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The efferent auditory nervous system may be a potent force in shaping how the
brain responds to behaviorally significant sounds. Previous human experiments using
the frequency following response (FFR) have shown efferent-induced modulation of
subcortical auditory function online and over short- and long-term time scales; however,
a contemporary understanding of FFR generation presents new questions about
whether previous effects were constrained solely to the auditory subcortex. The present
experiment used sine-wave speech (SWS), an acoustically-sparse stimulus in which
dynamic pure tones represent speech formant contours, to evoke FFRSWS. Due to
the higher stimulus frequencies used in SWS, this approach biased neural responses
toward brainstem generators and allowed for three stimuli (/bO/, /bu/, and /bo/) to
be used to evoke FFRSWS before and after listeners in a training group were made
aware that they were hearing a degraded speech stimulus. All SWS stimuli were
rapidly perceived as speech when presented with a SWS carrier phrase, and average
token identification reached ceiling performance during a perceptual training phase.
Compared to a control group which remained naïve throughout the experiment, training
group FFRSWS amplitudes were enhanced post-training for each stimulus. Further,
linear support vector machine classification of training group FFRSWS significantly
improved post-training compared to the control group, indicating that training-induced
neural enhancements were sufficient to bolster machine learning classification accuracy.
These results suggest that the efferent auditory system may rapidly modulate auditory
brainstem representation of sounds depending on their context and perception as
non-speech or speech.

Keywords: frequency following response (FFR), efferent, top-down, sine-wave speech perception, auditory
learning

INTRODUCTION

The mammalian auditory system contains extensive efferent innervation descending from the
cortex to subcortex and inner ear (Winer, 2005). Numerous animal modeling studies suggest that
these projections facilitate neuroplastic functional changes on multiple time scales and at multiple
levels of the subcortical auditory system. For example, online modulation of auditory function has
been observed at the level of the cochlea (Xiao and Suga, 2002; May et al., 2004; Dragicevic et al.,
2015; Terreros and Delano, 2015; Delano and Elgoyhen, 2016; Lauer et al., 2021), cochlear nucleus
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(Hernandez-Peon et al., 1956), and inferior colliculus (Slee and
David, 2015; Shaheen et al., 2021). Short- and long-term training
also alters physiologic function in the same structures (Gao and
Suga, 1998, 2000; Yan and Suga, 1998, 1999; Suga et al., 2000,
2002; Ji et al., 2001; Ma and Suga, 2001; Yan et al., 2005; Malmierca
et al., 2009). Inversely, obliterating or temporarily silencing
corticofugal efferent connections disrupts online modulation and
short- and long-term training effects measured subcortically (e.g.,
Bajo et al., 2010; León et al., 2012). Together, these studies suggest
that efferent activity is a potent force in shaping how the nervous
system responds to behaviorally significant sounds, even at the
earliest stages of auditory processing.

Efferent-induced changes in human subcortical auditory
function have, by necessity, almost exclusively been assessed
through non-invasive objective measurements. Some reports
have demonstrated that otoacoustic emissions (i.e., proxy
measures of outer hair cell function) are modulated online
by attention (Wittekindt et al., 2014; Smith and Cone, 2015;
Hernandez-Perez et al., 2021) or through short- or long-term
training (Perrot et al., 2006; de Boer and Thornton, 2008;
Bidelman et al., 2014, 2016, 2017). Other reports using similar
methodologies have failed to replicate these findings (Stuart
and Butler, 2012; Francis et al., 2018; Jedrzejczak et al., 2020).
A variety of electrophysiologic measures has been used to study
online or training-based neuroplastic functional changes in the
human auditory subcortex including the auditory brainstem
response (ABR) and frequency following response (FFR). As
a general principle, the “classic” ABR does not appear to be
altered by attention (Picton and Hillyard, 1974; Woldorff et al.,
1987; Connolly et al., 1989; Gregory et al., 1989; Hackley
et al., 1990), whereas the FFR literature presents a less cohesive
narrative. Seminal work by Galbraith and Arroyo (1993) and
Galbraith et al. (1995, 1998, 2003) suggested that FFRs to simple
(e.g., tonal) and complex (e.g., dichotic speech) stimuli were
modulated during auditory or visual attention. While some
researchers have replicated these findings (e.g., Hairston et al.,
2013; Lehmann and Schönwiesner, 2014), others have failed to
observe attention effects and have questioned whether previous
results were influenced by task-based differences in FFR residual
noise (Ruggles et al., 2012; Varghese et al., 2015). More recent
studies demonstrate FFR enhancements during active listening
to ecologically valid continuous speech (Forte et al., 2017; Etard
et al., 2019; Saiz-Alía et al., 2019).

A larger body of FFR literature supports the supposition
that short- and long-term training induce neuroplastic changes
in the auditory subcortex over time. Studies in which listeners
were trained to discriminate stimuli by focusing on a specific
sound feature (e.g., global pitch or dynamic pitch contours)
have reported enhancement of the neural representation of the
trained feature (e.g., Russo et al., 2005; Song et al., 2008, 2012;
Carcagno and Plack, 2011; Chandrasekaran et al., 2012; Skoe
et al., 2014). These changes were noted after multiple hours
or days of training; however, additional studies have reported
rapid FFR modulation occurring within minutes of training onset
(e.g., Skoe and Kraus, 2010; Skoe et al., 2013). Similar and more
robust enhancements are observed in musicians (Wong et al.,
2007; Bidelman and Krishnan, 2009) and tonal language speakers
(Krishnan et al., 2005; Swaminathan et al., 2008; Krishnan and

Gandour, 2009) who, by virtue of their lived experiences, have
undergone a form of long-term auditory training (see Kraus
and Chandrasekaran, 2010; Strait and Kraus, 2014; Kraus and
White-Schwoch, 2015 for reviews).

The majority of FFR studies examining online or training-
related changes in neural function have focused on neural
representation of the speech envelope and its harmonics
(FFRENV ). Recent evidence suggests that although the FFRENV
arises primarily from the auditory subcortex (Chandrasekaran
and Kraus, 2010; Bidelman, 2015; Bidelman and Powers,
2018; Bidelman et al., 2018a), cortical contributions may
also be present, particularly for stimuli with fundamental
frequencies < ∼150 Hz (Coffey et al., 2016, 2019). This new
understanding of FFRENV origins presents the possibility that
neuroplastic changes observed in some previous studies may
not be constrained to the subcortex. One way to ensure
that measured neural responses are biased exclusively toward
subcortical generators is to use stimuli comprised of behaviorally-
significant higher frequency (>200 Hz) speech content, as more
caudal generators begin to dominate the FFR with increasing
stimulus frequencies (Gardi et al., 1979; Galbraith et al., 2001;
Tichko and Skoe, 2017).

Sine-wave speech (SWS) is an acoustically manipulated form
of speech in which formant trajectories are represented by time-
variant sine waves, and the remainder of the acoustic signal is
discarded (Remez et al., 1981). It can therefore be conceptualized
as speech “fine structure” that has been spectrally reduced to
two or three dynamic frequency components. The range of
average first (F1) and second (F2) formant frequencies in adult
American English speakers is ∼300–775 and ∼900–2,700 Hz,
respectively (Lindblom, 1990). Because the upper frequency limit
of the FFR is approximately ∼1,200–1,300 Hz (Bidelman and
Powers, 2018), much of the F1 and F2 formant space may be
captured by FFRs evoked by SWS (FFRSWS). A critical advantage
of SWS is that naïve listeners do not hear it as speech (Remez
et al., 1981; Barker and Cooke, 1999; Möttönen et al., 2006);
however, with minimal instruction and/or training, listeners
achieve a high level of SWS comprehension. Consequently,
it is possible to use identical speech-like stimuli to evoke
FFRSWS pre- and post-engagement of the auditory efferent system
through online or brief short-term training activities. While the
neural networks involved in this top-down process are not fully
understood, recent reports examining cortical responses to SWS
(or vocoded speech) indicate that activity from different brain
networks is involved based on whether the signals are perceived
as speech or non-speech (Davis and Johnsrude, 2003; Eisner
et al., 2010; Hervais-Adelman et al., 2012; Khoshkhoo et al.,
2018). Specifically, SWS is represented in the auditory cortex
based on “bottom-up” acoustic features in naïve listeners. When
listeners undergo a perceptual shift and begin to understand these
degraded signals as speech, left inferior frontal cortex activity
increases significantly while auditory cortex activity remains
stable (Khoshkhoo et al., 2018). Given the observations that
active listening sequentially modulates neural tuning in the same
cortical networks in a top-down fashion (e.g., Atiani et al., 2014),
it is possible that these modulatory effects continue into the
auditory brainstem via the efferent system (Bidelman et al., 2019;
Price and Bidelman, 2021).
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In the present experiment, three SWS tokens, differing
mainly in their F1 contours, were used to evoke FFRSWS
before and after a brief auditory training paradigm in which
listeners were informed that they were listening to degraded
speech and were asked to classify each token. These results
were compared to FFRSWS measured from a control group,
which did not undergo training. FFRSWS were confirmed
to be of neural origin with latencies suggesting brainstem
generators and high stimulus-to-response cross-correlations.
In the test group, all SWS stimuli were rapidly perceived
as speech when presented with a SWS carrier phrase in a
brief training phase, and average token identification reached
ceiling performance within 25 training trials or less per
stimulus. FFRSWS amplitudes in the test group were enhanced
post-training for each stimulus compared to the control
group. Further, linear support vector machine classification
of FFRSWS significantly improved post-training in the test
group compared to controls, indicating that training-induced
neural enhancements were sufficient to bolster machine learning
classification accuracy. These results suggest that the efferent
auditory system may rapidly modulate auditory brainstem
representation of sounds depending on their context and
perception as non-speech or speech.

MATERIALS AND METHODS

Participants
This study was approved by the University of Texas at Austin
Institutional Review Board. Eighteen adults (mean age = 22.2
years) with no history of audiologic or neurologic injury were
enrolled. Half of the participants were placed in a training group
and the other half served as untrained controls. Participants had
normal hearing (≤25 dB HL) from 250 to 8,000 Hz bilaterally.
Each participant provided written consent and completed 3 h of
testing for which they were compensated.

Sine Wave Speech Stimuli
Three naturally produced CV speech tokens, /bO/, /bu/, and /bo/,
were recorded (44,100 Hz sampling rate) from an adult male
speaker with a Standard American English accent. The speaker
was told to maintain constant voice pitch across all recordings.
Each CV token was 335 ms in duration, and cosine squared ramps
were applied to the last 50 ms of each stimulus to equate and
smooth offsets across stimuli. The natural CV tokens were then
converted to SWS in Praat software (Boersma, 2009) using the
approach developed by Darwin (2003). This approach uses linear
predictive coding analysis to identify formant center frequencies
and amplitudes within a sliding window over the stimulus. The
formants are then replaced with time-varying sinusoids, and
all other speech content is discarded (Figure 1). Only the first
two formants from the original stimuli were kept, as FFRs were
unlikely to be evoked by higher frequency formants. A carrier
phrase (“The word is ____.”) that was only used in the brief
training phase for the training group (described below) was also
converted to SWS in the same manner described above. All SWS
stimuli were RMS normalized to ensure equal presentation level.

The three vowels in the CV stimuli were selected for multiple
reasons related to their relative positions in the F1/F2 formant
space. First, phase-locking in the auditory nervous system
becomes poorer as stimulus frequency increases. Consequently,
stimuli comprised of lower frequencies generate more robust
FFR responses (e.g., Bidelman and Powers, 2018). The vowels
/O/, /u/, and /o/ have the lowest possible F1 and F2 frequencies
in American English and are therefore the most ideal SWS
candidates for evoking robust FFRsWS. Second, the vowels
primarily differ in their F1 contours, whereas the F2 contours
are less disparate. The range in F1 frequencies for the three
vowels was ∼300–675 Hz, whereas the range in F2 was ∼1,100–
1,300 Hz. Because CV differences were most pronounced in
their F1 frequencies, we anticipated that listeners in the training
group would primarily focus on this feature to successfully
complete the auditory training task and that neural enhancement
related to the brief training period would be apparent at the F1
frequency (described below). Third, the total range of F1 and F2
stimulus frequencies (∼300–1,300 Hz) biases the FFR to reflect
more caudal subcortical generators (e.g., Galbraith et al., 2001;
Bidelman, 2018).

Procedure
Training Group
All experimental procedures occurred in a double-walled sound
booth with participants seated in a reclining chair. Auditory
stimuli were presented diotically through electromagnetically
shielded ER-3 insert earphones (Etymotic Research, Elk Grove
Village, IL), and visual prompts (used only in the training
phase) were presented through a Dell PC monitor. Experiment
stimuli were programmed and controlled via Neuroscan’s
GenTask module (Compumedics Neuroscan, Charlotte, NC). The
experiment began with a pre-training phase in which FFRSWS
were evoked by /bO/, /bu/, and /bo/ SWS tokens presented in
random order. Half of the stimulus presentations were in one
polarity (“Polarity A”) and half were in the opposite polarity
(“Polarity B”). Each stimulus was presented in each polarity
1,000 times for a total of 6,000 sweeps. The intertrial interval
between stimuli was 600 ms. During the pre-training phase, each
participant was asked to remain still while quietly watching a
subtitled movie or show of his or her choosing.

The training phase of the experiment began upon conclusion
of the pre-training phase and after a brief break. Participants
were notified that the stimuli they were hearing in the previous
block were modified speech signals and that the training phase
would require them to learn and identify the speech signals
using a response keypad (Compumedics Neuroscan, Charlotte,
NC). No additional instruction was given. At the beginning of
each training trial, participants heard the SWS carrier phrase
“The word is _____.,” with one of the three SWS tokens
randomly presented as the target word. Simultaneously to the
auditory presentation of the carrier phrase and target word,
the participants saw a visual prompt on a monitor located
directly in front of them and outside of the sound booth. The
prompt depicted a visual representation of the carrier phrase
with a blank in the target word space, exactly as written in
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FIGURE 1 | Waveforms and spectrograms of /bO/, /bu/, and /bo/ SWS stimuli.

the italicized quote above. The total duration of the carrier
phrase and target word was 1,500 ms; an additional 500 ms
of silence was appended to the end of each carrier and target
presentation to encourage participants to remain still prior to
pressing the response keypad to submit their answer following
the next prompt. Participants then saw a slide on the monitor
with possible target words written non-phonetically as “bah,”
“boo,” or “bow.” The participant indicated which SWS word
was heard by pressing one of three buttons on the response
keypad, which was then followed by a 600 ms intertrial interval.
Visual feedback (“Correct” or “Incorrect”) was then given to
participants, which was followed by another 600 ms interval
before the onset of the next trial. This procedure was repeated 25
times per stimulus for a total of 75 training trials. Relatively few
training trials were chosen based on previous reports that SWS
becomes rapidly intelligible with very little training (Remez et al.,
1981; Möttönen et al., 2006).

A testing phase followed the training phase. The main purpose
of the testing phase was to ensure that participants retained
SWS identification accuracy in the absence of the carrier phrase,
which provided additional “samples” of the speaker’s formant
structure. In the testing phase, each trial began with the random
presentation of a SWS target token. After a 600 ms pause,
participants were invited to indicate their responses on a keypad,
using the same slide described above with written target words as
a reference. Participants had 900 ms from the onset to indicate
their responses. Feedback was not provided in the test phase.
Following training and testing phases, a post-training phase,
parametrically identical to the pre-training phase, was conducted.

Control Group
The control group underwent passive FFRSWS measurements that
were identical to pre-training and post-training measurements

in the training group. In place of the SWS training and testing
phases, the control group was asked to watch an unrelated
captioned television show and answer comprehension questions
related to its content. While control group participants watched
the captioned television show, they were exposed to the same
carrier sentences as the test-group; however, they were never
told that they were hearing modified speech at any point of
the experiment. None of the control participants perceived the
SWS stimuli to be speech according to a post-experiment survey.
The purpose of including the control group in this study was
to determine if pre- and post-training FFRSWS enhancements
in the test group were simply related to exposure to the SWS
stimuli during the recording session and not due to efferent
modulation following a perceptual shift from non-speech to
speech perception. Note that, for simplicity, we refer to the first
and second passive FFRSWS measurements for test and control
groups as “pre- and post-training” measurements throughout
the manuscript, even though the control group did not undergo
auditory training.

EEG Acquisition and Pre-processing
Electrophysiologic responses were obtained with a Neuroscan
SynAmps2 system (Compumedics Neuroscan, Charlotte, NC).
Responses were recorded at a 5,000 Hz sampling rate via a single-
channel bipolar montage, Fpz (+), C7 vertebra (−), forehead
(GND), and amplified by a factor of 100,000. Continuous data
were exported from Curry 8 software, and further analyses
were performed offline in MATLAB (The MathWorks, Natick,
MA). All continuous data were first bandpass filtered from 100
to 2,400 Hz. For pre- and post-training FFRSWS, continuous
responses were epoched from −50 to 550 ms (re: SWS token
onset), and single-trial responses were grouped by stimulus
type. Responses were corrected for insert earphone delays by
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subtracting 1 ms from the epoched data. Epochs were detrended,
artifact rejected at ± 50 µV, and baseline corrected. Remaining
sweeps were used to create grand average FFRSWS for each
stimulus such that individual polarities (A and B) as well
as “added” [(A+B)/2] and subtracted [(A−B)/2] waveforms
could be independently evaluated. Individual polarities and
subtracted waveforms were used in a cross-correlation analysis
(described below) to verify that FFRSWS were neural in origin.
Added polarity responses are generally used to accentuate neural
representation of the envelope (Aiken and Picton, 2008). Because
the stimuli in the present study did not have envelopes, added
polarity waveforms were evaluated mainly as a quality control
measure to ensure that FFRSWS were not obliterated (which
indicates that the measured responses are stimulus artifact or
cochlear microphonic). In some cases, low amplitude waveforms
containing energy at F1∗2 were observed in the added polarity.
This likely occurs because phase locked neural responses evoked
by one stimulus polarity are temporally shifted by a half-cycle
relative to the opposite polarity due to half-wave rectification
(see Aiken and Picton, 2008; Lichtenhan et al., 2013). Adding
these responses together can produce a doubling of the stimulus
frequency and provides additional evidence that the measured
responses are from neural generators.

ANALYSES

Test Group Training- and Testing-Phase
Response Accuracy and Reaction Time
Training group response accuracy and reaction time were
evaluated using behavioral data from training and test phases,
respectively, as both measures are indicative of auditory training
effects (e.g., Ritter et al., 1972; Song et al., 2008). Response
accuracy, defined binarily on each trial as “correct” or “incorrect,”
was analyzed using mixed effects logistic regression with trial
number and stimulus type as independent variables. Reaction
time, defined as the post-stimulus onset time (re: to SWS target)
at which respondents pressed the response keypad to indicate
their choice, was evaluated using multiple linear regression with
trial number and stimulus type as independent variables.

Stimulus-to-Response Cross-Correlation
Electromagnetic stimulus artifact, cochlear microphonic, and
FFR waveforms can all mimic periodic characteristics of the input
stimulus. A common method used to evaluate whether measured
electrophysiologic responses are from neural generators or non-
neural contaminants is to perform a cross-correlation between
the stimulus and response. In this procedure, correlations
between stimulus and FFR waveforms are calculated as the
FFR waveform is temporally shifted relative to the stimulus
waveform on a point-by-point basis (Skoe and Kraus, 2010).
The time lag that produces the largest correlation coefficient is
an estimated delay between stimulus and response. Responses
generated by the auditory nerve and brainstem are expected
to have a delay of ∼3–10 ms, depending on the electrode
montage, stimulus frequency, and interaction between multiple
neural generators as they reach scalp electrodes (e.g., Galbraith

et al., 2001; Tichko and Skoe, 2017; Bidelman, 2018). In contrast,
cochlear microphonic (arising from hair cell alternating currents
primarily in the basal tail of the basilar membrane traveling
wave; see Eggermont, 2017 for review) and stimulus artifact
have short delays of ∼0–1 ms (Gardi et al., 1979). Stimulus-
to-response cross-correlations were calculated for individual
polarities (A and B) and subtracted waveforms evoked by each
SWS stimulus in the pre- and post-training phases for test
and control groups. SWS stimuli were first down-sampled
from 44,100 to 5,000 Hz to match the FFRSWS sampling rate,
resulting in 0.2 ms precision in delay estimates. The maximum
possible time delay producing the largest correlation coefficient
was constrained between ±20 ms. Responses for which the
estimated delays were within 3–10 ms were considered to be of
neural origin. These responses were kept for further analysis.
Cross-correlation coefficients, which are constrained between
−1 and 1 and are non-normally distributed, were transformed
to Fisher z-values (Cohen et al., 2013). A three-way multiple
analysis of variance (MANOVA) with repeated measures was
conducted to assess the impacts of group (test vs. control).
training status (pre- vs. post-training), and stimuli (/bO/, /bu/,
and /bo/) on participants’ FFRSWS latencies and z-transformed
cross-correlation coefficients.

Fourier Analyzer
In contrast to a Fourier transform, which is commonly used
to analyze steady-state stimuli/responses, a Fourier analyzer
(FA) provides a better estimate of response amplitudes at
frequencies of interest for signals with time-varying spectra
(Aiken and Picton, 2006). Because FFRs are expected to follow
dynamic frequency changes of a stimulus over time, the FA
uses the stimulus frequency trajectory as a “reference” to detect
FFR spectral amplitudes at frequencies along this trajectory by
integration (Aiken and Picton, 2006). The stimuli used in the
present study have non-stationary F1 and F2. Therefore, an FA
was implemented to calculate response amplitudes in frequency
bins corresponding to F1 and F2 trajectories to determine the
strength of neural phase locking to each simulated formant.

We used a similar approach to implement FA as described by
Aiken and Picton (2006) and Choi et al. (2013). First, stimulus
reference tracks following F1 and F2, respectively, were created
by exporting only F1 or F2 SWS sine-waves from Praat. Complex
representations of F1 and F2 stimuli were obtained by Hilbert
transform, and the instantaneous phase was calculated by finding
the angle of the output of the Hilbert transform. F1 and F2
instantaneous frequencies were then calculated as the derivatives
of the unwrapped phases at each time point. Since calculating the
derivatives in this manner is equivalent to applying a high-pass
filter, it introduces sharp perturbations in the resulting frequency
tracks. Consequently, we smoothed the obtained instantaneous
frequencies across time by applying a 50-point boxcar moving
average 3 times. Reference complex sinusoids were then created
for F1 and F2 frequency tracks using the instantaneous phase
angles for each stimulus.

As mentioned above, FFRs demonstrate a characteristic
delay between stimulus and response of ∼3–10 ms due to
neural conduction time. FFRSWS waveforms were shifted by –
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6 ms based on pilot data testing to correct for neural delays
and ensure that reference tracks were, on average, temporally
aligned with the FFRSWS waveforms prior to integration (Purcell
et al., 2004; Aiken and Picton, 2006). Reference tracks and
FFRSWS waveforms were then integrated by multiplying the two
waveforms over time (Choi et al., 2013) and computing the
mean of the obtained complex numbers. The absolute value
and the angle of the mean were then calculated as the FFR
amplitude and the phase over the duration of the response
(50–335 ms), respectively.

In order to determine whether FFRSWS amplitudes at F1 and
F2 were above background noise levels, 10 adjacent frequency
tracks were also created to measure response amplitudes at non-
stimulus frequencies. Five noise tracks above and five below each
F1 and F2 track were obtained by adding or subtracting a fixed
number of cycles per second. Noise tracks began at F1± 5 and F2
± 5 Hz, respectively, and increased or decreased in 1 Hz steps.
The same FA procedures as above were then used to estimate
noise levels in the 10 adjacent non-stimulus frequency bins. F1
and F2 responses were deemed “present” if their amplitudes
exceeded the noise floor averaged across 10 adjacent frequency
bins. This approach is more lenient than other statistically
based methods for determining response presence/absence (e.g.,
F-tests or Hotelling’s T2-tests; see Picton et al., 2003 for review).
However, because the primary focus of this study was to evaluate
potential enhancement of FFRSWS following perceptual shifts,
we did not want to remove participants who had low baseline
FFRSWS.

Machine Learning Classification of
FFRSWS
Previous experiments have used machine learning algorithms to
assess whether the information contained in FFRs is sufficient to
decode the stimulus classes that evoked them (Sadeghian et al.,
2015; Holdgraf et al., 2017; Llanos et al., 2017; Yi et al., 2017;
Xie et al., 2018, 2019). Under this approach, FFR classification
performance (i.e., the accuracy with which FFRs are correctly
classified by the machine learning algorithm) serves as an
objective measure of stimulus discrimination. Importantly, FFR
classification accuracy can be compared between levels of an
independent variable (e.g., training or attention conditions) to
determine how these factors impact classification performance
(e.g., Xie et al., 2018). The rationale is that, if attention or
training modulate neural function as captured by the FFR,
the accuracies with which FFRs are classified should reflect
this modulation via improving (enhancement) or declining
(suppression) classification accuracy.

A MATLAB-constructed linear support vector machine
(SVM; Cristianini and Shawe-Taylor, 2000) was used to classify
pre- and post-training FFRSWS for test and control groups
following the general procedures described by Xie et al. (2019).
We first epoched all subtracted FFRSWS waveforms from 0 to
380 ms and used these 1,900 amplitude-by-time points as linear
SVM input features. The model outputs were stimulus type (/bO/,
/bu/, and /bo/). Because standard linear SVM can only classify
data into binary classes, a one-against-one strategy was used. In

this approach, the linear SVM constructs N(N-1)/2 classifiers,
where N is the number of classes; N = 3 in this experiment,
as three SWS stimuli were used. After FFR classification is
performed on all possible pairwise combinations, the class with
the highest accuracy is used as the classification label.

The model was cross-validated using a three-fold approach
that was repeated 2,500 times (see Xie et al., 2019; Figure 1).
For each iteration of the linear SVM classifier, participants
were randomly and equally divided into 3 groups (or folds).
A “leave-one-out” strategy then used two of the three-folds
to train the classifier. After training the classifier, the held-
out fold was used as test data. This was repeated within each
iteration such that each fold was held-out as the test data
and the other two-folds were used for training the classifier.
The average classifier accuracy across cross-validations was
calculated for each iteration. Outcomes of the 2,500 iterations
were also used to create grand total cross-validation accuracies
as well as a distribution of accuracies. A null distribution of
model accuracies was also generated using the steps above,
with the exception that model outputs (i.e., stimulus labels)
were randomly assigned to FFRSWS inputs on each iteration of
the loop. Statistical significance of “true” classifier performance
was determined using p = (a+ 1)/(n+ 1), where a denotes the
number of observations from the null classification distribution
that surpasses the median of the “true” distribution and n is the
total number of observations comprising the null distribution
(Phipson and Smyth, 2010, as cited in Xie et al., 2019). The same
equation was also used to test whether pre- and post-training
FFRSWS classification accuracy distributions were significantly
different for test and control groups.

RESULTS

Test Group Training- and Testing-Phase
Behavioral Performance
Modeled accuracy and reaction times for training and test phases
are plotted in Figure 2. For the training phase, the mixed effects
logistic regression model containing training time and stimulus
type as predictors was statistically significant [X2(2) = 37.31,
p < 0.001]. When holding stimulus type constant, the odds of
a correct response increased by 3% [95% CI (0.13, 0.47)] for a
one-unit increase in trials. When holding trial count constant,
the accuracy decreased by 6% [95% CI (−0.76, −0.41)] when
changing from /b c/ to /bu/ and /bu/ to /bo/. The multiple linear
regression model evaluating reaction time suggested that training
time and stimuli explained 9% of the variance, [R2 = 0.09,
F(2,672) = 33,28, p < 0.001]. When holding stimulus type
constant, training time significantly predicted reaction time,
β = −7.73, t = −8.09, p < 0.001, suggesting the reaction time
decreased when the training time increased. When holding
training time constant, stimulus type did not significantly predict
reaction time (β = 15.62, t = 0.62, p = 0.54).

For the test phase, the mixed effects logistic regression model
containing test time and stimuli as predictors was not statistically
significant [X2(2) = 5.38, p = 0.07]. The results of multiple
linear regression revealed that testing time and stimuli explained
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FIGURE 2 | Modeled accuracy and reaction times for training and testing phases. Logistic and multiple linear regression model outputs using stimulus type and trial
count as predictors were used to plot predicted accuracy (A) and reaction times (B), respectively. Shading indicates 95% confidence intervals of each modeled
response.

3% of the variance, [R2 = 0.03, F(2,672) = 12,8, p < 0.001].
When stimulus type was held constant, testing time significantly
predicted reaction time, β = −4.98, t = −5.06, p < 0.001.
However, there is no significant prediction of stimuli on reaction
time (β = 12.66, t = 0.95, p = 0.34). These results collectively
suggest that accuracy improved with more exposure to the stimuli
in the training phase, with /bO/ and /bu/ being more rapidly
attained than /bo/. Further, all stimuli were discriminated with
a high level of accuracy during the test phase. Irrespective of the
target stimulus, reaction time similarly decreased during training
and testing phases.

Stimulus-to-Response
Cross-Correlations
Initial stimulus-to-response calculations for pre- and post-
training FFRSWS showed sharply peaked cross-correlation
functions between /bu/ and /bo/ and their respective SWS
stimulus waveforms; because the stimulus waveforms are
dominated by the F1 component, these results indicated strong
neural phase locking to F1. In contrast, cross-correlations for the
/bO/ were poor despite these FFRSWS waveforms being highly
periodic. Spectrographic analysis of the average FFRSWS to /bO/
demonstrated that the neural response was in fact phase-locked
to the quadratic distortion product (F2–F1) instead of F1. The
F2–F1 distortion product is mechanically initiated by interactions
between F2 and F1 traveling waves on the basilar membrane, and
the nervous system can phase lock to this and other distortions as
it would to acoustically-delivered stimuli of the same frequency
(e.g., Siegel et al., 1982; Smith et al., 2017). Because F2–F1 is not
present in the acoustic stimulus, the neural response does not
bear a resemblance to the stimulus. To determine whether F2–
F1 frequency tracking for /bO/ SWSFFR were of neural origin,
we approximated an F2–F1 “stimulus” waveform by taking the
analytic envelope of the original SWS stimulus and band-passing
it between 100 and 2,400 Hz. Cross-correlations were then

rerun between the F2–F1 stimulus waveform and /bO/ SWSFFR.

With this adjustment, /bO/ SWSFFR cross-correlation functions
demonstrated sharp peaks similar to the other responses.

Results of the cross-correlation analyses for test and control
groups are shown in Figure 3. Multivariate analysis showed
a significant effect of stimulus type on both latency and
cross-correlation strength across groups and training status,
[Wilks’ Lamda = 0.33, F(4,62) = 11.42, p < 0.001, η2 = 0.42],
suggesting that stimulus type affected cross-correlation strength
and latencies of neural responses. The effect size, calculated
using eta squared, indicated that this stimulus type effect
accounted for 42% of the variance in cross-correlation strength
and latency. Moreover, there was a significant effect of training
status between test and control groups across stimuli, [Wilks’
Lamda = 0.66, F(2,15) = 3.82, p < 0.05, η2 = 0.34], suggesting
that the interaction of training status and group affected the
cross-correlation strength and latency of neural responses.
The effect size, calculated using eta squared, indicated the
interaction of training status and groups effect accounted for
34% of the variance in cross-correlation strength and latency.
However, there is no significant stimuli∗group [F(4, 62) = 0.12,
p = 0.98, η2 = 0.01], training status [F(2, 15) = 1.94, p = 0.18,
η2 = 0.21], stimuli∗training [F(4, 62) = 0.59, p = 0.67, η2 = 0.03],
stimuli∗training∗group [F(4, 62) = 0.12, p = 0.98, η2 = 0.01]
effect on cross-correlation strength and latency [F(2, 7), p = 0.49,
η2 = 0.19].

Univariate tests were used to further examine the effects
on latency and cross-correlation strength. These results
show a significant stimulus effect on latency [Greenhouse-
Geisser = 57.72, F(1.88,30.08) = 15.93, p < 0.001, η2 = 0.50]
and cross-correlation strength [Greenhouse-Geisser = 0.62,
F(1.99,31.87) = 11, p < 0.001, η2 = 0.41]. Moreover, there was a
significant effect of the interaction between training status and
groups on cross-correlation strength [Greenhouse-Geisser = 0.02,
F(1,1.68) = 4.62, p < 0.05, η2 = 0.22]. Within-subjects contrasts
showed that latency in the /bu/ condition was significantly
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FIGURE 3 | Latency (A) and cross-correlation strength (B) for /bO/, /bu/, and /bo/ FFRSWS. Pre-training responses are shown in gray and post-training responses
are shown in color. Test group responses are solid-filled bars, whereas control group responses are cross-hatched. Means and medians are denoted by Xs and
horizontal lines, respectively. Note that latencies and cross-correlations for /bO/ were calculated using the F2–F1 waveform as the “stimulus,” as described in the text.

higher than /bO/ [F(1, 16) = 39.64, p < 0.001, η2 = 0.71]
and /bo/ conditions [F(1, 16) = 14.59, p < 0.01, η2 = 0.48].
Additionally, cross-correlation strength in /bu/ was higher than
/bo/ [F(1, 16) = 23.29, p < 0.001, η2 = 0.59]. Lastly, there was a
significantly higher cross-correlation after training than before
training in test group [F(1, 16) = 4.61, p < 0.05, η2 = 0.22]; this
significant difference is larger than the pre- and post-training
difference in control group.

Pre- and Post-training FFRSWS Fourier
Analyzers
FFRSWS amplitudes at F1 and F2 were calculated over the
duration of the response using FAs. These calculations produced
a single amplitude estimate representing the strength of neural
phase locking to the stimulus feature of interest over the entire
duration of the stimulus. FFRSWS to /bu/ and /bo/ produced
measurable F1 responses above the noise floor for all subjects in
pre- and post-training measurements. The issue described above
regarding neural phase locking to F2–F1 in /bO/ FFRSWS also
impacted our initial FA calculations for the /bO/ stimulus such
that F1 was not robustly represented. Consequently, we used
the F2–F1 “stimulus” waveform to create an F2–F1 frequency
track for /bO/ responses, using identical procedures described
in the method section. Using this approach yielded measurable
F2–F1 neural responses in every participant for /bO/ in pre- and
post-training measurements. The following analyses focus on F1
amplitudes for /bu/ and /bo/ and F2–F1 amplitudes for /bO/.
Because F2 was only measurable in <25% of responses, we did
not further analyze these components.

Figure 4 depicts mean FFRSWS waveforms and spectrograms
for pre- and post-training test group responses as well as test
and control group FA results for each stimulus. All post-training
FFRSWS responses are larger in amplitude than pre-training
responses for the test group, which can be seen in waveform
(Figure 4A) and spectrographic (Figure 4B) representations.
Examination of the FA results for the test group (Figure 4C)

demonstrates that these enhancements are at the frequency of
interest only and are not observed in the adjacent noise bins.
By comparison, FFRSWS enhancements are not apparent in the
control group FA responses.

The effect of training status and group on FA amplitudes was
analyzed using a two-way MANOVA with repeated measures.
This analysis showed an interaction of training status and group
[F(5, 12) = 3.09, p = 0.05, η2 = 0.56] on FA amplitude. Univariate
tests revealed significant interactions between training status
and group for /bO/ [Greenhouse-Geisser = 0.002, F(1,16) = 6.72,
p < 0.05, η2 = 0.30], /bu/ [Greenhouse-Geisser = 0.004,
F(1,16) = 8.44, p < 0.05, η2 = 0.34], and /bo/ [Greenhouse-
Geisser = 0.002, F(1,16) = 9.96, p< 0.01, η2 = 0.38] FA amplitudes.
Pre- and post-training differences between test and control
groups revealed that /bO/ [F(1, 16) = 6.73, p < 0.05, η2 = 0.30],
/bu/ [F(1, 16) = 8.44, p< 0.05, η2 = 0.35], and /bo/ [F(1, 16) = 9.96,
p < 0.01, η2 = 0.38] FA amplitudes were significantly higher after
training in test group but not in the control group.

Machine Learning Classification of
FFRSWS
Average linear SVM classification accuracies for test and control
groups are depicted for pre-training and post-training FFRSWS
in the confusion matrices of Figure 5. For the test group, pre-
training classification accuracy was poorer for each stimulus
classifier relative to post-training accuracy, whereas control
group pre- and post-training classification results do not follow
a clear pattern. Overall classification accuracy distributions
representing all 2,500 iterations are depicted in the 3D histogram
plots, as are empirical null distributions generated by randomly
shuffling classifier outputs (i.e., response labels) for each iteration.
Pre-training (p < 0.001) and post-training (p < 0.001) FFRSWS
classification was significantly above the null distribution for test
and control groups, as determined using p = (a+ 1)/(n+ 1).
In the test group, post-training classification was significantly
higher (p < 0.01) than pre-training classification using the
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FIGURE 4 | FFRSWS pre- and post-training waveforms (A), spectrograms (B), and FA results (C) for each stimulus. (A,B) Are from test group data only, whereas (C)
includes test and control FA results for comparison. Colored (red, green, and blue) waveforms and FA spectra represent post-training responses, whereas black
waveforms are their pre-training counterparts. FA center frequencies (F2–F1 or F1) are denoted for each FA plot; noise bins starting at ± 5 Hz relative to the
frequency of interest are indicated by peripheral tick marks on the x-axis (shading = SEM). All results represented subtracted waveforms. ∗p < 0.05.

FIGURE 5 | Pre-training and post-training classification accuracies for test (top) and control (bottom) groups. Confusion matrices on the left demonstrate linear SVM
classification accuracies for pre-training FFRSWS, whereas the confusion matrices in the center demonstrate post-training accuracies. 3D histograms on the right
show empirical null distributions (teal bins) and pre- and post-training average classification accuracy distributions for test and control groups. Pre- and post-training
distributions were significantly above the null distribution for test and control groups. Additionally, the test group post-training distribution was significantly more
accurate than the pre-training distribution.
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same equation. In contrast, pre- and post-training classification
were not different in the control group (p = 0.18). Collectively,
these results indicate that classification of pre- and post-
training FFRSWS was significantly above chance for test and
control groups; however, post-training data were classified with
significantly higher accuracy than pre-training data in the test
group compared to the control group.

DISCUSSION

To our knowledge, this is the first study using FFRSWS to
examine training or context effects in the auditory brainstem.
Utilizing SWS in this context allowed for direct comparisons
between pre- and post-training FFRSWS evoked by identical,
acoustically-sparse speech stimuli that initiated neural responses
from more caudal subcortical sources than stimuli used in
previous reports. Because most listeners do not hear SWS as
speech unless they are provided with additional instruction
(Remez et al., 1981; Möttönen et al., 2006), pre-training neural
representation of SWS theoretically offers a glimpse into bottom-
up auditory processing of the “naïve” auditory nervous system.
When additional instruction or context is provided to listeners
regarding SWS, they often attain a high level of comprehension
in a brief period of time or, in some cases, immediately (Remez
et al., 1981; Möttönen et al., 2006). Thus, post-training FFRSWS
may offer insight into how rapidly and potently the auditory
brainstem can be functionally modulated via the efferent system
when speech comprehension networks are engaged.

Our behavioral results suggest that SWS stimuli were rapidly
attained in the training trials, albeit at slightly different rates. For
example, /bO/ and /bu/ discrimination reached peak performance
within relatively few trials, whereas /bo/ required more training
before responses were consistently accurate. This pattern suggests
that /bo/ was initially more difficult to discriminate than /bO/ and
/bu/, which may simply be explained by acoustical differences
(i.e., /bo/ and /bu/ F1 and F2 contours are more similar than /bO/
and were spaced such that they were unlikely to generate strong
distortion products; see Figure 1). An additional revelation from
our FFRSWS data was that participants may have benefitted
from hearing the F2–F1 distortion product created by the /bO/
stimulus. The F2–F1 frequency is generated by mechanical
interaction on the basilar membrane and “feeds forward” into the
auditory nervous system, as do other distortion products (Siegel
et al., 1982; Chertoff et al., 1992; Dhar et al., 2009; Smith et al.,
2017), effectively converting a dynamic two-tone stimulus into
a perceptually richer input (Goldstein et al., 1978). Because we
did not assess psychophysical weighting of the F2–F1 cue, it is
not clear whether its post-training enhancement in the FFR was
a consequence of direct attention to this cue or a gross upscaling
of any auditory stimuli relevant to the perceptual task.

Despite stimulus-related differences in behavioral training
results, we observed that all FFRSWS in the test group were
enhanced in the post-training phase relative to the pre-training
phase and compared to a control group. This was indicated in
larger FA amplitudes of F1 (for /bo/ and /bu/) and F2–F1 (for
/bO/), as well as higher machine learning classification accuracy

in the post-training phase. Importantly, these differences were
due to FFRSWS amplitude enhancement and not differences
in residual noise between pre- and post-training responses, as
evidenced by the FA noise tracks (Figure 4). There are multiple
potential explanations for the observed FFRSWS enhancements in
the test group. First, the rapid perceptual shift from non-speech
to speech may have engaged speech comprehension networks
originating in frontal cortex and extending through auditory
cortex and brain stem (Davis and Johnsrude, 2003; Eisner et al.,
2010; Hervais-Adelman et al., 2012; Bidelman et al., 2018a,
2019; Khoshkhoo et al., 2018). That FFRSWS enhancements
reflect a more immediate online context shift and not short-term
training per se is supported by a few congruent observations
in our behavioral and neurophysiologic data. For example,
perceptual shifts appear to have occurred quickly for /bO/ and
/bu/ stimuli, whereas /bo/ required more exposure trials before
it was attained. These results suggest that perceptual salience
of the context shift may have differed slightly across stimuli.
The size of FA enhancements and within-class changes in linear
SVM classification accuracy between pre- and post-training trials
mirror the behavioral results: more immediate behavioral SWS
identification was associated with larger FA enhancements and
greater changes in classification accuracy post-training. It is also
notable that the enhancements observed in the present study
appeared earlier than many reports on FFR training effects,
which required multiple hours to days of training (e.g., Song
et al., 2008; Carcagno and Plack, 2011). This may be related
to the fact that SWS was initially processed as a completely
different class of stimulus (e.g., uncorrelated “whistles”) before
being recognized as speech, whereas participants in previous
studies were aware from experiment onset that they were
hearing speech or music stimuli. Further, SWS forces listeners
to focus on a minimal number of cues (F1, F2, and/or F2–
F1), whereas speech and music pitch may be determined
in a variety of ways, such as listening to resolved and/or
unresolved harmonics (e.g., Laudanski et al., 2014); therefore,
attention may be allocated to different channels of information
summating to produce the FFR. A limitation of our approach,
which does not allow us to resolve single-trial FFRSWS, is
that we cannot delineate whether the observed enhancements
are related to online or short-term changes following the
perceptual shift.

A control group was used in the present study to examine
whether post-training vs. pre-training differences were simply a
result of more exposure to the stimuli during the experimental
protocol. Our results suggest that this is not the case, as the
control group responses were not enhanced “post-training”
relative to “pre-training.” These results comport with the multiple
studies that have demonstrated high test-retest reliability of FFR
amplitudes within and between passive test sessions (e.g., Song
et al., 2011; Bidelman et al., 2018b; Easwar et al., 2020).

Future studies will examine afferent-efferent connectivity
using similar SWS stimuli to examine the time course and neural
substrates involved in perceptual shifts and/or training effects
reported here. Because of the simple, sinusoidal nature of SWS, it
may also be possible to measure simultaneous stimulus frequency
otoacoustic emissions in addition to neural responses from the
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brainstem and cortex. Such an approach would allow for context
or training effects to be studied from cochlea to cortex using
the same stimuli.
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