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Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a
reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used
to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision,
for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building
blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local
phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-
based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it
compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples
of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected
motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation
achieved with a widely used optic flow algorithm.

1. Introduction

Following Marr, the design of an information processing
system can be approached on multiple levels [1]. Figure 1
illustrates two levels of abstraction, namely, the algorithmic
level and the physical circuit level. On the algorithmic level,
one studies procedurally how the information is processed
independently of the physical realization. The circuit level
concerns the actual realization of the algorithm in physical
hardware, for example, a biological neural circuit or silicon
circuits in a digital signal processor. In this paper, we put
forth a simple motion detection algorithm that is inspired by
motion detection models of biological visual systems (in vivo
neural circuit) and provide an efficient realization that can
easily be implemented on commodity (in silico) DSP chips.

Visual motion detection is critical to the survival of
animals. Many biological visual systems have evolved highly
efficient/effective neural circuits to detect visual motion.
Motion detection is performed in parallel with other visual
coding circuits and starts already in the early stages of visual
processing. In the retina of vertebrates, it is known that at least

three types of Direction-Selective Ganglion Cells (DSGC) are
responsible for signaling visual motion at this early stage [2].
In flies, direction-selective neurons are found in the optic
lobe, 3 synapses away from the photoreceptors [3].

The small number of synapses between photoreceptors
and direction-selective neurons suggests that the processing
involved in motion detection is not highly complex but still
very effective. In addition, the biological motion detection
circuits are organized in a highly parallel way to enable fast,
concurrent computation of motion. It is also interesting to
note that the early stages of motion detection are carried
out largely in the absence of spiking neurons, indicating that
initial stages of motion detection are preferably performed in
the “analog” domain. Taking advantage of continuous time
processing may be critical for quickly processing motion
since motion intrinsically elicits fast and large changes in the
intensity levels, that is, large amounts of data under stringent
time constraints.

Modern, computer-based motion detection algorithms
often employ optic flow techniques to estimate spatial
changes in consecutive image frames [4, 5]. Although, often
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Figure 1: Algorithms can have different physical realizations. For
example, an algorithm can be implemented by neural circuits in a
biological system. Alternately, it can be implemented on a digital
signal processor. Algorithms direct the implementation on the
physical layer. Conversely, biological neural circuits inspire new
algorithmic designs, which can, in turn, be expressed and improved
upon by a realization in silico.

time, optic flow estimation algorithms produce accurate
results, the computational demand to perform many of these
algorithms is too high for real-time implementation.

Several models for biological motion detection are avail-
able and their architecture is quite simple [6]. The Reichardt
motion detector [7] was thought to be the underlying
model for motion detection in insects [8]. The model is
based on a correlation method to extract motion induced
by spatiotemporal information patterns of light intensity.
Therefore, it relies on a correlation/multiplication operation.
A second model is the motion energy detector [9]. It uses
spatiotemporal separable filters and a squaring nonlinearity
to compute motion energy and it was shown to be equivalent
to the Reichardt motion detector. Earlier work in the rabbit
retina was the foundation to the Barlow-Levick model [10]
of motion detection. The model relies on inhibition to
compensate motion in the null direction.

In this paper, we provide an alternative motion detection
algorithm based on local phase information of the visual
scene. Similar to mechanisms in other biological models, it
operates in continuous time and in parallel. Moreover, the
motion detection algorithm we propose can be efficiently
implemented on parallel hardware. This is, again, similar to
the properties of biological motion detection systems. Rather
than focusing on velocity of motion, we focus on localization,
that is, where the motion occurs in the visual field as well as
the direction of motion.

It has been shown that images can be represented by
their global phase alone [11]. Here we provide a reconstruc-
tion algorithm of visual scenes by only using local phase
information, thereby demonstrating the spectrum of the
representational capability of phase information.

The Fourier shift property clearly suggests the relation-
ship between the global shift of an image and the global phase
shift in the frequency domain. We elevate this relationship
by computing the change of local phase to indicate motion
that appears locally in the visual scene. The local phases are
computed using window functions that tile the visual field
with overlapping segments, making it amenable for a highly
parallel implementation. In addition, we propose a Radon-
transform-based motion detection index on the change of

local phases for the readout of the relation between local
phases and motion.

Interestingly, phase information has been largely ignored
in the field of linear signal processing and for good reason.
Phase-based processing is intrinsically non-linear. Recent
researches, however, showed that phase information can
be smartly employed in speech processing [12] and visual
processing [13]. For example, spatial phase in an image is
indicative of local features such as edges when considering
phase congruency [14]. The role of spatial phase in compu-
tational and biological vision, emergence of visual illusions,
andpattern recognition is discussed in [15]. Togetherwith our
result for motion detection, these studies suggest that phase
information has a great potential for achieving efficient visual
signal processing.

This paper is organized as follows. In Section 2, we
show that local phase information can be used to faithfully
represent visual information in the absence of amplitude
information. In Section 3, we develop a simple local phase-
based algorithm to detectmotion in visual scenes and provide
an efficient way for its implementation. We then provide
examples and applications of the proposed motion detection
algorithm to motion segmentation. We also compare our
results to those obtained using motion detection algorithms
based on optic flow techniques in Section 4. Finally, we
summarize our results in Section 5.

2. Representation of Visual Scenes Using
Phase Information

Theuse of complex valued transforms is widespread, for both
representing and processing images. When represented in
polar coordinates, the output of a complex valued transform
of a signal can be split into amplitude and phase. In this
section, we define two types of phases of an image: global
phase and local phase. We then argue that both types of
phases can faithfully represent an image and we provide a
reconstruction algorithm that recovers the image from local
phase information. This indicates that phase information
alone can largely represent an image or video signal.

It will become clear in the sections that follow that the
use of phase for representing of image and video infor-
mation leads to efficient ways to implement certain types
of image/video processing algorithms, for example, motion
detection algorithms.

2.1. The Global Phase of Images. Recall that the Fourier
transform of a real valued image 𝑢 = 𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2,
is given by
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where �̂�(𝜔
𝑥
, 𝜔
𝑦
) ∈ R is the amplitude and ̂

𝜙(𝜔
𝑥
, 𝜔
𝑦
) is the

phase of the Fourier transform of 𝑢.

Definition 1. The amplitude of the Fourier transform of an
image 𝑢 = 𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, is called the global amplitude
of 𝑢. The phase of the Fourier transform of an image 𝑢 =

𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, is called the global phase of 𝑢.

It is known that the global phase of an image plays an
important role in the representation of natural images [11]. A
classic example is to take two images and to exchange their
global phases before their reconstruction using the inverse
Fourier transform. The resulting images are slightly smeared
but largely reflect the information contained in the global
phase.

2.2.The Local Phase of Images. The global phase indicates the
offset of sinusoids of different frequencies contained in the
entire image. However, it is not intuitive to relate the global
phase to local image features such as edges and their position
in an image. To study these local features, it is necessary to
modify the Fourier transform such that it reflects properties
of a restricted region of an image. It is natural to consider the
Short-Time (-Space) Fourier Transform (STFT):
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, 𝑦
0
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(3)

where 𝑤 = 𝑤(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, is a real valued window
function centered at (𝑥

0
, 𝑦
0
) ∈ R2. Typical choices of window

functions include the Hann window and the Gaussian win-
dow. The (effectively) finite support of the window restricts
the Fourier transform to local image analysis.

Similarly to the Fourier transform, the STFT can be
expressed in polar coordinates as
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where 𝐴(𝜔
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0
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Definition 2. The amplitude of the STFT of an image 𝑢 =

𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, is called the local amplitude of 𝑢. The
phase of the STFT of an image 𝑢 = 𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, is
called the local phase of 𝑢.

Note that when 𝑤 is a Gaussian window, the STFT of 𝑢
evaluated at (𝜔

𝑥
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response of a complex-valued Gabor receptive field

ℎ (𝑥, 𝑦) = 𝑒
−((𝑥−𝑥

0
)
2
+(𝑦−𝑦

0
)
2
)/2𝜎
2

𝑒
−𝑗(𝜔
𝑥
(𝑥−𝑥
0
)+𝜔
𝑦
(𝑦−𝑦
0
)) (5)

to 𝑢.
In this case, the window of the STFT clearly is given by
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Therefore, the STFT can be realized by an ensemble of Gabor
receptive fields that are common in modeling simple and
complex cells (neurons) in the primary visual cortex [16].

2.3. Reconstruction of Images from Local Phase. Amplitude
and phase can be interpreted as measurements/projections
of images that are indicative of their information content.
Classically, when both the global amplitude and phase are
known, it is straightforward to reconstruct the image. The
reconstruction calls for computing the inverse Fourier trans-
form given the global amplitude and phase. Similarly, when
using local amplitude and phase, if the sampling functions
form a basis or frame in a space of images, the reconstruction
is provided by the formalism of wavelet theory, for example,
using Gabor wavelets [17].

Amplitude or phase represents partial information
extracted from visual scenes.They are obtained via nonlinear
sampling, that is, a nonlinear operation for extracting the
amplitude andphase information from images.Thenonlinear
operation makes reconstruction from either amplitude or
phase alone difficult. Earlier studies and recent development
in solving quadratic constraints, however, suggest that it is
possible to reconstruct images from global or local amplitude
information [18, 19].

While computing the amplitude requires a second order
(quadratic) nonlinearity, computing the phase calls for higher
order nonlinear operators (Volterra kernels). It is possible,
however, to reconstruct up to a constant scale an image from
its global phase information alone without explicitly using
the amplitude information. An algorithm was provided for
solving this problem in the discrete signal processing domain
in [11].The algorithm smartly avoids using the inverse tangent
function by reformulating the phase measurements as a set of
linear equations that are easy to solve.

Using a similar argument, we demonstrate in the follow-
ing that, up to a constant scale, a bandlimited signal 𝑢 =

𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ R2, can be reconstructed from its local phase
alone. We first formulate the encoding of an image 𝑢 by local
phase, using the Gabor receptive fields as a special case. It
is straightforward then to formulate the problem with local
phase computed from other types of STFTs.

Formally, we consider an image, 𝑢 = 𝑢(𝑥, 𝑦), on the
domain R2, to be an element of a space of trigonometric
polynomialsH of the form
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are the set of basis functions ofH,Ω
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and the order, respectively, of the space in the 𝑥 dimension,
and Ω

𝑦
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the space in the 𝑦 dimension.
H is a Reproducing Kernel Hilbert Space with inner

product [20, 21]
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where 𝑇
𝑥
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Consider a bank of𝑁 Gabor receptive fields
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the Gabor receptive fields to the input 𝑢(𝑥, 𝑦) are given by
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Remark 3. Assuming that the local phase information 𝜙
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is obtained via measurements, that is, filtering the image 𝑢

with pairs of Gabor receptive fields (10), the set of linear
equations (14) has a simple interpretation: the image 𝑢 is
orthogonal to the space spanned by the functions
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We are now in the position to provide a reconstruction
algorithm of the image from phase 𝜙
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Here 𝑝 traverses the set I, and 𝑞 = (2𝐿
𝑦
+ 1)(𝑙
𝑥
+ 𝐿
𝑥
) + (𝑙
𝑦
+

𝐿
𝑦
+ 1). 𝑐 is a vector of the form

𝑐 = [𝑐
−𝐿
𝑥
,−𝐿
𝑦

, 𝑐
−𝐿
𝑥
,−𝐿
𝑦
+1
, . . . , 𝑐

−𝐿
𝑥
,𝐿
𝑦

, 𝑐
−𝐿
𝑥
+1,−𝐿

𝑦

,

𝑐
−𝐿
𝑥
+1,−𝐿

𝑦
+1
, . . . , 𝑐

−𝐿
𝑥
+1,𝐿
𝑦

, . . . , 𝑐
𝐿
𝑥
,−𝐿
𝑦

, 𝑐
𝐿
𝑥
,−𝐿
𝑦
+1
, . . . ,

𝑐
𝐿
𝑥
,𝐿
𝑦

]

𝑇

(19)

that belongs to the null space of Φ. A necessary condition
for perfect reconstruction of 𝑢, up to a constant scale, is that
𝑁 ≥ (2𝐿

𝑥
+ 1)(2𝐿

𝑦
+ 1) − 1, where 𝑁 is the number of phase

measurements.

Proof. Substituting (7) into (14), we obtain
𝐿
𝑥

∑

𝑙
𝑥
=−𝐿
𝑥

𝐿
𝑦

∑

𝑙
𝑦
=−𝐿
𝑦

𝑐
𝑙
𝑥
𝑙
𝑦

∫

R2
𝑤 (𝑥 − 𝑘𝑏

0
, 𝑦 − 𝑙𝑏

0
)

⋅ sin (𝜔
𝑥
𝑚

(𝑥 − 𝑘𝑏
0
) + 𝜔
𝑦
𝑛

(𝑦 − 𝑙𝑏
0
) + 𝜙
𝑘𝑙,𝑚𝑛

)

⋅ 𝑒
𝑙
𝑥
𝑙
𝑦

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 0,

(20)

for all 𝑘, 𝑙, 𝑚, 𝑛 ∈ Z. Therefore, we have

Φ𝑐 = 0, (21)

inferring that 𝑐 is in the null space ofΦ.
If 𝑁 < (2𝐿

𝑥
+ 1)(2𝐿

𝑦
+ 1) − 1, it follows from the rank-

nullity theorem that dim(null(Φ)) > 1 leading to multiple
linearly independent solutions toΦ𝑐 = 0.

Example 5. In Figure 2 an example of reconstruction of an
image is shown using only local phase information. The
reconstructed signal was scaled to match the original signal.
The SNR of the reconstruction is 44.48 [dB]. An alternative
way to obtain a unique reconstruction is to include an
additional measurement, for example, the mean value of the
signal ∫

R2
𝑢(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 to the system of linear equations (14).
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(a) (b) (c)

Figure 2: An example of reconstruction of image from local phase information. (a) Original image, the dimension of the space is 16,129.
(b) Reconstructed image from 20,102 phase measurements, scaled to match the original. (c) Error.

3. Visual Motion Detection from
Phase Information

In this section we consider visual fields that change as a
function of time. For notational simplicity 𝑢 will denote here
the space-time intensity of the visual field.

3.1. The Global Phase Equation for Translational Motion. Let
𝑢 = 𝑢(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ R2, 𝑡 ∈ R, be a visual stimulus. If the
visual stimulus is a pure translation of the signal at 𝑢(𝑥, 𝑦, 0),
that is,

𝑢 (𝑥, 𝑦, 𝑡) = 𝑢 (𝑥 − 𝑠
𝑥
(𝑡) , 𝑦 − 𝑠

𝑦
(𝑡) , 0) , (22)

where

𝑠
𝑥
(𝑡) = ∫

𝑡

0

V
𝑥
(𝑠) 𝑑𝑠,

𝑠
𝑦
(𝑡) = ∫

𝑡

0

V
𝑦
(𝑠) 𝑑𝑠

(23)

are the total length of translation at time 𝑡 in each dimen-
sion and V

𝑥
(𝑡) and V

𝑦
(𝑡) are the corresponding instanta-

neous velocity components, then the only difference between
𝑢(𝑥, 𝑦, 𝑡) and 𝑢(𝑥, 𝑦, 0) in the Fourier domain is captured by
their global phase. More formally, consider the following.

Lemma 6. The change (derivative) of the global phase is given
by

𝑑
̂
𝜙 (𝜔
𝑥
, 𝜔
𝑦
, 𝑡)

𝑑𝑡

= −𝜔
𝑥
V
𝑥
(𝑡) − 𝜔

𝑦
V
𝑦
(𝑡)

= − [𝜔
𝑥
, 𝜔
𝑦
] [V
𝑥
(𝑡) , V
𝑦
(𝑡)]

𝑇

,

(24)

where, by abuse of notation, ̂𝜙(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) denotes the global

phase of 𝑢(𝑥, 𝑦, 𝑡) and ̂
𝜙(𝜔
𝑥
, 𝜔
𝑦
, 0) is the initial condition.

Proof. If (F𝑢(⋅, ⋅, 0)) (𝜔
𝑥
, 𝜔
𝑦
) is the 2D (spatial) Fourier

transform of 𝑢 = 𝑢(𝑥, 𝑦, 0), (𝑥, 𝑦) ∈ R2, by the Fourier shift
theorem, we have

(F𝑢 (⋅, ⋅, 𝑡)) (𝜔
𝑥
, 𝜔
𝑦
)

= (F𝑢 (⋅, ⋅, 0)) (𝜔
𝑥
, 𝜔
𝑦
) 𝑒
−𝑗(𝜔
𝑥
𝑠
𝑥
(𝑡)+𝜔

𝑦
𝑠
𝑦
(𝑡))

.

(25)

For a certain frequency component (𝜔
𝑥
, 𝜔
𝑦
), the change of its

global phase over time amounts to

𝑑
̂
𝜙 (𝜔
𝑥
, 𝜔
𝑦
, 𝑡)

𝑑𝑡

= −𝜔
𝑥

𝑑𝑠
𝑥
(𝑡)

𝑑𝑡

− 𝜔
𝑦

𝑑𝑠
𝑦
(𝑡)

𝑑𝑡

= −𝜔
𝑥
V
𝑥
(𝑡) − 𝜔

𝑦
V
𝑦
(𝑡)

= − [𝜔
𝑥
, 𝜔
𝑦
] [V
𝑥
(𝑡) , V
𝑦
(𝑡)]

𝑇

.

(26)

Therefore, in the simple case where the entire visual field is
shifting, the derivative of the phase of Fourier components
indicates motion, and it can be obtained by the inner
product between the component frequency and the velocity
vector.

3.2. The Change of Local Phase

3.2.1.The Local Phase Equation for Translational Motion. The
analysis in Section 3.1 applies to global motion. This type of
motion occurs most frequently when the imaging device,
either an eye or a camera,moves. Visualmotion in the natural
environment, however, ismore diverse across the screen since
it is, often time, produced by multiple moving objects. The
objects can be small and the motion more localized in the
visual field.

Taking the global phase of 𝑢 will not simply reveal
where motion of independent objects takes place or their
direction/velocity of motion. The ease of interpretation of
motion by using the Fourier transform, however, motivates
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us to reuse the same concept in detecting local motion. This
can be achieved by restricting the domain of the visual field
where the Fourier transform is applied.

To be able to detect local motion, we consider the
local phase of 𝑢(𝑥, 𝑦, 𝑡) by taking the STFT with window
function 𝑤(𝑥, 𝑦). Note that, the STFT and its ubiquitous
implementation in DSP chips can be extensively used in any
dimension. For simplicity and without loss of generality, we
consider the window to be centered at (0, 0). The STFT is
given by

∫

R2
𝑢 (𝑥, 𝑦, 𝑡) 𝑤 (𝑥, 𝑦) 𝑒

−𝑗(𝜔
𝑥
𝑥+𝜔
𝑦
𝑦)
𝑑𝑥 𝑑𝑦

= 𝐴
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) 𝑒
𝑗𝜙
00
(𝜔
𝑥
,𝜔
𝑦
,𝑡)
,

(27)

where, by abuse of notation, 𝐴
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) is the amplitude

and 𝜙
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) the local phase.

Before we move on to the mathematical analysis, we can
intuitively explain the relation between the change in local
phase and visual motion taking place across the window
support. First, if the stimulus undergoes a uniform change
of intensity or it changes proportionally over time due to
lighting conditions, for example, the local phase does not
change since the phase is invariant with respect to intensity
scaling. Therefore, the local phase does not change for such
nonmotion stimuli. Second, a rigid edge moving across the
window support will induce a phase change.

For a strictly translational signal within the window
support (footprint), for example,

𝑢 (𝑥, 𝑦, 𝑡) = 𝑢 (𝑥 − 𝑠
𝑥
(𝑡) , 𝑦 − 𝑠

𝑦
(𝑡) , 0) ,

for (𝑥, 𝑦) ∈ supp (𝑤 (𝑥, 𝑦)) ,

(28)

where 𝑠
𝑥
(𝑡) and 𝑠

𝑦
(𝑡) are as defined in (23), we have the

following result.

Lemma 7. Consider the following:

𝑑𝜙
00

𝑑𝑡

(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) = −

𝑑𝑠
𝑥
(𝑡)

𝑑𝑡

𝜔
𝑥
−

𝑑𝑠
𝑦
(𝑡)

𝑑𝑡

𝜔
𝑦

+ v
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) ,

(29)

where, by abuse of notation, 𝜙
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) is the local phase

of 𝑢(𝑥, 𝑦, 𝑡) and 𝜙
00
(𝜔
𝑥
, 𝜔
𝑦
, 0) is the initial condition. The

functional form of the term v
00

= v
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) is provided

in the Appendix.

Proof. The derivation of (29) and the functional form of v
00

are given in the Appendix.

Remark 8. Wenotice that the derivative of the local phase has
similar structure to that of the global phase, but for the added
term v

00
.Through simulations, we observed that the first two

terms in (29) dominate over the last term for an ON or OFF
moving edge [3]. For example, Figure 3 shows the derivative
of the local phase given in (29) for an ON edge moving with
velocity (40, 0) pixels/sec.
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Figure 3: Derivative of the local phase for an ON edge moving in
the positive 𝑥 direction.

Remark 9. Note that 𝜙
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) may not be differen-

tiable even if 𝑢(𝑥, 𝑦, 𝑡) is differentiable, particularly when
𝐴
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) = 0. For example, the spatial phase can jump

from a positive value to zero when𝐴
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) diminishes.

This also suggests that the instantaneous local spatial phase
is less informative about a region of a visual scene whenever
𝐴
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) is close to zero. Nevertheless, the time deriva-

tive of the local phase can be approximated by applying a
high-pass filter to 𝜙

00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡).

3.2.2. The Block Structure for Computing the Local Phase. We
construct Gaussian windows along the 𝑥, 𝑦 dimensions. The
Gaussian windows are defined as

(T
𝑘𝑙
𝑤) (𝑥, 𝑦) = 𝑒

−((𝑥−𝑥
𝑘
)
2
+(𝑥−𝑦

𝑙
)
2
)/2𝜎
2

, (30)

where 𝑥
𝑘
= 𝑘𝑏
0
, 𝑦
𝑙
= 𝑙𝑏
0
, in which 𝑏

0
∈ Z+ is the distance

between two neighboring windows and 1 ≤ 𝑘𝑏
0
≤ 𝑃
𝑥
, 1 ≤

𝑙𝑏
0
≤ 𝑃
𝑦
, where 𝑃

𝑥
, 𝑃
𝑦
∈ Z+ are the number of pixels of the

screen in 𝑥 and 𝑦 directions, respectively.
We then take the 2D Fourier transform of the windowed

video signal 𝑢(𝑥, 𝑦, 𝑡)(T
𝑘𝑙
𝑤)(𝑥, 𝑦) and write in polar form

∫

R2
𝑢 (𝑥, 𝑦, 𝑡) (T

𝑘𝑙
𝑤) (𝑥, 𝑦) 𝑒

−𝑗(𝜔
𝑥
(𝑥−𝑥
𝑘
)+𝜔
𝑦
(𝑦−𝑦
𝑙
))
𝑑𝑥 𝑑𝑦

= 𝐴
𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) 𝑒
𝑗𝜙
𝑘𝑙
(𝜔
𝑥
,𝜔
𝑦
,𝑡)
.

(31)

The above integral can be very efficiently evaluated using
the 2D FFT in discrete domain defined on 𝑀 × 𝑀 blocks
approximating the footprint of the Gaussian windows. For
example, the standard deviation of the Gaussian windows we
use in the examples in Section 4 is 4 pixels. A block of 32×32

pixels (𝑀 = 32) is sufficient to cover the effective support
(or footprint) of the Gaussian window. At the same time, the
size of the block is a power of 2, which is most suitable for
FFT-based computation.The processing of each block (𝑘, 𝑙) is
independent of all other blocks; thereby, parallelism is readily
achieved.

Note that the size of the window is informed by the
size of the objects one is interested in locating. Measure-
ments of the local phase using smaller window functions
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Figure 4: Example of block structure. (a) Four yellow disks show 4 Gaussian window functions with translation parameter 𝑘 = 3, 𝑙 = 3

(top-left), 𝑘 = 3, 𝑙 = 7 (bottom-left), 𝑘 = 7, 𝑙 = 3 (top-right), and 𝑘 = 7, 𝑙 = 7 (bottom-right). The red solid square shows a 32 × 32-pixel block
approximating the Gaussian window with 𝑘 = 3, 𝑙 = 3, and the green dashed square shows a 32 × 32-pixel block approximating the Gaussian
window with 𝑘 = 3, 𝑙 = 7. (b) Cross section of all 11 Gaussian windows with translation parameters 𝑘 = 7, 𝑙 ∈ [0, 10]. The cross section is
taken as indicated by the magenta line in (a), and the red and blue curve correspond to cross sections of the two Gaussian windows shown in
(a) centered on the magenta line.

are less robust to noise. Larger windows would enhance
object motion detection if the object size is comparable to
the window size. However, there would be an increased
likelihood of independent movement of multiple objects
within the same window, which is not modeled here and
thereby may not be robustly detected.

Therefore, for each block (𝑘, 𝑙), we obtain 𝑀
2 measure-

ments of the phase 𝜙
𝑘𝑙
(𝜔
𝑥
𝑚

, 𝜔
𝑦
𝑚

, 𝑡) at every time instant 𝑡,
with (𝜔

𝑥
𝑚

, 𝜔
𝑦
𝑚

) ∈ D2, where

D
2
= {(𝜔

𝑥
𝑚

= 𝑚𝜔
0
, 𝜔
𝑦
𝑛

= 𝑛𝜔
0
) , 𝑚, 𝑛 = −𝑀/2,

− 𝑀/2 + 1, . . . ,𝑀/2 − 1} ,

(32)

with 𝜔
0
= 2𝜋/𝑀. We then compute the temporal derivative

of the phase, that is, (𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡) for (𝜔

𝑥
, 𝜔
𝑦
) ∈ D2.

We further illustrate an example of the block structure
in Figure 4. Figure 4(a) shows an example of an image of
64 × 64 pixels. Four Gaussian windows are shown each with
a standard deviation of 4 pixels. The distance between the
centers of two neighboring Gaussian windows is 6 pixels.
The red solid square shows a 32 × 32-pixel block with 𝑘 =

3, 𝑙 = 3, which encloses effective support of the Gaussian
window on top-left (𝑘 = 0, 𝑙 = 0 is the block with Gaussian
window centered at pixel (1, 1)). The green dashed square
shows another 32 × 32-pixel block with 𝑘 = 3, 𝑙 = 7. The
two Gaussian windows on the right are associated with the
blocks 𝑘 = 7, 𝑙 = 3 and 𝑘 = 7, 𝑙 = 7, respectively. Cross
section of all Gaussian windows with 𝑘 = 7, 𝑙 ∈ [0, 10], that is,
those centered on themagenta line, are shown in Figure 4(b).
The red and blue curve in Figure 4(b) correspond to the two

Gaussian windows shown in Figure 4(a). Figure 4(b) also
suggests that some of the Gaussian windows are cut off on the
boundaries. This is, however, equivalent to assuming that the
pixel values outside the boundary are always zero, and it will
not significantly affect motion detection based on the change
of local phase.

Since the phase, and thereby the phase change, is noisier
when the local amplitude is low, an additional denoising
step can be employed to discount the measurements of
(𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡) for low amplitude values 𝐴

𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡).

The denoising is given by

𝑑𝜙
𝑘𝑙

𝑑𝑡

(𝜔
𝑥
, 𝜔
𝑦
, 𝑡)

⋅

𝐴
𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡)

(1/𝑀
2
)∑
(𝜔
𝑥
,𝜔
𝑦
)∈D2 𝐴𝑘𝑙 (𝜔𝑥, 𝜔𝑦, 𝑡) + 𝜖

,

(33)

where 𝜖 > 0 is a constant, and (𝜔
𝑥
, 𝜔
𝑦
) ∈ D2.

3.3. The Phase-Based Detector. We propose here a block FFT
based algorithm to detect motion using phase information.
Such an algorithm is, due to its simplicity and parallelism,
highly suitable for an in silico implementation.

3.3.1. Radon Transform on the Change of Phases. We exploit
the approximately linear structure of the phase derivative for
blocks exhibiting motion by computing the Radon transform
of (𝑑𝜙

𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡) over a circular bounded domain 𝐶 =

{(𝜔
𝑥
, 𝜔
𝑦
) | (𝜔
𝑥
, 𝜔
𝑦
) ∈ D2, 𝜔2

𝑥
+ 𝜔
2

𝑦
< 𝜋
2
}.
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The Radon transform of the change of phase in the
domain 𝐶 is given by

(R
𝑑𝜙
𝑘𝑙

𝑑𝑡

) (𝜌, 𝜃, 𝑡) = ∫

R

𝑑𝜙
𝑘𝑙

𝑑𝑡

(𝜌 ⋅ cos 𝜃 − 𝑠 ⋅ sin 𝜃, 𝜌

⋅ sin 𝜃 + 𝑠 ⋅ cos 𝜃, 𝑡) 1
𝐶
(𝜌 ⋅ cos 𝜃 − 𝑠 ⋅ sin 𝜃, 𝜌 ⋅ sin 𝜃

+ 𝑠 ⋅ cos 𝜃) 𝑑𝑠,

(34)

where

1
𝐶
(𝜔
𝑥
, 𝜔
𝑦
) =

{

{

{

1 if (𝜔
𝑥
, 𝜔
𝑦
) ∈ 𝐶

0 otherwise.
(35)

The Radon transform (R(𝑑𝜙
𝑘𝑙
/𝑑𝑡))(𝜌, 𝜃, 𝑡) evaluated at

a particular point (𝜌
0
, 𝜃
0
, 𝑡
0
) is essentially an integral

of (𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡
0
) along a line oriented at angle

𝜋/2 + 𝜃
0
with the 𝜔

𝑥
axis and at distance |𝜌

0
| along the

(cos(𝜃
0
), sin(𝜃

0
)) direction from (0, 0).

If, for a particular 𝑘 and 𝑙, we have (𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡) =

−V
𝑥
(𝑡)𝜔
𝑥
− V
𝑦
(𝑡)𝜔
𝑦
, we have

(R (𝑑𝜙
𝑘𝑙
/𝑑𝑡)) (𝜌, 𝜃, 𝑡)

c (𝜌, 𝜃)

= 𝜌 [−V
𝑥
(𝑡) cos 𝜃 − V

𝑦
(𝑡) sin 𝜃] ,

(36)

where

c (𝜌, 𝜃)

= ∫

R

1
𝐶
(𝜌 ⋅ cos 𝜃 − 𝑠 ⋅ sin 𝜃, 𝜌 ⋅ sin 𝜃 + 𝑠 ⋅ cos 𝜃) 𝑑𝑠.

(37)

c(𝜌, 𝜃) is a correction term due to different length of line
integrals for different values of (𝜌, 𝜃) in the bounded domain
𝐶.

After computing the Radon transform of (𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
,

𝜔
𝑦
, 𝑡) for every block (𝑘, 𝑙) at time 𝑡

0
, we compute the Phase

Motion Indicator (PMI), defined as

PMI
𝑘𝑙
= max
𝜃∈[0,𝜋)

∑

𝜌











(R (𝑑𝜙
𝑘𝑙
/𝑑𝑡)) (𝜌, 𝜃, 𝑡

0
)

c (𝜌, 𝜃)











. (38)

If the PMI
𝑘𝑙

is larger than a chosen threshold, motion is
deemed to occur in block (𝑘, 𝑙) at time 𝑡

0
.

Using the Radon transform makes it easier to separate
rigid motion from noise. Since the phase is quite sensitive
to noise, particularly when the amplitude is very small,
the change of phase under noise may have comparable
magnitude to that due to motion as mentioned earlier. The
change of phase under noise, however, does not possess the
structure suggested by (29) in the (𝜔

𝑥
, 𝜔
𝑦
) domain. Instead,

it appears to be more randomly distributed. Consequently,

the PMI value is comparatively small for these blocks (see also
Section 3.3.3).

Moreover, the direction of motion, for block (𝑘, 𝑙) where
motion is detected, can be easily computed as

̂
𝜃
𝑘𝑙

= 𝜋(

sign (∑
𝜌>0

(R (𝑑𝜙
𝑘𝑙
/𝑑𝑡)) (𝜌, 𝛼

𝑘𝑙
, 𝑡
0
) /c (𝜌, 𝛼

𝑘𝑙
)) + 1

2

)

+ 𝛼
𝑘𝑙
,

(39)

where

𝛼
𝑘𝑙
= argmax
𝜃∈[0,𝜋)

∑

𝜌











(R (𝑑𝜙
𝑘𝑙
/𝑑𝑡)) (𝜌, 𝜃, 𝑡

0
)

c (𝜌, 𝜃)











. (40)

This follows from (36).

3.3.2. The Phase-Based Motion Detection Algorithm. We for-
mally summarize the above analysis as Algorithm 1. Figure 5
shows a schematic diagram of the proposed phase-based
motion detection algorithm.

The algorithm is subdivided into two parts. The first part
computes local phase changes and the second part is the
phase-based motion detector.

In the first part, the screen is divided into overlapping
blocks. For example, the red, green, and blue blocks in the
plane “divide into overlapping blocks” correspond to the
squares of the same color covering the video stream. A
Gaussian window is then applied on each block, followed by
a 2D FFT operation that is used to extract the local phase. A
temporal high-pass filter is then employed to extract phase
changes.

In the second part, the PMI is evaluated for each block
based on the Radon transform of the local phase changes in
each block. Motion is detected for blocks with PMI larger
than a preset threshold, and the direction of motion is
computed as in (39).

It is easy to notice that the algorithm can be highly
parallelized.

3.3.3. Example. We provide an illustrative example in
Figure 6 showing how motion is detected using Algorithm 1.
The full video of this example can be found in Supplementary
Video S1; see Supplementary Material available online at
http://dx.doi.org/10.1155/2016/7915245. Figure 6(a) depicts a
still from the “highway video” in the Change Detection 2014
dataset [22] evaluated at a particular time 𝑡

0
. As suggested

by the algorithm, the screen in Figure 6(a) is divided into
26 × 19 overlapping blocks and the window functions are
applied to each block. Local phases can then be extracted
from the 2DFFT of eachwindowed block, and the local phase
changes are obtained by temporal high-pass filtering. The
phase change is shown in Figure 6(b) for all blocks, with block
(12, 11) enlarged in Figure 6(c) and block (23, 6) enlarged in
Figure 6(d) (see also the plane “2D FFT and extract phase
change” in Figure 5). Note that at the time of the video
frame, block (12, 11) covers a part of the vehicle in motion
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Input: Visual stream or Video data 𝑢(𝑥, 𝑦, 𝑡)
Output: Detected Motion
Construct Gaussian window of size𝑀×𝑀, denote as 𝑤;
for 𝑡 = Δ𝑇, 2Δ𝑇, . . . , 𝑁Δ𝑇 do

Divide the screen of frame at time 𝑡 into multiple𝑀×𝑀 blocks 𝑢
𝑘𝑙
(𝑡), with overlaps;

foreach block 𝑢
𝑘𝑙
(𝑡) do

Multiply pixel-wise the block 𝑢
𝑘𝑙
(𝑡) with the Gaussian window 𝑢

𝑘𝑙
(𝑡)𝑤;

Take𝑀×𝑀 2D FFT of 𝑢
𝑘𝑙
(𝑡)𝑤, denote phase as 𝜙

𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) and amplitude as 𝐴

𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡);

foreach frequency (𝜔
𝑥
, 𝜔
𝑦
) do

Highpass filter, temporally, 𝜙
𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡), denote 𝜙

𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡);

Optionally, denoise by 𝜙
𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) ← 𝜙



𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡)(𝐴

𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡)/((1/𝑀

2
) ∑
(𝜔𝑥 ,𝜔𝑦)∈D

2 𝐴𝑘𝑙
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) + 𝜖));

end
Compute the radon transform (R𝜙



𝑘𝑙
)(𝜌, 𝜃, 𝑡);

Compute PMI
𝑘𝑙
(𝑡) according to (38);

if PMI
𝑘𝑙
(𝑡) > threshold then

Motion Detected at block (𝑘, 𝑙) at time 𝑡;
Compute direction of motion according to (39);

end
end

end

Algorithm 1: Phase-based motion detection algorithm using the FFT.
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Figure 5: Schematic diagram of proposed phase-based motion detection algorithm.
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in the front, and block (23, 6) corresponds to an area of the
highway pavement where no motion occurs.

Figure 6(f) depicts, for each block (𝑘, 𝑙), the maximum
phase change over all (𝜔

𝑥
, 𝜔
𝑦
) ∈ D2; that is,

max
(𝜔
𝑥
,𝜔
𝑦
)∈D2










𝑑𝜙
𝑘𝑙

𝑑𝑡

(𝜔
𝑥
, 𝜔
𝑦
, 𝑡
0
)










. (41)

We observe from the figure that, for regions with low
amplitude, such as the region depicting the road, when
the normalization constant is absent, the derivative of the
phase can be noisy. For these blocks the maximum of
|(𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡
0
)| over all (𝜔

𝑥
, 𝜔
𝑦
) ∈ D2 is comparable

to the maximum obtained for blocks that cover the vehicles
in motion.

However, (29) suggests that the local phase change from
multiple filter pairs centered at the same spatial position
(𝑘, 𝑙) can provide a constraint to robustly estimate motion
and its direction. Given the block structure employed in the
computation of the local phase, it is natural to utilize phase
change information from multiple sources.

Indeed, if, for a particular block (𝑘, 𝑙), (𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
,

𝜔
𝑦
, 𝑡) = −V

𝑥
(𝑡)𝜔
𝑥
− V
𝑦
(𝑡)𝜔
𝑦
, then it is easy to see that (𝑑𝜙

𝑘𝑙
/

𝑑𝑡)(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) will be zero on the line V

𝑥
(𝑡)𝜔
𝑥
+ V
𝑦
(𝑡)𝜔
𝑦
= 0

and have opposite sign on either side of this line. For example,
in Figures 6(b) and 6(c), (𝑑𝜙

𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡
0
) clearly exhibits

this property for blocks that cover a vehicle in motion. The
PMI is a tool to evaluate this property.

Finally, the PMIs for all blocks are shown compactly
in a heat map in Figure 6(e). The figure shows clearly that
the blocks corresponding to the two moving vehicles have a
high PMI value while the stationary background areas have
a low PMI value, allowing one to easily detect motion by
employing simple thresholding (see also the plane “Radon
transform and extract strength orientation of plane” in
Figure 5). In addition, the orientation ofmotion in each block
is readily observable even by inspection in Figure 6(b) by a
line separating the yellow part and blue part in each block.
Further results about the direction of motion are presented
in Section 4.

3.4. Relationship to Biological Motion Detectors. A straight-
forward way to implement local motion detectors is to apply
a complex-valued Gabor receptive field (5) to the video signal
𝑢, and then take the derivative of the phase with respect to
time or apply a high-pass filter on the phase to approximate
the derivative.

We present here an alternate implementation without
explicitly computing the phase.Thiswill elucidate the relation
between the phase-based motion detector presented in the
previous section and some elementary motion detection
models used in biology, such as theReichardtmotion detector
[7] and motion energy detector [9].

Assuming that the local phase 𝜙
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) is differen-

tiable, we have (see also the Appendix)

𝑑𝜙
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡)

𝑑𝑡

=

(𝑑𝑏 (𝜔
𝑥
, 𝜔
𝑦
, 𝑡) /𝑑𝑡) 𝑎 (𝜔

𝑥
, 𝜔
𝑦
, 𝑡) − (𝑑𝑎 (𝜔

𝑥
, 𝜔
𝑦
, 𝑡) /𝑑𝑡) 𝑏 (𝜔

𝑥
, 𝜔
𝑦
, 𝑡)

[𝑎 (𝜔
𝑥
, 𝜔
𝑦
, 𝑡)]

2

+ [𝑏 (𝜔
𝑥
, 𝜔
𝑦
, 𝑡)]

2
, (42)

where 𝑎(𝜔
𝑥
, 𝜔
𝑦
, 𝑡) and 𝑏(𝜔

𝑥
, 𝜔
𝑦
, 𝑡) are, respectively, the real

and imaginary parts of 𝐴
00
(𝜔
𝑥
, 𝜔
𝑦
, 𝑡)𝑒
𝑗𝜙
00
(𝜔
𝑥
,𝜔
𝑦
,𝑡).

We notice that the denominator of (42) is the square of
the local amplitude of 𝑢, and the numerator is of the form
of a second order Volterra kernel. This suggests that the
time derivative of the local phase can be viewed as a second
order Volterra kernel that processes two normalized spatially
filtered inputs V

1
and V
2
.

We consider an elaborated Reichardt motion detector as
shown in Figure 7. It is equipped with a quadrature pair of
Gabor filters whose outputs are 𝑟

1
(𝑡) = 𝑎(𝜔

𝑥
, 𝜔
𝑦
, 𝑡) and

𝑟
2
(𝑡) = 𝑏(𝜔

𝑥
, 𝜔
𝑦
, 𝑡), respectively, for a particular value of

(𝜔
𝑥
, 𝜔
𝑦
). The pair of Gabor filters that provide these outputs

are the real and imaginary parts of𝑤(𝑥, 𝑦)𝑒
−𝑗(𝜔
𝑥
𝑥+𝜔
𝑦
𝑦). It also

consists of a temporal high-pass 𝑔
1
(𝑡) and temporal low-

pass filter 𝑔
2
(𝑡) [9]. The output of the elaborated Reichardt

detector follows the diagram in Figure 7 and can be expressed
as

(𝑟
2
∗ 𝑔
1
) (𝑡) (𝑟

1
∗ 𝑔
2
) (𝑡) − (𝑟

1
∗ 𝑔
1
) (𝑡) (𝑟

2
∗ 𝑔
2
) (𝑡) . (43)

The response can also be characterized by a second order
Volterra kernel. We notice the striking similarity between

(43) and the numerator of (42). In fact, the phase-based
motion detector shares some properties with the Reichardt
motion detector. For example, it is straightforward to see that
a single phase-basedmotion detector is tuned to the temporal
frequency of a moving sinusoidal grating.

Since the motion energy detector is formally equivalent
to an elaborated Reichardt motion detector [9], the structure
of the motion energy detector with divisive normalization is
also similar to the phase-based motion detector.

4. Exploratory Results

In this section, we apply the phase-based motion detection
algorithm on several video sequences and demonstrate its
efficiency and effectiveness in detecting local motion. The
motion detection algorithm is compared to two well-known
biological motion detectors, namely, the Reichardt motion
detector and the Barlow-Levick motion detector. We then
show that the detected local motion can be used in motion
segmentation tasks. The effectiveness of the segmentation
is compared to segmentation using motion information
obtained from a widely used optic flow based algorithm
available in the literature [4].
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Figure 6: Evaluating the motion detection algorithm at time 𝑡
0
(see also Supplementary Video S1). (a) A still from a 156 × 112-pixel video at

time 𝑡
0
. (b) (𝑑𝜙

𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡
0
) for all 26×19 blocks, each of size 32×32.The blocks are concatenated to create a large “phase image” with their

relative neighbors kept. (c) (𝑑𝜙
12,11

/𝑑𝑡)(𝜔
𝑥
, 𝜔
𝑦
, 𝑡
0
) shown in the (𝜔

𝑥
, 𝜔
𝑦
) ∈ D2 space. (d) (𝑑𝜙

23,6
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡
0
) shown in the (𝜔

𝑥
, 𝜔
𝑦
) ∈ D2

space. (e) Phase Motion Indicator (PMI) for all blocks at 𝑡
0
. Each pixel (𝑘, 𝑙) is color coded for PMI

𝑘𝑙
. (f) max

(𝜔𝑥 ,𝜔𝑦)∈D
2 |(𝑑𝜙
𝑘𝑙
/𝑑𝑡)(𝜔

𝑥
, 𝜔
𝑦
, 𝑡
0
)|

for all blocks at 𝑡
0
. Each pixel (𝑘, 𝑙) is color coded for this maximum value of block (𝑘, 𝑙).
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Figure 7: Diagram of an elaborated Reichardt motion detector. It
consists of a quadrature pair of Gabor filters whose outputs 𝑟

1
and 𝑟
2

provide inputs to the high-pass filters 𝑔
1
(𝑡) and the low-pass filters

𝑔
2
(𝑡).

Table 1: Processing Speeds of the proposed algorithm, the Reichardt
motion detector, and the Barlow-Levick Motion detector.

Screen size Processing capability (frames per second)
Proposed Reichardt Barlow-Levick

320 × 240 420 790 800
720 × 576 135 685 690
1280 × 720 60 274 293
1920 × 1080 27 191 194

4.1. Efficient Parallel Implementation. The algorithm was
implemented in PyCUDA [23] and tested on an NVIDIA
GeForce GTX TITAN GPU. All computations use single
precision floating points. The processing speeds of the algo-
rithm for several screen sizes are listed in Table 1. Clearly,
the proposed phase-based motion detection algorithm has
real-time capability to process video even with full High
Definition screen size.

For comparison, we implemented the Reichardt motion
detector and the Barlow-Levick motion detector. Their
respective diagrams are shown in Figure 8. Note that we
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Figure 8: (a) A Reichardt motion detector detecting motion between the two points 𝑢
𝑘𝑙
and 𝑢

𝑘+1,𝑙
in the blurred and downsampled video.

(b) A Barlow-Levick motion detector detecting motion between the two points 𝑢
𝑘𝑙
and 𝑢

𝑘+1,𝑙
in the blurred and downsampled video. 𝑔

1
(𝑡)

denotes a high-pass filter and 𝑔
2
(𝑡) denotes a low-pass filter.

moved the high-pass filter ℎ
1
(𝑡) to the front of the low-pass fil-

ter ℎ
2
(𝑡). This configuration provides a superior performance

to the one in Figure 7. For both the Reichardt and the Barlow-
Levick detectors, the videos are first blurred by a Gaussian
filter (with the same variance as the Gaussian window in (30)
used for the phase-based motion detector) and subsampled
at the center of each overlapping block in the phase-based
motion detector. The subsampled video then provides inputs
to two 2D arrays of the circuits shown in Figure 8, one for
the horizontal direction and one for the vertical direction.
The outputs of the horizontal and vertical motion circuits
form an array of motion vectors that indicate the strength
and direction of motion. The three tested motion detectors
have the same number of outputs as a result. The processing
speeds of the Reichardt motion detector and the Barlow-
Levick motion detector, both implemented in PyCUDA and
tested on the same GPU, are shown in Table 1.

Note that the Reichardt motion detector and the Barlow-
Levick motion detector are highly efficient due to the sim-
plicity of their algorithms.The phase-basedmotion detection
algorithm, however, is a much more sophisticated algorithm,
and yet it can be implemented in real-time using parallel
computing devices.

The fast GPU implementation is based on the FFT
and Matrix-Matrix multiplication. It is expected that those
operations can be efficiently implemented in hardware, for
example, FPGA.

4.2. Examples of Phased-BasedMotionDetection. Weapplied
our motion detection algorithm on video sequences of the
Change Detection 2014 dataset [22] that did not exhibit
camera egomotion. For these video sequences, the standard
deviation of the Gaussian window functions was set to 4

pixels and the block size was chosen to be 32 × 32 pixels.
Threshold and normalization parameters were kept the same
with the exception of the “thermal video” (in order to deal
with larger background noise levels, see below). We also
tested the same video sequences using the Reichardt motion
detector and the Barlow-Levick motion detector. For the
Reichardt detector, the high-pass filters were chosen as first
order filters with a time constant of 200 milliseconds, and the
low-pass filters were chosen as first order filters with a time
constant of 300 milliseconds (assuming that the frame rate is
50 frames per second).Thresholdwas set to 2. For the Barlow-
Levick motion detector, the time constant of the first high-
pass filters was set to 250 milliseconds. The low-pass filters
were the same as in the Reichardt detector.Threshold was set
to 2.

The first video was taken from a highway surveillance
camera (“highway video”) under good illumination con-
ditions and high contrast. The video had moderate noise,
particularly on the road surface. The detected motion is
shown in the top left panel of Figure 9 (see Supplementary
Video S2 for full video). The phase-based motion detection
algorithm captured both the moving cars and the tree leaves
moving (due to the wind). In the time interval between the
9th and 10th second, the camera was slightly moved left-
and right-wards within 5 frames, again possibly due to the
wind. Movement due to this shift was captured by themotion
detection algorithm and the algorithm was fast enough to
correctly determine the direction of this movement. In this
video, we already noted that this algorithm suffers from the
aperture problem. For example, in front of the van where a
long, horizontal edge is present, the detectedmotion ismostly
pointing downwards. In addition to moving downwards, the
edge is alsomoving to the left, however.This is expected since
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(a) (b) (c)

Figure 9: Top: motion detection of the “highway video” using the phase-based algorithm (a), the Reichardt motion detector (b), and the
Barlow-Levick motion detector (c). Red arrows indicate detected motion and its direction. Bottom: the contrast of the video was artificially
reduced by 5-fold and the mean was reduced to 3/5 of the original. The red arrows are duplicated from the motion detection result on the
original video as in top. Blue arrows are the result of motion detection on the video with reduced contrast. If motion is detected both in the
original video and in the video with reduced contrast, then the arrow is shown in magenta (as a mix of blue and red) (see Supplementary
Video S2 for full video).

the algorithm only detects motion locally and does not take
into account the overall shape of any object.

For comparison, the motion detection results for the
Reichardt motion detector and the Barlow-Levick motion
detector are shown in the top middle and top right panel
of Figure 9 (see Supplementary Video S2 for full video). The
Reichardt detector performed relatively well when vehicles
are moving faster, but the direction it predicts for vehicles
moving slower, for example, on the back of the image is not
accurate. In addition, motion is still detected in some parts
of the screen where the vehicles have just passed by. The
detection result for the Barlow-Levick motion detector was
poorer. In particular, the response to OFF edge movement is
always the opposite to the actual movement direction.

We then squeezed the range of the screen intensity from
[0, 1] to [0.2, 0.4], resulting in a video with a lower mean
luminance and lower contrast. The motion detection results
on the low-contrast video are shown in the bottom 3 panels
of Figure 9 (see Supplementary Video S2 for full video). For
reference, the motion detection results for the original video
are shown in red arrows. Motion detected in the low-contrast
video is shown in blue arrows if no motion is detected for
the block in the original video. If motion is detected in both
the original and the low-contrast video, the arrows are shown
in magenta. Figure 9 clearly shows that while the motion
detection performance is degraded for all three detectors, the
phase-basedmotion detector performed still quite well in the
low-contrast video, detecting most of the moving vehicles.

The other two detectors missed many of the blocks where
motion was detected in the original movie.

To quantify how well each detector works under different
contrast conditions, we computed the ratio of unthresholded
output values of eachmotion detector between lower contrast
and full contrast video. For example, in the case of phase-
basedmotion detector, we computed, for each block, the ratio
between the PMI index for the lower contrast video and that
for the full contrast video.The ratios are then averaged across
all blocks where motion is detected in the full contrast video.
This average for different contrasts is shown in Figure 10 by
the blue curve. In the ideal case when the normalization
constant 𝜖 is 0, the phase detector should produce invariant
responses to videos with different contrast. The curve shown
here is mainly due to a nonzero 𝜖.The ratios for the Reichardt
motion detector and the Barlow-Levick motion detector
are computed similarly and are shown in red and yellow,
respectively. It is clear that the phase-based motion detector
has a superior performance across a range of contrast values.
At 20% contrast, the phase-based detector still has 50% of
the PMI index value for full contrast video. As expected,
the response of Barlow-Levick motion detector is linear with
respect to contrast, and the Reichardt motion detector has a
quadratic relation to contrast. For a fixed threshold value a
larger ratio equates to amore consistent performance at lower
contrast.

The second video was captured by a surveillance camera
in a train station (“train station video”). The video was
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Figure 10: The ratio for the phase-based motion detector is defined
as follows: we set the motion detected in the 100% contrast case as
the baseline; we compute the ratio between the PMI index for the
lower contrast video and that for the full contrast video for each
block; the ratios are averaged across all the blocks where motion is
detected in the full contrast video; the average is given as the ratio for
the phase-basedmotion detector.The ratio for the Reichardtmotion
detector and the Barlow-Levickmotion detector is similarly defined.

under moderate room light with a low noise level. The front
side of the video had high contrast; illumination on the
back side was quite low. The detected motion is shown in
the video of Figure 11 (see Supplementary Video S3 for full
video). Movements of people were successfully captured by
the motion detection algorithm.

The third video was a “thermal video” with large amount
of background noise (thermal video). The threshold for
detecting motion was raised by 60% in order to mitigate the
increased level of noise. The detected motion is shown in
the video of Figure 12 (see Supplementary Video S4 for full
video).

The last example we show here was taken from a highway
surveillance camera at night (“winterstreet video”). The
overall illumination on the lower-left side was low whereas
illumination was moderate on the upper-right side where
the road was covered by snow. The detected motions are
shown in the video in Figure 13 (see Supplementary Video
S5 for full video). We note that, overall, car movements were
successfully detected. Car movements on the lower-left side,
however, suffered from low illumination and some parts of
the car were not detected well due to the trade-off employed
for noise suppression.

With a higher threshold, the phase-basemotion detection
algorithm is able to detect motion under noisy conditions.
We added to the original “highway video” and “train station
video” Gaussian white noise with standard deviation 5%
of the maximum luminance range. The results are shown,
respectively, in Figures 14 and 15 (see Supplementary Videos
S6 and S7 for full videos).

4.3. Examples of Motion Segmentation. We asked whether
the detected motion signals in the video sequences can be
useful for segmenting moving objects from the background.
We applied a larger threshold to only signalmotion for salient

objects. The 32 × 32 blocks, however, introduce large bound-
aries around themoving objects. To reduce the boundary and
to segment themoving objectmore closely to the actual object
boundary, we applied themotion detection algorithm around
the detected boundary with 16 × 16 blocks. If 16 × 16 blocks
did not indicate motion, then the corresponding area was
removed from the segmented object area.

For comparison, we performed motion segmentation
based on local motion detection based on an optic flow algo-
rithm [4]. The segmentation in this case was implemented
by comparing the length of the optic flow vectors with an
appropriate threshold.

We employed a simple thresholding for both phase-based
motion detection algorithms and optic flow based motion
detection. More sophisticated algorithmsmay produce better
segmentation results. Thus, the segmentation was purely
based onmotion cues and no postprocessing at pixel level was
performed.The state-of-the-art results for the Change Detec-
tion 2014 dataset utilize multiple cues such as motion, color,
and background extraction to segment objects and thereby
achieve better results. We are exploring here, however, only
the case where motion is the only cue for segmentation.
Therefore, the ground truth information from the dataset was
not applicable to our test. We will, therefore, only show the
effectiveness of motion segmentation visually.

We first applied motion based segmentation on 2-second
segment of the “highway video.” The result using the local
phase-based motion detection algorithm is shown in the
video of Figure 16(a) (see Supplementary Video S8a for full
video) and that using optic flow based motion detection
algorithm is shown in the video of Figure 16(b) (see Supple-
mentary Video S8b for full video). Both videos are played
back at 1/4 of speed. With a higher threshold, the movement
of the leaves was no longer picked up by the phase-based
motion detector. Therefore, only the cars were identified
as moving objects and they are indicated in red. Although
the moving objects were not perfectly segmented on their
boundary, they were mostly captured. For the optic flow
based segmentation, since the regions of interest are set by
thresholding the length of the velocity vector, objects moving
at lower speed, for example, the cars on the top, were not
always picked up by the segmentation algorithm.

We then applied the motion segmentation to a 2-second
segment of the “train station video,” the “thermal video,” and
the “winterstreet video.” The results are shown, respectively,
in the videos of Figures 17, 18, and 19 (see Supplementary
Videos S9a and S9b, S10a and S10b, and S11a and S11b, resp.,
for full videos).

These results show that for the purpose of detecting local
motion and its use as a motion segmentation cue, the local
phase-basedmotion detectorworks as good, if not better than
a simple thresholding segmentation using an optic flow based
algorithm.

5. Discussion

Previous research demonstrated that global phase informa-
tion alone can be used to faithfully represent visual scenes.
Here we provided a reconstruction algorithm of visual scenes
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(a) (b) (c)

Figure 11: Motion detection of the “train station video” using the phase-based algorithm (a), the Reichardt motion detector (b), and the
Barlow-Levick motion detector (c) (see Figure 9 for description of each panel) (see Supplementary Video S3 for full video).

(a) (b) (c)

Figure 12: Motion detection of the “thermal video” using the phase-based algorithm (a), the Reichardt motion detector (b), and the Barlow-
Levick motion detector (c) (see Figure 9 for description of each panel) (see Supplementary Video S4 for full video).

by only using local phase information. More importantly,
local phase information can be effectively used to detect local
motion. Through a simple temporal derivative of the phase,
we obtained a second order Volterra kernel that is applied
on two normalized inputs. The structure of the second order
Volterra kernel in the phase-based motion detector is akin to

models employed to detect motion in biological vision, for
example, the Reichardt detector [7] and the motion energy
detector [9].

We then proposed an efficient, FFT-based algorithm
employing the change in local phase for detecting motion.
In order to exploit the special structure of the change in
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(a) (b) (c)

Figure 13: Motion detection of the “winterstreet video” using the phase-based algorithm (a), the Reichardt motion detector (b), and the
Barlow-Levick motion detector (c) (see Figure 9 for description of each panel) (see Supplementary Video S5 for full video).

Figure 14: Phase-based motion detection applied on the “highway
video” with added Gaussian white noise (see Supplementary Video
S6 for full video).

phase in the frequency domain that is due to rigid motion,
the phase-based motion detection algorithm also incorpo-
rates the Radon transform, a transform closely related to
the Fourier transform. Based on the Radon transform, a
motion indicator was proposed to robustly detect whether
the phase change is caused by motion. Therefore, the algo-
rithm can be efficiently implemented whenever the FFT is
available/supported. We showed examples of applying the
phase-based motion detection algorithm on several video
sequences. We also showed that the locally detected motion
can be used for segmenting moving objects in video scenes.
We compared the segmentation of moving objects using our
local phase-based algorithm to segmentation achieved using
a widely used optic flow based algorithm. Our results suggest
that spatial phase information may provide an efficient
alternative to perform many visual tasks in silico as well as in

Figure 15: Phase-based motion detection applied on the “train
station video” with added Gaussian white noise (see Supplementary
Video S7 for full video).

modeling in vivo biological vision systems. This is consistent
with other recent findings [15].

Note that phase information has been used for solving
various visual tasks in the past. In fact, phase has been
successfully employed in optic flow algorithms [24] and
image registration for translation [25], both applied tomotion
related tasks. The phase-based optic flow algorithm applies
the optic flow equation on the local phase of images rather
than the intensity itself to achieve better resolution and
robustness in estimating motion velocity. The phase correla-
tionmethod computes the normalized cross-power spectrum
of two images to extract the phase difference. It provides
better accuracy and robustness as compared to the classical
cross correlation approach applied to two consecutive images
in a sequence. However, it has limitations when dealing with
images with a repetitive structure.
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(a) (b)

Figure 16: Segmentation of moving cars based on detected motion in the “highway video.” (a) Motion detected by the phase-based motion
detection algorithm. (b) Motion detected using optic flow algorithm [4] (see Supplementary Videos S8a and S8b for full videos).

(a) (b)

Figure 17: Segmentation of moving people in the “train station video” based on detected motion. (a) Motion detected by the phase-based
motion detection algorithm. (b) Motion detected using optic flow algorithm [4] (see Supplementary Videos S9a and S9b for full videos).

(a) (b)

Figure 18: Segmentation of moving people in the “thermal video” based on detected motion. (a) Motion detected by the phase-based motion
detection algorithm. (b) Motion detected using optic flow algorithm [4] (see Supplementary Videos S10a and S10b for full videos).

Our method differs from the above two cases in
the following ways. First, it employs a simple temporal
derivative/high-pass filtering on the phase to extract local
phase changes. The structure of the phase change is exploited
for better detection of motion. On the contrary, the phase
correlation method considers the structure of the phase

itself. This also allowed us to make the motion detection a
more local, continuous process rather than purely operating
globally on discrete frames. Second, it explores the structure
of the change of phase due to motion in the frequency
domain rather than in the spatial domain, in which the
key constraints of optic flow equations are based. Third,
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(a) (b)

Figure 19: Segmentation of moving cars in the “winter street video” based on detected motion. (a) Motion detected by the phase-based
motion detection algorithm. (b) Motion detected using optic flow algorithm [4] (see Supplementary Videos S11a and S11b for full videos).

instead of focusing on estimating the exact velocity or shift,
our method is centered on the detection of motion with a
coarse local estimate of direction. This is the case in the first
steps of biological motion detection in the retina or optic
lobe of insects; we discussed the resemblance of the method
presented here to those of biological models of motion
detection.

The proposed motion detection algorithm, however,
shares several advantages with the other phase-based meth-
ods. For example, it is sensitive to motion that only induces a
subpixel shift between frames and for very small differences
in intensity. In addition, when compared to the amplitude, the
local phase is robust under different contrast and illumination
conditions. Consequently, the algorithm presented here can
operate in a wide range of contrast/illumination conditions.

Furthermore, once the local phase is extracted from
each block, motion detection becomes a localized, temporal
operation on the local phase of each block. This forms
the basis for the highly parallel structure in the phase-
based motion detection algorithm. By contrast, traditional
optic flow techniques often rely on explicit comparisons
across spatial locations, which increase, for example,memory
complexity since all states must be made available to their
neighbors.

We also notice that, for each block, a large number ofmea-
surements of phase changes are obtained. From Figure 6, we
see that this number is much higher than that of the original
pixel space. In other words, in order to detect motion in a
robust way, the local phase-basedmotion detection algorithm
undergoes an expansion of measurements before settling
down onto a single motion indicator value. This number of
measurements, however, does not incur additional computa-
tional demand thanks to the highly efficient FFT algorithm.
Biological visual systems often have a similar structure. For
example, in the vertebrate retina, computations are carried
out by an extraordinarily large number of neurons until
measurements of the visual scene are projected by a fraction
of the neurons onto the cortex [26]. Similar expansion takes
place in the primary visual cortex as well.

We also highlight the ease of implementation of the
intrinsically parallel algorithm proposed here. The algorithm
introduced in Section 3.3 is based on the FFT algorithm
and does not require solving an optimization problem. It

can be efficiently implemented in hardware, for example,
FPGAs, or in software, for example, using GPU accelerators.
We note that extending the FFT to higher dimensions is
straightforward and the implementations of higher dimen-
sional FFTs are also highly efficient. Clearly, themethodology
can be applied to motion detection of data in 3D or higher
dimensional space, where the Radon transform operates over
planes or hyperplanes.

Finally, we argue that the change of phase, although
highly nonlinear, can be obtained through a normalization
(gain control) followed by a second order Volterra kernel.
This separation of a higher order nonlinearity into gain
control block and a lower order nonlinear filter can be used
for modeling motion detection circuits in biological systems.
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The Derivative of the Local Phase
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Plugging in the value of 𝑑𝑎/𝑑𝑡 and 𝑑𝑏/𝑑𝑡, the derivative of the
local phase amounts to
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