
Structural bioinformatics

PySFD: comprehensive molecular insights from

significant feature differences detected among

many simulated ensembles

Sebastian Stolzenberg

Department of Mathematics and Computer Science, Computational Molecular Biology Group, Arnimallee 6, 14195

Berlin, Germany

Associate Editor: Alfonso Valencia

Received on April 18, 2018; revised on July 9, 2018; editorial decision on September 15, 2018; accepted on September 20, 2018

Abstract

Motivation: Many modeling analyses of molecular dynamics (MD) simulations are based on a def-

inition of states that can be (groups of) clusters of simulation frames in a feature space composed

of molecular coordinates. With increasing dimension of this feature space (due to the increasing

size or complexity of a simulated molecule), it becomes very difficult to cluster the underlying MD

data and estimate a statistically robust model. To mitigate this “curse of dimensionality”, one can

reduce the feature space, e.g., with principal component or time-lagged independent component

analysis transformations, focusing the analysis on the most important modes of transitions. In

practice, however, all these reduction strategies may neglect important molecular details that are

susceptible to experimental verification.

Results: To recover such molecular details, I have developed PySFD (Significant Feature

Differences analyzer for Python), a multi-processing software package that efficiently selects sig-

nificantly different features of any user-defined feature type among potentially many different

simulated state ensembles, such as meta-stable states of a Markov State Model (MSM). Applying

PySFD on MSMs of an aggregate of 300 microseconds MD simulations recently performed on the

major histocompatibility complex class II (MHCII) protein, I demonstrate how this toolkit can extract

and visualize valuable mechanistic information from big MD simulation data, e.g., in form of net-

works of dynamic interaction changes connecting functionally relevant sites of a protein complex.

Availability and implementation: PySFD is freely available under the L-GPL license at https://

github.com/markovmodel/PySFD.

Contact: s.stolzenberg@fu-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Fueled by perpetual advances in supercomputing capabilities (Glaser

et al., 2015; Shaw et al., 2009; Stone et al., 2010), high-throughput

molecular dynamics (MD) simulations of increasing size and time-

scales are becoming amenable. Most often, these advances are paral-

leled with an increasing heterogeneity in supercomputing resources

(e.g., different compute nodes containing different numbers and

types of CPUs/GPUs). This heterogeneity is reflected in high-

throughput MD datasets in terms of numbers and lengths of

individual MD simulations, and thus demands means to analyze

these data appropriately (Faradjian and Elber, 2004; Preto and

Clementi, 2014; Schaudinnus et al., 2016; Wriggers et al., 2009):

For example, Markov State Models (MSMs; Bowman et al., 2014;

Noé et al., 2009) are capable to compute thermodynamic and kinet-

ic properties from many shorter off-equilibrium MD simulations,

which for practical supercomputing reasons (inter-core/-node com-

munication times, job queuing policies) are much more feasible to

generate than a single, or a few long MD simulations. Also, MSMs

VC The Author(s) 2018. Published by Oxford University Press. 1588

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(9), 2019, 1588–1590

doi: 10.1093/bioinformatics/bty818

Advance Access Publication Date: 21 September 2018

Applications Note

http://orcid.org/0000-0002-8900-6454
https://github.com/markovmodel/PySFD
https://github.com/markovmodel/PySFD
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/


can be used “on-the-fly” in adaptive MD simulations (Bowman

et al., 2010; Doerr and De Fabritiis, 2014; Plattner and Noé, 2015)

that continuously select new restarting points to enhance the sam-

pling of under-explored molecular conformations or transitions.

In particular, MSMs estimate transition probabilities between

micro-states, which are usually defined as clusters in a conformational

feature space (inter-atomic distances, backbone dihedrals, chain

rotamers, . . .). The more complex a simulated system, the higher the

dimension of this feature space, which requires more and better clus-

ters, and more observed inter-cluster transitions to estimate a statistic-

ally robust MSM. This “curse of dimensionality” for such feature

spaces can be alleviated by including only coarse-grained or fewer

localized features, and/or only the most important, uncorrelated eigen

modes in such feature space (principal component analysis, or time-

lagged independent component analysis) (Pérez-Hernández et al.,

2013; Pérez-Hernández and Noé, 2016). By definition, all these re-

duction strategies (and thus an MSM) do not encode all molecular

features at the same time, many of which may be equally important to

understand a protein’s mechanism. In principle, however, such im-

portant features may be recovered a posteriori because each MSM

micro-state represents a set of simulation frames, and thus an average

feature value. For example, by correlating average feature values with

MSM eigenvectors along micro-state (Pérez-Hernández et al., 2013),

one can thus extract features that represent best the slowest eigenvec-

tors of an MSM. Alternatively, one can identify significant feature dif-

ferences (SFDs) among pairs of simulated ensembles—e.g., meta-

stable states (sets) of micro-states, even across different mutants—as

implemented for non-covalent contact frequencies in (Farabella et al.,

2014), or in the PIA (Stolzenberg, 2014; Stolzenberg et al., 2015,

2016), and pyHVis3D (Knapp et al., 2018) tools. In this paper, I have

developed the object-oriented Python package PySFD (Significant

Feature Differences analyzer for Python), a generalized and more

powerful framework that efficiently detects and visualizes significant

differences in any user-defined feature between many pairs or many

groups of molecular simulation state ensembles. As a result, these sig-

nificantly different features can be used to distinguish or even classify

these ensembles from one another for verification of stationary distri-

butions (estimated, e.g., from MSMs) and their underlying simula-

tions, and further inspire novel molecular predictions that are directly

testable in experiments, such as mutagenesis or substituted cysteine

accessibility measurements (Liapakis et al., 1999).

In this paper, I describe the basic concepts of PySFD, and its main

functionalities. In the Supplementary Information, I illustrate its capabil-

ities by applying it on 300ls MD simulations I had performed on an

MHCII (HLA-B1DR*01:01) protein complex (Wieczorek et al., 2016),

an important peptide exchanger in the adaptive immune system.

2 Materials and methods

Given a number of molecular input trajectories for each simulated state

ensemble, PySFD detects and visualizes SFDs in three different stages

(I-III, Fig. 1): In the Feature Extraction stage (I), PySFD considers vari-

ous groups of feature types (SRF, PRF, sPBSF, PPRF, PsPBSF, see

Supplementary Information) in form of classes inherited from the

FeatureAgent class. In each simulation frame, features are tabulated as

Python pandas data frames (McKinney, 2010) and can be further

coarse-grained into user-defined regions by residual identity (and op-

tionally by backbone/side-chain identity) via a user-defined function

(e.g., mean or sum). In stage II (see Supplementary Information), these

feature tables are aggregated into means (and optionally higher statis-

tical moments) with uncertainties, providing a way to characterize

different state ensembles and/or simulated systems in form of SFDs.

These differences can then be used to study molecular mechanisms dir-

ectly, or to generate state- and/or system-independent insights, e.g., in

form of feature type redundancies or feature selection input for various

machine/deep learning algorithms. In stage III (see Supplementary

Information), these SFDs can be overlaid with molecular representa-

tions of the simulated system using the PyMOL (Schrödinger, 2010) or

VMD (Humphrey et al., 1996) programs. In any of these cases, it

remains the user’s responsibility to choose/define meaningful feature

types and other PySFD parameters, and interpret the results in accord-

ance with the particular scientific question being addressed.

3 Conclusion

PySFD is an object-oriented Python package I have developed to detect

and visualize significant feature differences among molecular simula-

tions, such as MD ensembles. In the Supplementary Information, I have

applied PySFD on meta-stable MSM sets of 300 microseconds of MD

simulation performed on the MHCII protein complex. From a machine/

deep learning perspective, PySFD selects (i.e. “filters”) features that are

significantly different between simulated ensembles (i.e. “classes”). This

selection strategy is similar to the feature selection with one-way analysis

of variance (ANOVA) (Saeys et al., 2007), which performs F-tests be-

tween inter-ensemble and intra-ensemble variances, and which is directly

accessible to PySFD feature tables, e.g., via the scikit-learn Python pack-

age (Pedregosa et al., 2011). However, PySFD differs from “ANOVA”

as it retains information about the sign and magnitude of each individual

SFD, which makes PySFD’s “pre-learning” analysis by itself very useful.

Acknowledgements

I thank Christian Blau, Tim Hempel, Simon Olsson, Nuria Plattner, and

Martin Scherer for helpful discussions, and Frank Noé, Lei Shi, and Harel

Weinstein for critically reading an earlier version of this manuscript.

Fig. 1. Workflow of the PySFD software: The PySFD main class receives input

trajectories realizing different molecular ensembles, and FeatureAgent-

derived classes (see Supplementary Methods section), i.e. SRF (single

residual feature), PRF (pairwise residual feature), sPBSF (sparse pairwise

backbone/side-chain feature), PPRF (pairwise, pairwise residual feature), and

PsPBSF (pairwise sparse pairwise backbone/side-chain feature) as arguments

(I) to compute (coarse-grained) feature tables and histograms, feature type

redundancies, and (common) significant feature differences (SFDs) among

the simulated ensembles (II). The feature difference tables can be visualized

via PyMOL and/or VMD (III), as illustrated in the lower right corner by white

and black ribbons representing snapshots of the simulated ensembles 1 and

2, respectively. Residues with SFDs (here, v1 rotamers) are rendered as sticks

and colored by their corresponding ensemble

PySFD: significant feature differences analyzer 1589

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty818#supplementary-data


Funding

This work has been supported by the Deutsche Forschungsgemeinschaft

(DFG) “Eigene Stelle” grant no. STO 1177/1-1. This research used resources

of the Oak Ridge Leadership Computing Facility (project IDs: BIP103 and

BIP149), which is a DOE Office of Science User Facility supported under

Contract DE-AC05-00OR22725.

Conflict of Interest: none declared.

References

Bowman,G.R. et al. (2010) Enhanced modeling via network theory: adaptive

sampling of markov state models. J. Chem. Theory Comput., 6, 787–794.

Bowman,G.R. et al. (2014) An Introduction to Markov State Models and

Their Application to Long Timescale Molecular Simulation, Vol. 797.

Springer Science & Business Media, New York.

Doerr,S. and De Fabritiis,G. (2014) On-the-fly learning and sampling of ligand

binding by high-throughput molecular simulations. J. Chem. Theory

Comput., 10, 2064–2069.

Farabella,I. et al. (2014) Allosteric signalling in the outer membrane transloca-

tion domain of papc usher. Elife, 3, 79–91.

Faradjian,A.K. and Elber,R. (2004) Computing time scales from reaction

coordinates by milestoningx. J. Chem. Phys., 120, 10880–10889.

Glaser,J. et al. (2015) Strong scaling of general-purpose molecular dynamics

simulations on gpus. Comp. Phys. Commun., 192, 97–107.

Humphrey,W. et al. (1996) Vmd: visual molecular dynamics. J. Mol. Graph.,

14, 33–38.

Knapp,B. et al. (2018) pyhvis3d: visualising molecular simulation deduced

h-bond networks in 3d: application to t-cell receptor interactions.

Bioinformatics, 1, 3.

Liapakis,G. et al. (1999) The substituted-cysteine accessibility method (scam) to

elucidate membrane protein structure. Curr. Protocols Neurosci., 8, 4–15.

McKinney,W. (2010) Data structures for statistical computing in python. In:

van der Walt, S. and Millman, J. (eds), Proceedings of the 9th Python in

Science Conference, pp. 51–56. https://scholar.google.de/scholar?q¼data

structuresþforþstatisticalþcomputingþinþpython&hl¼en&as_sdt¼0&as_

vis¼1&oi¼scholart.

Noé,F. et al. (2009) Constructing the equilibrium ensemble of folding path-

ways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. USA,

106, 19011–19016.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Machine

Learn. Res., 12, 2825–2830.

Pérez-Hernández,G. and Noé,F. (2016) Hierarchical time-lagged independent

component analysis: computing slow modes and reaction coordinates for

large molecular systems. J. Chem. Theory Comput., 12, 6118–6129.

Pérez-Hernández,G. et al. (2013) Identification of slow molecular

order parameters for markov model construction. J. Chem. Phys., 139,

015102.

Plattner,N. and Noé,F. (2015) Protein conformational plasticity and complex

ligand-binding kinetics explored by atomistic simulations and markov mod-

els. Nat. Commun., 6, 7653.

Preto,J. and Clementi,C. (2014) Fast recovery of free energy landscapes via

diffusion-map-directed molecular dynamics. Phys. Chem. Chem. Phys., 16,

19181–19191.

Saeys,Y. et al. (2007) A review of feature selection techniques in bioinformat-

ics. Bioinformatics, 23, 2507–2517.

Schaudinnus,N. et al. (2016) Global langevin model of multidimensional bio-

molecular dynamics. J. Chem. Phys., 145, 184114.

Schrödinger,L. (2010) The pymol molecular graphics system, version 1.3 r1.

Py-MOL, The PyMOL Molecular Graphics System, Version, 1.

Shaw,D.E. et al. (2009) Millisecond-scale molecular dynamics simulations

on anton. In: Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis. ACM, Portland, Oregon,

USA, p. 39.

Stolzenberg,S. (2014) Multi-scale computational studies of molecular mecha-

nisms in the function of membrane-proteins in the family of neurotransmit-

ter transporters. Phd Dissertation, Cornell University.

Stolzenberg,S. et al. (2015) Mechanism of the association between naþ bind-

ing and conformations at the intracellular gate in neurotransmitter: sodium

symporters. J. Biol. Chem., 290, 13992–14003.

Stolzenberg,S. et al. (2016) Computational approaches to detect allosteric

pathways in transmembrane molecular machines. Biochim. Biophys. Acta,

1878, 1652–1662.

Stone,J.E. et al. (2010) Gpu-accelerated molecular modeling coming of age. J.

Molecular Graphics Model., 29, 116–125.

Wieczorek,M. et al. (2016) Mhc class ii complexes sample intermediate states

along the peptide exchange pathway. Nat. Commun., 7, 13224.

Wriggers,W. et al. (2009) Automated event detection and activity monitoring

in long molecular dynamics simulations. J. Chem. Theory Comput., 5,

2595–2605.

1590 S.Stolzenberg

https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.de/scholar?q=data+structures+for+statistical+computing+in+python&hl=en&as_sdt=0&as_vis=1&oi=scholart

