10.37% of the com-

plete training set.
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Table 2

Predictive performance on the test set of the direct problem with the same data 
using a random forest algorithm.

Accuracy Confusion matrix

Total Correct Accuracy [%] BF IT A ST

BF 912 667 73.14 667 188 12 45

IT 4489 3945 87.88 155 3945 148 241

A 1462 1157 79.14 12 163 1157 130

ST 2361 1879 79.58 27 326 129 1879

Total 9224 7648 82.91 861 4622 1446 2295

The greatest value for variable importance was registered by Eotvos 
number. Apart of describing the boundary for bubble flow, this dimen-

sionless number has been used in many fluid studies to characterize the 
shape of bubbles in liquid flows, which could have explained the tran-

sitions from slug flow (subclass of intermittent flow) to the other flow 
regimes as established in the Unified Flow Model.

4.4. Comparison with direct predictive problem

Considering that the flow regime is not predicted directly from the 
dimensionless numbers, but through the equations instead, it is ex-

pected that the performance (e.g. accuracy) is not as good as the direct 
problem. One of the questions that appears is how much predictive 
power is lost by using the indirect method that we propose (it is im-

portant to recall that we prefer to use the theoretical equations because 
from them, it is possible to obtain more relevant information).

Table 2 presents the flow regime predictions for the random forest 
predictive algorithm when used with the same dimensionless numbers 
as predictors. The annular (A) and bubble (BF) flows present an im-

provement with respect to the indirect problem, achieving accuracies 
of about 80%, proving that this two types of flow are not so well spec-

ified by the considered theoretical equations. On the other hand, for 
intermittent (IT) and stratified (ST) flows the good accuracies remain 
similar in both methods. The overall accuracy of the direct problem is 
82.9%, and therefore, there is a 8.07% of total accuracy that is lost in 
the pretiction of the flow regime by using the indirect problem and pre-

dict with the set of equations.

Some recent models that implemented the direct problem with sim-

ilar datasets found similar results. For example, Ezzatabadipour et al. 
(2017) implemented deep learning methods with global accuracies of 
81.9%, with bubble flow being the most difficult to predict. Also, Du 
et al. (2018) used convolutional networks in a similar experiment but 
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Fig. 6. Graphical analysis of the predictive performance. Modified Froude number vs Lockhart-Martinelli parameter in logarithmic scale. Darker points are well 
classified.

Fig. 7. Real flow pattern - Fr vs Xm in logarithmic scale.
using images instead of dimensionless number obtaining a global accu-

racy of above 90%.

5. Discussion

5.1. Graphical analysis of model performance

The results shown in Fig. 6 register the correct and misclassified 
points of the test set, in black and blue respectively, against their Mod-

ified Froude number and Lockhart-Martinelli parameter values in loga-

rithmic scale.

As can be seen, most of the points in the test sample have Xm values 
(in logarithmic scale) from -5 and 10 and Fr mostly between 5 and -10, 
where correctly classified points were more frequent than misclassified 
points. However, in the inferior point cloud, is possible to notice some 
regions where the model selection algorithm did not predict flow pat-

tern properly. Specifically, observations which have Xm values greater 
than 7.5 with Fr values lower than 0, registered a poor performance in 
flow pattern prediction with an accuracy of 44.63%. Additional graphs 
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of classification performance against other inputs are presented in ap-

pendix B.

Fig. 7 allows a deeper analysis of the causes of misclassification in 
the lower-right corner of the previous graph. A brief look at the zone 
mentioned before, shows that most of the points there correspond to ob-

servations which registered intermittent flow as real flow regime. The 
analyzed points can be located also at the lower part of Fig. 8 which 
shows the predicted flow pattern for each observation against modified 
Froude number and Weber number values. After crossing the results of 
both graphs it was possible to conclude that the mentioned missclassi-

fied observations were incorrectly classified as bubble regimes, which 
makes sense taking into account the low values of Weber number pre-

sented by these observations.

Other big problem mentioned in section 4.2 was that many annular 
flow observations were missclassified as segregated regimes. As can be 
seen in Fig. 7, these flow patterns register similar values of Lockhart-

Martinelli parameter and modified Froude number, which makes it 
difficult for the tree based model to select different combinations of 
equations in the zone where these flow patterns overlap and also adds 
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Fig. 8. Predicted flow pattern - Fr vs We in logarithmic scale.

Fig. 9. Number of correct predictions per point.
some difficulty to the flow regime prediction made by the Unified Flow 
Model.

5.2. Non-covered zones

As was introduced in the previous section, additionally to the error 
registered by the closure relationship selection method, the 25.16% mis-

classification rate obtained for the test set can be explained partially by 
the lack of predictive capacity registered for the possible combinations 
of closure relationships included in the study. In detail, 1397 (14.95%) 
observations from the test set, which were mostly located in boundaries 
between patterns, did not get correct classifications with any of the 
included combinations, which makes it impossible for the tree based 
algorithm to classify them correctly.

Fig. 9 allows a deeper analysis of the performance of the selected 
combinations of closure relationships in the prediction of the flow pat-

tern for the observations of the test set. The graph shows in darker 
colors the points that obtained a correct classification with a great 
amount of combinations, while lighter colors stand for those that were 
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missclasified by most of them. A brief look at the zones mentioned in 
section 5.1, shows that none of the possible combinations of equations 
established for the study manage to predict correctly the flow pattern 
for points with very high values of Xm and low values of Fr.

Regarding to the problem of missclasification of annular flows, the 
cross analysis of Figs. 9 and 7 shows that the cause of this issue was 
not the combinations of closure relationships set by the tree based algo-

rithm, but the lack of predictive capacity of the selected combinations 
for this zone. In detail, most of the annular flows of the low point cloud 
(low values of Fr) presented wrong classifications for almost all the com-

binations included in the study, which shows that the selected equations 
of the Unified Flow Model are prone to error in the boundary between 
annular and segregated flow.

6. Conclusions

A novel methodology is proposed for selecting closure relationships 
from the different models included in the Unified Flow Model. Con-

sidering the results obtained for flow pattern prediction, we conclude 
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that tree based methods provide an accurate tool for model selection 
in two-phase flow problems with the advantage of being able to pre-

dict also several characteristics such as pressure gradient, holdup, shear 
stress, etc. A total of 27670 points were used to build the model, which 
was tested later in a 9224 point set, registering the highest performance 
for intermittent flow classification (86.32%) and the lowest for annular 
flow (49.11%). The results show that less than 10% of global accu-

racy is lost when using the indirect method, which is explained by 
the worse performance presented for atypical values and zones close 
to boundaries between flow patterns. For example, several bubble type 
flow cases were predicted as intermittent. The misclassifications regis-

tered by the algorithm in these zones, were the result of the predictions 
of the UFM analyzed submodels and not by the selection of closure re-

lationships developed by the decision tree algorithm. This means that 
even if the method is run with more partitions (more combinations of 
closure relationships are assigned) the performance of the model will 
not improve significantly.

Based on the lack of predictive capacity registered by the combi-

nations of equations included in the study for the boundaries between 
similar flow patterns, we recommend for future work and extensions, 
including more proposed closure relationships for each of the 8 mod-

els that conform the UFM, making emphasis in the 4 models which 
the study focused on. In addition, include more dimensionless numbers 
after optimizing the UFM prediction capacity to get a better understand-

ing of the relation between the assigned closure relationships and the 
studied variables. Furthermore, once these problems are solved, the 
model selection performance can be tested in the prediction of other 
properties such as pressure drop and liquid holdup.

For the present study, the studied flow was measured on horizon-

tal pipes. For future research, vertical and pipes with inclinations are 
planned to be added for further evidence and analysis.
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