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Abstract: Radiomics allows the extraction quantitative features from imaging, as imaging biomark-
ers of disease. The objective of this exploratory study is to implement a reproducible radiomic-
pipeline for the extraction of a magnetic resonance imaging (MRI) signature for prostate cancer
(PCa) aggressiveness. One hundred and two consecutive patients performing preoperative prostate
multiparametric magnetic resonance imaging (mpMRI) and radical prostatectomy were enrolled.
Multiparametric images, including T2-weighted (T2w), diffusion-weighted and dynamic contrast-
enhanced images, were acquired at 1.5 T. Ninety-three imaging features (Ifs) were extracted from
segmentation of index lesion. Ifs were ranked based on a stability rank and redundant Ifs were
excluded. Using unsupervised hierarchical clustering, patients were grouped on the basis of similar
radiomic patterns, whose association with Gleason Grade Group (GGG), extracapsular extension
(ECE), and nodal involvement (pN) was tested. Signatures composed by IFs from T2w-images
and Apparent Diffusion Coefficient (ADC) maps were tested for the prediction of GGG, ECE, and
pN. T2w radiomic pattern was associated with pN, ECE, and GGG (p = 0.027, 0.05, 0.03) and ADC
radiomic pattern was associated with GGG (p = 0.004). The best performance was reached by the
signature combing IFs from multiparametric images (0.88, 0.89, and 0.84 accuracy for GGG, pN, and
ECE). A reliable multiparametric MRI radiomic signature was extracted, potentially able to predict
PCa aggressiveness, to be further validated on an independent sample.

Keywords: magnetic resonance imaging; prostate cancer; prostate cancer aggressiveness; radiomics

1. Introduction

Prostate cancer (PCa) is a heterogeneous disease characterized by a wide spectrum of
clinical presentations and possible outcomes [1]. In clinical practice, the main challenge is
to identify the best balance between limiting overtreatment and reducing mortality.

In the preoperative setting, PCa aggressiveness is commonly established using Gleason
grade group (GGG) derived from prostate biopsy specimens that, in 30–50% of cases,
does not represent the true GGG of the tumor [2–4]. The identification of a non-invasive
and accurate tool to predict tumor aggressiveness, taking into account the biological
heterogeneity present in whole tumor volume, is an important unmet need.
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In the last decade, Radiomics emerged as a post-processing imaging analysis that
allows the extraction of large number of quantitative features that cannot be studied solely
by visual assessment [5,6]. The role of radiomic in oncological setting is to identify reliable
biomarkers of cancer aggressiveness [7,8]. In recent years, several studies explored a
radiomic approach applied to multiparametric magnetic resonance imaging (mpMRI) for
detection and characterization of PCa [8,9]. Despite the recommendations of international
working groups to develop a standardized pipeline to extract image biomarkers, they are
characterized by a great variability in methodological approach and results. Furthermore,
most of these studies focused the analysis on the prediction of GGG solely, while the
association of radiomic features with other important prognostic parameters, such as
extracapsular extension (ECE) and nodal involvement, remains quite unexplored.

This study aimed to implement a reproducible radiomic-pipeline for the extraction of
a radiomic signature from mpMRI T2w images and Apparent Diffusion Coefficient (ADC)
maps able to predict Pca aggressiveness, in terms of GGG, ECE, and nodal stage (pN).

2. Materials and Methods

This is a retrospective study approved by our Institutional Review Board; written
informed consent was obtained from all patients.

2.1. Study Population

The study cohort consisted of 102 men with biopsy proven PCa who underwent both
preoperative mpMRI of the prostate and radical prostatectomy at a single tertiary care
referral center, between January 2016 and March 2019.

Pathological data of surgical specimen included Gleason grade group (GGG), extra-
capsular extension (ECE), and nodal stage (pN).

Prostate specimens were processed according to the Stanford protocol [10] and ana-
lyzed by a dedicated uro-pathologist with 20 years of experience.

2.2. MRI Protocol

MRI examinations were performed using a single 1.5 T scanner (Achieva dStream,
Philips Medical Systems, Best, The Netherlands) with a balloon-covered expandable en-
dorectal coil (BPX-15™, Bayer Medical Care, Indianola, PA, USA) paired with a phased
array 32-channel surface coil. Gastrointestinal peristalsis was suppressed by intramuscular
administration of 20 mg of scopolamine-butylbromide. Detailed mpMRI imaging protocol
is reported in Table 1. Data from DCE-MRI (intravenous bolus injection of 0.1 mmol/kg of
gadobutrol) were acquired for clinical needs but not considered for quantitative analysis.

Table 1. Imaging protocol details.

Parameter T2 TSE * Axial T2 TSE * Sagittal T2 TSE * Coronal DWI **
(b: 0, 800, 1600) DCE ***

TR (ms) 4824 4370 2991 4376 3.7
TE (ms) 120 120 120 80 1.83

FOV◦ (mm) 180 × 180 180 × 180 180 × 180 180 × 180 180 × 180
Matrix Thickness (mm) 3 3 3 3 3

Gap (mm) 0.3 0.3 0.3 0.3 0
Flip angle (◦) 90 90 90 90 8/5, 8, 12, 15

Acquisition time 4 min 6 s 3 min 25 s 2 min 8 s 5 min 19 s 3 min 20 s

* TSE: Turbo spin echo imaging; ** DWI: Diffusion-weighted imaging; *** DCE: Dynamic contrast-enhanced imaging; ◦ FOV: Field of view.

2.3. MRI Qualitative Analysis

Two dedicated radiologists (5 and 4 years of experience in prostate mpMRI) indepen-
dently reviewed the images and identified the index lesion based on PIRADS v. 2.0 classifi-
cation. Images were than compared with prostatectomy reports to check the concordance
between imaging and pathology findings. In all cases, the index lesion at MRI matched the
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lesion with highest GGG at pathology. In case of multiple lesions at MRI, with same GGG
at pathology, the largest one in the images was selected for the analysis.

2.4. MRI Quantitative Analysis
2.4.1. MRI Images Post-Processing

T2w images were pre-processed to account for the impact of bias field and intensity
non-standardness on T2w images [11], by N4 normalization [12] and linear scaling and
shifting within 0–600 in 3D Slicer v. 4.10.2 [13].

Diffusion weighted images were processed using monoexponential model with b-
values = 50 s/mm2 and b-values = 800 s/mm2, to obtain ADC maps.

2.4.2. Tumor Volume Segmentation

Index lesions were segmented both on T2w images and ADC maps using a semi-
automatic approach based on region growing [14], as implemented in 3D Slicer v. 4.10.2 [13],
and the 3D lesion volume (volume of interest (VOI)) was obtained. In order to avoid
registration errors as well as motion artifacts, tumors were segmented separately on T2w
images and ADC maps (see Figure 1).
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Figure 1. Example of an index lesion segmentation on T2w image (left) and ADC map (center) and the resulted 3D
segmented volume of interest (VOI) (right).

As a preliminary step, to evaluate the stability of the quantitative imaging features
with respect to segmentation, two radiologists independently performed tumor delineation.
For subsequent analysis in a separate session, the two readers re-segmented in consensus
the images of the entire patient sample.

Only patients with segmented VOI greater 0.7 cc in ADC were included in the subse-
quent analysis. Dimensional cut-off on images were empirically evaluated, considering
that a lesion with less than 4 voxels in each direction would not make for meaningful
calculation of different textural parameters [6].

2.4.3. MRI Image Quantification

Feature extraction was performed by using Radiomics module of 3D slicer v. 4.10.2 [15].
Segmented VOIs were resampled to isotropic voxel spacing, using an upsampling scheme
based image slice thickness. Image re-segmentation was performed with Collewet normal-
ization [16] and VOI intensities were discretized to a fixed number of 64 bins.

A total number of 93 imaging features (IFs) was extracted from both T2w images
(T2w-IFs) and ADC map (ADC-IFs), without applying filters, from five different classes
(14 morphological features (M), 18 first-order statistical features from intensity histogram
(FOS), including mean ADC value, and 61 textural features from analysis of Gray Level Co-
occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length
Matrix (GLRLM), and Neighborhood Grey Tone Difference Matrix (NGTDM). Details on
radiomic pipeline for feature extraction can be found in Table S1 of Supplementary Materials.

To evaluate the impact of semi-automatic segmentation on image quantification, the
nonparametric repeated measurement Friedman test was used to calculate a stability rank
per feature from independent segmentations performed by two readers [17,18]. Further-
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more, feature selection was carried out on the extracted IFs for each image modality in
order to rule out redundant features, by analyzing the covariance matrix. Clusters of
highly correlated features (r > 0.8) were reduced to a single representative imaging feature,
using the one presenting the highest inter-subject’s range [6], calculated by Coefficient of
Variation [17,18]. For subsequent analysis, only non-redundant IFs, on the basis of the
stability rank for delineation inaccuracies by different operators, were retained.

2.4.4. Association of Radiomic Phenotype and Clinical Data

Unsupervised hierarchical clustering analysis was performed to group patients on the
basis of similar radiomic patterns. Each patient was considered a statistical unit (sample)
characterized by different measurable properties (IFs values of patient’s index lesion). The
clustering procedure grouped the patients showing a closer radiomic pattern, as defined
by a distance criterion (Euclidean distance).

Before the clustering analysis, IFs presenting extreme values were log2 transformed,
replacing zero values with the smallest positive value of the radiomic phenotype, over all
patient samples, before transformation. IFs were standardized to zero mean and a unit
standard deviation. Heatmaps were automatically generated by using ComplexHeatmap
in R-package [19].

Fisher’s exact test as implemented was used to test statistical significance of the
association between identified clusters and patient histological characteristics.

2.4.5. Building Diagnostic Radiomic Signature

Different signatures composed by IFs from T2w images and ADC maps independently
and by IFs from the two modality jointly were built and tested for prediction of high
(GGG ≥ 4 + 3) vs. low (GGG < 4 + 3) GGG, presence vs. absence of ECE, and pN
status (pN0 vs. pN ≥ 1). For each image modality we selected only non-redundant IFs
within the first 10 stable Ifs in the stability rank (STOP). ADCmean was evaluated both
separately and in combination with Ifs signatures, to test the effective potential advantage
of textural features compared to standard value ADCmean. A Support Vector Machine
model was implemented using a R-package [20,21] with kernel radial in order to evaluate
the combination of features that achieved the best performances in the prediction model.
Classification performances were evaluated in terms of accuracy, sensitivity, and specificity
as metrics. Since an imbalance exists between the different classes to be considered in the
classification, we employed data resampling, with an undersampling method [22,23]. We
randomly resampled the cohort, removing samples from the majority class in order to
obtain 10 random subsets with the same number of samples in the two classes. Then we
performed the classification in each of these subsets, so the classification was performed
10 times. The overall mean value of accuracy, specificity, and sensitivity was obtained as
means over the 10 repetitions.

Since the biology upon peripheral and transition zone lesions could be different across
characteristics, the classification was performed also in the subset of PZ lesions, in order to
evaluate the performance of signatures in this subgroup. Considering the low number of
TZ lesions, no classification was made on these samples.

3. Results

From the initial population of 102 patients, 40 of them were excluded according to the
imaging volumetric criteria (VOI < 0.7 cc in ADC map). The final population included for
the analysis consisted of 62 patients (age range 44–79 years) with 62 index lesions.

Lesions characteristics at MRI and pathological analysis are reported in Table 2.
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Table 2. Index lesions imaging and pathological characteristics.

# Patients Frequency

Index lesion location
PZ * 43 69%
TZ ** 16 26%
Both 3 5%

PI-RADS ***
3 3 5%
4 30 48%
5 29 47%

Gleason Score

7 (3 + 4) 18 29%
7 (4 + 3) 18 29%

8 5 8%
9 21 34%

ECE ◦ Yes 38 61%
No 24 39%

pN
pN0 ◦◦ 39 63%

pN1 ≥ 1 ◦◦◦ 13 21%
pNx # 10 16%

* PZ: Peripheral Zone; ** TZ: Transition Zone; *** PI-RADS: Prostate Imaging-Reporting and Data System; ◦ ECE:
Extracapsular extension; ◦◦ pN0: absence of nodal metastases at pathologic examination, ◦◦◦ pN1: presence of
nodal metastases at pathologic examination. # pNx: nodes status not assessable.

On a subset of patients, the index lesion was segmented by two operators, and a
stability rank with respect to segmentation was defined for all the 93 IFs extracted from both
T2w images and ADC maps. Forty-four out of ninety-three T2w-IFs and 61/93 ADC-IFs
resulted in being stable with respect to semi-automatic segmentation (p-value of Friedman
test > 0.05). Among them, the analysis of covariance matrix allowed to select 17 T2w-IFs
and 23 ADC-IFs as not-redundant futures used for further multivariate analysis.

Unsupervised hierarchical clustering revealed two major groups of patients both on
the basis of T2w radiomic pattern as well as on the basis of ADC radiomic pattern (Figure 2)
or considering IFs from both T2w images and ADC maps (Figure 3).
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Figure 3. Radiomic patterns obtained considering both T2w images and ADC maps; the dendrogram
at the left side represents the patient’ grouping obtained from the clustering procedure; annotation at
the right side represent the distribution of GGG, ECE, and pN status in the groups.

T2w radiomic pattern was found to be associated with pN, ECE, and GGG (p-value:
0.027, 0.05, and 0.03, Fisher’s exact test), while the ADC maps’ radiomic pattern was found
to be associated with GGG (p-value: 0.04, Fisher’s exact test).

When combining imaging biomarkers from T2w images and ADC maps, the multi-
modal radiomic patterns of the two patient groups identified by unsupervised hierarchical
clustering analysis was found to be associated with GGG (p-value: 0.05 Fisher’s exact test).
To build and test a diagnostic radiomic signature, we focused the analysis on a reduced set
of stable and not-redundant imaging features. Table 3 shows different signature models,
obtained from T2w images and ADC maps independently and from the two modalities
jointly with and without the inclusion of ADCmean, together with models’ performance
(mean, max, min, and standard deviation of performances obtained by data resampling) in
predicting GGG, ECE, and nodal involvement.

Figure 4 shows ROC curves and AUC for classification.
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The best performance was reached by the signature combing IFs from T2w images and
ADC map (STOP-T2w/ADC) with an accuracy in the prediction of GGG, nodal involvement,
and ECE of 0.88, 0.9m, and 0.85, respectively. The performance was even improved when
ADCmean was added to the model (accuracy: 0.90, 0.89, 0.88). Considering each single signa-
ture, similar performances were obtained for the dataset of PZ lesions, except for SADCmean,
which increases significantly, confirming the predictive role of DWI in PZ lesions (see Table
S2 and Figure S1 in Supplementary Materials). Despite this, a slightly higher accuracy has
been found for the multimodal signature STOP (see Table S2 in Supplementary Materials).
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Table 3. Signature models and performances. Different signature models obtained from T2w images and ADC maps independently and from the two modalities jointly and the
corresponding diagnostic performances. On the left, the specific imaging features (IFs) included in each model are reported. Accuracy, sensitivity, and specificity are reported as Mean and
Standard Deviation, while in parenthesis, minimum and maximum over 10 repetitions are reported.

Signature Image Modality Feature Group Features
High GGG vs. Low GGG N0 vs. N1 Presence vs. Absence of ECE

Acc # Sens ## Spec ### Acc # Sens ## Spec ### Acc # Sens ## Spec ###

STOP-T2w *
T2w

images

M Sphericity

0.75 ± 0.05
(0.67–0.83)

0.73 ± 0.11
(0.56–0.89)

0.76 ± 0.14
(0.44–0.94)

0.84 ± 0.05
(0.77–0.92)

0.79 ± 0.09
(0.62–0.92)

0.88 ± 0.09
(0.69–1)

0.75 ± 0.03
(0.71–0.79)

0.8 ± 0.07
(0.76–0.94)

0.69 ± 0.12
(0.47–0.94)GLRLM SRHGLE

GLSZM
SAHGLE

LAHGLE

STOP-ADC **

ADC maps

M
Elongation

0.83 ± 0.06
(0.75–0.94)

0.95 ± 0.04
(0.89–1)

0.7 ± 0.13
(0.5–0.89)

0.86 ± 0.05
(0.73–0.92)

0.77 ± 0.1
(0.62–0.92)

0.95 ± 0.09
(0.77–1)

0.81 ± 0.02
(0.79–0.85)

0.85 ± 0.1
(0.65–1)

0.78 ± 0.09
(0.59–0.94)

Flatness

GLCM

Inverse
Variance

Cluster Shade

NGTDM Busyness

STOP ***

T2w
images

M Sphericity

0.88 ± 0.04
(0.81–0.94)

0.94 ± 0.04
(0.89–1)

0.82 ± 0.1
(0.67–0.89)

0.9 ± 0.04
(0.85–0.96)

0.9 ± 0.1
(0.69–1)

0.9 ± 0.1
(0.69–1)

0.85 ± 0.04
(0.79–0.91)

0.93 ± 0.06
(0.88–1)

0.78± 0.09
(0.65–0.94)

GLRLM SRHGLE

GLSZM
SAHGLE

LAHGLE

ADC aps

M
Elongation

Flatness

GLCM

Inverse
Variance

Cluster Shade

NGTDM Busyness

SADCmean
◦ ADC maps - ADCmean

0.71 ± 0.04
(0.64–0.78)

0.64 ± 0.1
(0.44–0.78)

0.78 ± 0.05
(0.72–0.83)

0.67 ± 0.06
(0.54–0.73)

0.51 ± 0.15
(0.23–0.77)

0.82 ± 0.14
(0.62–1)

0.63 ± 0.03
(0.59–0.68)

0.49 ± 0.16
(0.29–0.76)

0.76 ± 0.19
(0.41–1)
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Table 3. Cont.

Signature Image Modality Feature Group Features
High GGG vs. Low GGG N0 vs. N1 Presence vs. Absence of ECE

Acc # Sens ## Spec ### Acc # Sens ## Spec ### Acc # Sens ## Spec ###

STOP + ADC mean
◦◦

T2w
images

M Sphericity

0.9 ± 0.04
(0.83–0.94)

0.93 ± 0.06
(0.83–1)

0.88 ± 0.06
(0.78–0.94)

0.89 ± 0.04
(0.81–0.92)

0.82 ± 0.11
(0.62–1)

0.96 ± 0.06
(0.85–1)

0.88 ± 0.03
(0.82–0.91)

0.88 ± 0.07
(0.71–1)

0.89 ± 0.07
(0.76–1)

GLRLM SRHGLE

GLSZM
SAHGLE

LAHGLE

ADC maps

M
Elongation

Flatness

GLCM

Inverse
Variance

Cluster Shade

NGTDM Busyness

- ADCmean

* STOP-T2w: STOP signature extracted from T2w images; ** STOP-ADC: STOP signature extracted from ADC maps; *** STOP: STOP signature extracted from both T2w images and ADC maps; ◦ SADCmean: signature
based on ADCmean; ◦◦ STOP + ADCmean: signature obtained by combining STOP and ADCmean; # Acc: accuracy; ## Sens: sensitivity; ### Spec: specificity.
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4. Discussion

Due to the wide spectrum of clinical presentation and possible outcome of PCa cancer,
identifying the optimal treatment option for patients represents the most challenging prob-
lem in PCa clinical workup. There is a growing attention in finding reliable tools that could
provide a non-invasive assessment of PCa aggressiveness, allowing for a patient-tailored
management, ranging from radical-prostatectomy with nodes dissection to active surveil-
lance. Radiomics can analyze a large number of imaging features that cannot be visualized
by radiologists, and its potential role in the implementation of tumor detection, characteri-
zation, and treatment response has been explored in several oncological settings [24–26]. A
large variability of methodological approaches exists among previous studies exploring the
application of radiomics to prostate mpMRI. Moreover, the analysis are usually based on
single MR quantitative parameters while a multiparametric signature would be preferred,
reflecting the multiparametric approach of qualitative clinical reporting [8,9]. From a
methodological point of view, our pipeline was designed and standardized in order to
identify accurate and reproducible imaging biomarkers addressing the different issues
related to the extraction of high-throughput quantitative biomarkers, as underlined by IBSI
initiative [27].

The first issue was represented by lesion volume definition. Even if advanced ap-
proaches were developed in recent years for PCa segmentation [28], in PCa, as in other
oncological diseases, manually contouring is the standard method to define lesion vol-
ume [26–28], but, due to its dependence from operator expertise [6], it has been proved to
be suboptimal in radiomic studies. In different studies, e.g., [29], lesion volume is defined
on a single image slice, thus limiting the fully characterization of volumetric extension of
lesions. In order to overcome these limitations, we used a semi-automatic segmentation
approach based on region growing on T2w images and ADC maps separately, followed by
manual adjustment, as suggested by IBSI.

In order to warrant the reproducibility of IFs included in the radiomic signature, we
evaluated a rank of inter-observer stability for IFs extracted from tumor volumes from
both T2w images and ADC maps [6,17]. The subsequent analysis was then performed on a
set of robust and reproducible IFs. Furthermore, the use of a single MR scanner using a
standardized acquisition protocol for all involved patients allowed to avoid issues related
to IFs dependency from scanner and acquisition protocols.

Several studies described the association of radiomic features of T2w and DWI images
with GGG, but there is a large heterogeneity both in the preselection of quantitative feature
to test and in the results. In their study, Nketiah et al. [29] selected 4 distinct textural
features extracted from T2w from the 14 GLCM textural features originally proposed by
Haralick. They found that among the T2W image textural features ASM and entropy
correlated significantly (p < 0.05) with GGG. In the study of Wibner et al. [8], higher PZ
GGG cancer was associated with higher Entropy and lower Energy extracted from ADC
maps. None of the texture features of T2w images showed significant associations with
GGG. According to the authors, to effectively predict PCa aggressiveness, the identification
of an IF signature could be more effective than the identification of specific and isolated
features.

Toivonen et al. [30] have recently proposed a combination of features, selected from a
pool of 7105 IFs extracted from T2w, DWI a T2 mapping, in a cohort of patients comparable
to ours, showing an AUC of 0.88 for the classification of low vs. high GGG. Considering our
cohort dimension and the need of an imaging post-processing methodologies applicable
in everyday clinical practice, we aimed to limit the analysis to a reasonable number of
accurate and reproducible features. For this reason, in this work, a signature composed of
the top 10 stable and non-redundant features was tested.

We also attempted to implement a quantitative model able to predict alongside GGG
also ECE and nodal involvement. Knowledge of ECE at the time of diagnosis can affect
management decisions, with a potential impact on treatment modality or surgical technique.
The preoperative prediction of nodal involvement is even more important for clinical
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practice and it is currently based on clinical and pathological data [31]. As a matter of
fact, even though some qualitative MRI parameters, such as dimension and length of
capsular contact of dominant lesion, have been identified as a predictor of ECE and nodal
involvement [32], due to its subjective nature, the evaluation of these parameters is plagued
by low inter-observer agreement [33], and a high number of cases still suffer from over
diagnosis and overtreatment.

Using a limited combination of IFs from T2w and ADC images, selected among the
top 10 more stable features, we were able to predict GGG, ECE, and node status with a
sensitivity greater than 0.88 and a specificity of 0.78 at least (Table 3).

Since mean ADC value in tumor volumes is known to be a quite reliable biomarker for
tumour aggressiveness [34,35], we tested the effective potential advantage of radiomic IFs
with respect to the easier use of ADCmean. Interestingly, mean ADC alone showed a lower
accuracy with respect to the use of radiomic IFs, but when used in combination (ADC
mean + STOP-T2/ADC), an improvement in model performance was obtained, particularly
for prediction of GGG and ECE (Table 3).

In this study, no information such as genomic and proteomic data of the tumors was
included since this information is not usually evaluated in routine clinical practice. How-
ever, it would be interesting, in prospective works, to include other biological parameters
possibly underlying molecular changes of PC that may reflect in radiomic features (e.g.,
mRNAs or miRNAs expression levels). Such molecular features could help to decipher the
biological role of radiomic features in capturing genotype in its living environment and
eventually complete and improve the radiomic signature to predict clinical endpoints.

This study has some limitations most related to the small, even though homogeneous,
sample size. Indeed, our inclusion criteria required that enrolled patients performed both
mpMRI and image-guided biopsy, thus obtaining a cohort of biopsy-confirmed patients
to be analyzed by radiomic mpMRI. Then, patients received prostatectomy as primary
treatment, which is nowadays recommended only for patients showing high-grade tumors
since can be postponed for localized, low-grade (Gleason < 7) disease without significant
change in outcome [36]. Moreover, we also considered a subset of patients undergoing
lymphadenectomy during surgery in order to assess the predictiveness of mpMRi-based
signatures with respect to lymph node status. Furthermore, in order to warrant rigorous
radiomic analysis, we had to exclude, from our enrolled cohort, those patients with lesion
dimensions on mMRI below 0.7 cc. We were very conservative on this point to warrant
an accurate and meaningful radiomic analysis. This cut-off for lesion volume was due
to the lower spatial resolution of ADC maps that were included in our multiparametric
signature. In the majority of published radiomics studies on PCa, tumors were analyzed
on the basis of their dimensions as evaluated by histology (0.5 cc dimensional cut-off for
clinically significant tumors) [8,29,37]. Despite this, a radiomic analysis on less than 4
image voxels in each direction make no meaningful the calculation for different textural
parameters [6]. For those reasons, we were not able to perform an external validation of
our radiomic signatures without further impacting on samples to be used for training and
internal validation.

Limitation in terms of VOI dimensions is clearly an issue of radiomics [6], which could
have an impact from a clinical point of view. Despite this, in our cohort with the application
of a dimensional cut off of 0.7 cc, the large majority of discarded patients have small PCas
on imaging characterized by a low/intermediate aggressiveness at pathology (53% were
GGG 3 + 4). As pointed out, the dimensional cut-off was defined considering the lower
spatial resolution of ADC maps for our multiparametric signature. However, due to higher
resolution of T2w images, the minimum VOI volume was required for radiomic analysis of
T2w images. Thus, mono-modal T2w signature could be used to evaluate aggressiveness
in case of small PCas.

Even if we did not separate PZ and TZ lesions for the analysis due to the disproportion
in frequencies distribution, with PZ tumors accounting for almost 70% of lesions, perfor-
mances of the different signatures in the subset of PZ lesions have been evaluated. The
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obtained results confirmed the predictive role of DWI in PZ lesions, even if the multivariate
signature STOP has shown slightly higher accuracy. Despite this, a larger cohort of TZ
lesions will allow to confirm the specific impact of signature in this subset of PC patients.
Finally, we focused our investigation on radiomic features extracted from T2w images
and ADC map, excluding data from DCE imaging. Although our approach could be
considered in agreement with PIRADS guidelines, which consider DCE only as a support
to T2 and DWI sequences for lesion detection and characterization, it could be interesting
to investigate the additional contribution of radiomic features from DCE.

In conclusion, our data suggest that the implementation of robust radiomic-pipeline for
the analysis of mpMRI allows for the extraction of a reliable radiomic signature, potentially
able to predict PCa aggressiveness, in terms of Gleason score, extracapsular extension, and
nodal stage.

Supplementary Materials: https://www.mdpi.com/2075-4418/11/4/594/s1, Figure S1: ROC
curves and AUC values for classification in PZ patient dataset. Table S1: Report on image processing
and image biomarker extraction, Table S2: Signature models and performances for classification of
PZ lesions.
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