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Abstract

Background: Ovarian cancer remains a significant public health burden, with the highest mortality rate of all the
gynecological cancers. This is attributable to the late stage at which the majority of ovarian cancers are diagnosed, coupled
with the low and variable response of advanced tumors to standard chemotherapies. To date, clinically useful predictors of
treatment response remain lacking. Identifying the genetic determinants of ovarian cancer survival and treatment response
is crucial to the development of prognostic biomarkers and personalized therapies that may improve outcomes for the late-
stage patients who comprise the majority of cases.

Methods: To identify constitutional genetic variations contributing to ovarian cancer mortality, we systematically
investigated associations between germline polymorphisms and ovarian cancer survival using data from The Cancer
Genome Atlas Project (TCGA). Using stage-stratified Cox proportional hazards regression, we examined w650,000 SNP loci
for association with survival. We additionally examined whether the association of significant SNPs with survival was
modified by somatic alterations.

Results: Germline polymorphisms at rs4934282 (AGAP11/C10orf116) and rs1857623 (DNAH14) were associated with stage-
adjusted survival (p = 1.12e-07 and 1.80e-07, FDR q = 1.2e-04 and 2.4e-04, respectively). A third SNP, rs4869 (C10orf116), was
additionally identified as significant in the exome sequencing data; it is in near-perfect LD with rs4934282. The associations
with survival remained significant when somatic alterations.

Conclusions: Discovery analysis of TCGA data reveals germline genetic variations that may play a role in ovarian cancer
survival even among late-stage cases. The significant loci are located near genes previously reported as having a possible
relationship to platinum and taxol response. Because the variant alleles at the significant loci are common (frequencies for
rs4934282 A/C alleles = 0.54/0.46, respectively; rs1857623 A/G alleles = 0.55/0.45, respectively) and germline variants can be
assayed noninvasively, our findings provide potential targets for further exploration as prognostic biomarkers and
individualized therapies.

Citation: Braun R, Finney R, Yan C, Chen Q-R, Hu Y, et al. (2013) Discovery Analysis of TCGA Data Reveals Association between Germline Genotype and Survival in
Ovarian Cancer Patients. PLoS ONE 8(3): e55037. doi:10.1371/journal.pone.0055037

Editor: Amanda Ewart Toland, Ohio State University Medical Center, United States of America

Received November 9, 2011; Accepted December 21, 2012; Published March 21, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The authors are supported by the Intramural Research Program of the National Cancer Institute, United States National Institutes of Health, Bethesda,
MD. There were no external funding sources for this study. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rbraun@northwestern.edu

Introduction

Ovarian cancer accounts for about three percent of all cancers

in women and is the fifth leading cause of cancer-related death

among women in the United States, with an age-adjusted

incidence rate of 12.8 per 100,000 women per year and death

rate of 8.6 per 100,000 women per year (2003–2007) [1]. Of the

gynecological cancers, ovarian cancer has the highest mortality,

with an overall five-year survival rate of 43.7% for white women

and 34.9% for black women [1]. The poor survival statistics are

attributable to the late stage at which ovarian cancers are

diagnosed due to their asymptomatic nature: while stage I tumors

have a 92.4% relative survival rate, they account only for 15% of

ovarian cancer diagnoses; by contrast, stage III and IV cancers

have survival rates of 34% and 18%, respectively, and together

account for 65.4% of diagnoses [1]. Response to standard

chemotherapy (platinum plus taxane) is highly variable [2,3],

and tends to be poor for advanced cases [2]. Understanding the

genetic determinants of ovarian cancer survival and response to

treatment may improve these statistics, particularly for stage III

and IV patients who comprise the majority of cases. In particular,

identifying variations that predict response to chemotherapy
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allows for the possibility of administering alternate therapies that

may improving outcomes.

Previous studies have examined the role of genetic variation in

ovarian cancer susceptibility, progression, treatment response, and

survival. It has been shown that BRCA1/2 germline mutations

contribute to 10–15% of cases [4], and analysis of data from The

Cancer Genome Atlas Project (TCGA [5]) has also shown that

that BRCA1/2 germline mutation, somatic mutations and

promoter methylation effect ovarian cancer survival [5]. Addi-

tionally, candidate gene studies have shown that polymorphisms in

MDM2, along with TP53 status and SULF1, are associated with

ovarian cancer survival [6–8]. Recently, Huang and coworkers

reported a genetic variation is associated with carboplatin

cytotoxicity in vitro and in vivo [3], a finding which may explain

differential responsiveness to the standard platinum–based ovarian

cancer therapy. The same authors later showed that the identified

locus regulates miRNAs that contribute to platinum sensitivity,

suggesting a mechanism of action [9].

To date, however, a clinically useful genomic marker of ovarian

cancer survival remains elusive. The platinum–associated SNP

investigated by Huang was not found to be significantly associated

with survival in a validation cohort [3]. Likewise, Bolton and co-

workers successfully identified several loci associated with ovarian

cancer susceptibility, but those they initially found to be associated

with survival failed to reach significance in the validation set [10],

although it is hoped that future studies of this cohort will result in

established associations with clinical outcome [10]. While tumor

gene expression signatures predictive of treatment response and

relapse have been reported (e.g., [11,12]), their clinical utility is

limited by the cost, invasiveness, and variability inherent in

evaluating tumor gene expression. Likewise, somatic copy number

changes in certain genes have recently been reported to influence

survival [13], but the utility of measuring CNV as a prognostic test

is similarly limited.

The Cancer Genome Atlas Project (TCGA [5]) provides a

collection of genomic and clinical data in which associations

between genetics and survival can be thoroughly explored. Here,

we carry out a genome-wide analysis to systematically investigate

associations between germline genetic variation and overall survival

in TCGA patients diagnosed with ovarian cancer (serous

cystadenocarcinoma) [14]. The patients had an age and stage

distribution typical of ovarian cancer, as shown in Table 1. Using

the clinical and Affymetrix SNP6.0 (‘‘SNP6’’) genotype data, we

identified two single nucleotide polymorphism (SNP) loci at which

the germline genotype is predictive of overall survival in ovarian

cancer patients. The associations remain significant after adjusting

for stage, and are associated with survival even amongst stage III

patients. This suggests that constitutional genetic variation may

play a role in treatment response and provides a potential avenue

for a non-invasive prognostic biomarker test.

Results

Here, we report the association between germline SNPs and

patient survival using TCGA ovarian cancer data. The filtered

data comprised a total of 662,521 SNPs assayed in 489 clinically

annotated ovarian cancer samples, with stage and age distributions

as given in Table 1. Each of the 662,521 SNPs meeting the

filtration criteria were tested for association with survival using

Cox proportional hazards regression adjusted for stage using a

non-additive model. Two SNPs, rs4934282 (A/C) in the gene

AGAP11 (previously associated with C10orf116) and rs1857623

(A/G) upstream of DNAH14, showed a statistically significant

univariate association with overall ovarian cancer survival, as

summarized in Table 2. A qq plot of the p-values obtained is given

in Figure 1. We additionally computed the per-allele hazard ratios

for these SNPs using an additive model, obtaining HR = 0.599

(p = 1.28e-08) for the C allele at rs4934282 and HR = 1.425

(p = 1.70e-05) for the G allele at rs1857623. It should be noted that

due to the small sample size, the power to detect a SNP with

MAF = 0.45 (as these are) with a = 1e-06 is 32% for HR = 0.6 and

3.5% for HR = 1.4; it is therefore likely that other SNPs with

similar effect sizes may have been missed by chance in this

analysis.

To illustrate the effect of rs4934282 (AGAP11/C10orf116) and

rs1857623 (DNAH14) germline genotype on survival among

patients with similar tumor stage, Kaplan-Meier plots for the 372

Stage III patients are given in Figures 2 and 3. Notably, the CC

genotype at rs4934282 in AGAP11/C10orf116 confers a protec-

tive effect, nearly doubling the median survival time over the AA

genotype group. Additionally, patients with homozygous CC at

rs4934282 have a five-year survival rate of 45%, vs. 34% overall

for Stage III patients [1].

To further investigate variation in the genomic regions

surrounding these SNPs, we examined exome/capture sequencing

data (for 375 patients with available germline data) in 100 Kbp

windows centered about the two SNPs identified as significant in

the SNP6 data, specifically chr10:88672456–88772455 and

chr1:223081228–223181227. For ten samples with available

whole-genome data, we were able to compare the intronic

rs4934282 and rs1857623 Affymetrix SNP6.0 calls to those from

the whole-genome sequencing, confirming the validity SNP6 calls.

Of the 29 exome/capture SNPs tested (see Table 3) in the 375

samples, only rs4869 in C10orf116 remained significant after

adjusting for the multiple hypotheses (FDR q = 9.89e-03). rs4869 is

located *2000b.p. upstream of rs4934282 and is in near-perfect

linkage disequilibrium with rs4934282 (A/C at rs4934282

correlating with C/T at rs4869, respectively). rs4869 encodes a

synonymous mutation in C10orf116 (Ile68Ile). We also investigat-

ed whether the variant alleles at any of these 29 loci led to

deleterious nonsynonymous protein alterations; only five SNPs

had mis-sense allelic variations, none of which were predicted to

be deleterious (Table 4).

Finally, we used data derived from normal–paired tumor

samples to assess whether the strong effect of germline genotype on

survival was significantly mediated or moderated by tumor gene

expression gain or loss of copy number in the tumor, or by loss of

heterozygosity (see File S1) to test the hypothesis that the effect of

germline genotype on ovarian cancer survival might be influenced

by somatic events. We found no significant association of tumor

gene expression, copy number variation, or loss of heterozygosity

in these regions with survival (see File S1). Rather, the large effect

of germline genotype at the loci on patient survival is independent

of these somatic changes, and appears to suggest that constitu-

tional genetic variation in these regions plays a role in treatment

response.

Discussion

Recent studies have demonstrated that common genetic

variants are associated with ovarian cancer risk [15,16]. However,

it remains difficult to predict ovarian cancer survival independent

of stage; current clinical findings show that tumor response and

extreme drug resistance in vitro are not good predictors of ovarian

cancer survival [17,18]. In our study, we comprehensively tested

the SNPs assayed in the TCGA SNP6.0 data for association with

survival, and additionally analyzed whole-genome and exome/

capture SNPs in the genomic regions surrounding the significant

Germline SNPs Predict Ovarian Cancer Survival
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SNP6.0 SNPs. We identified three SNPs in two genomic regions

that had a statistically–significant association with survival. As

shown in Table 2, the hazard ratios for homozygous minor alleles

approached or exceeded two-fold in stage-stratified Cox propor-

tional hazard models, and the per-allele effect sizes for these SNPs

using a stage-stratified additive genotype model were HR = 0.599

and HR = 1.425 for rs4934282 C and rs1857623 G, respectively.

Interestingly, none of the somatic variations we examined (tumor

gene expression, copy number variation, and loss of heterozygos-

ity) were associated either with the germline genotype at these loci

or with survival, despite a plausible hypothesis that somatic

changes in the tumor might have an effect on the genotype–

survival association. Rather, these SNPs are strongly predictive of

survival independent of somatic changes that had already occurred

in the tumor (see File S1).

Two of the survival–associated SNPs are located within a

2200 bp region on chromosome 10 (rs4934282 at chr10:88732476

and rs4869 at chr10:88730312) and are in near–perfect LD in this

data. This genomic region is associated with C10orf116

(chr10:88727949–88730672) and AGAP11 (chr10:88730498–

88769960), which overlap; the biological significance of the

variation probed by rs4934282 and rs4869 may be associated

with either. AGAP11 is a member of the ankyrin repeat and

GTPase domain Arf GTPase activating protein gene family [19].

C10orf116 (also referred to as APM2) is a protein of unknown

function that is homologous to the medium chain of mammalian

clathrin-associated protein complex and is involved in vesicular

transport in yeast. The genomic region containing rs4934282 and

rs4869 is shown in Figure 4.

While little prior evidence exists linking AGAP11 to cancer

susceptibility, survival, or treatment response, some evidence exists

for the role of C10orf116. C10orf116/APM2 expression has been

implicated in other gynecological cancers; for instance, is has been

shown to strongly differentiate between the BRCA1 associated

breast tumor subclasses ESR1-positive and ESR1-negative [20]

and is has been found to be downregulated in utering cancer in a

number of studies [21]. More recently, C10orf116 has been shown

to exhibit differential expression in different pathological grades of

ovarian carcinoma [22] and in the response of breast cancer to

chemotherapy [23,24].

More importantly, there exists from cell lines pointing to

C10orf116 as a mediator of cisplatin resistance. Ovarian cancer

has been treated with platinum compounds for many years

[25,26], with cisplatin and carboplatin (which has a more

acceptible toxicity profile) as a standard therapy for newly–

diagnosed stage III ovarian cancers [26,27]. However, while many

patients respond to initial treatment, the five-year survival rates

remain poor (34% overall for stage III [1]). APM2 (C10orf1116)

has been shown to promote cisplatin resistance when overex-

pressed in HCT116 cell lines that were sensitive to chemotherapy

and radiation [28], suggesting a possible mechanism by which

rs4869 and rs4934282 influence survival. Silencing of APM2 by

shRNA was shown to enhance the cytotoxic effects of cisplatin on

tumor xenografts grown in CD-1 nude mice. Additionally, APM2

was found to be overexpressed in cisplatin resistant gastric cancer

cells, but not in gastric cancer cells resistant to 5-FU or

doxorubicin [29]. More recently, it was found that rs1649942, a

SNP located *5 Mb upstream of rs4934282/rs4869, had a

modest association with carboplatin-induced cytotoxicity and the

survival of ovarian cancer patients following carboplatin-based

chemotherapy [3]. Although this SNP failed to reach significance

in their phase 2 validation analysis (and likewise not significant in

our study), it adds to the body of evidence implicating this genomic

region in platinum sensitivity.

Table 1. Stage and age at diagnosis, organized by 5-year survival.

Censored v5 yrs Survival v5 yrs Survival §5 yrs All p

N 187 (38%) 228 (47%) 74 (15%) 489

Stage 1.3e-02

I 10 2 2 14

II 11 6 8 25

III 140 181 53 374

IV 26 39 11 76

Age 58.2 (49.6, 65.5) 59.9 (51.0, 68.1) 62.3 (54.7, 71.4) 59.1 (51.4, 69.1) 6.1e-02

Stage and age at diagnosis of samples, organized by 5-year survival. Median age is reported, with the first and third quartiles given in parentheses. p values for the
univariate association between stage and survival and age and survival (logrank test) are also given.
doi:10.1371/journal.pone.0055037.t001

Figure 1. QQ plots. Quantile-quantile plot for observed p values for the likelihood ratio tests of the stage-adjusted Cox models versus the expected
distribution of p values under independent null hypotheses. Points above the line indicate values that are more significant than expected; a large
systematic deviation from this line would be indicative of population substructure driving the results. The two SNPs identified as significant,
rs4934282 and rs1857623, lie well above the line and outside the small systematic deviation.
doi:10.1371/journal.pone.0055037.g001
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The third significant SNP, rs1857623, is found in an intergenic

region on chromosome 1, 53 Kb upstream of DNAH14 and

136 Kb downstream from CNIH3. DNAH14 belongs to the

dynein heavy chain family, a motor protein which attaches to

microtubules and walks along cytoskeletal microtubules [30]. The

mechanism by which variation in DNAH14 may impact survival is

less clear. One possible avenue for future studies is its potential role

in the context of taxol therapy: DNAH14 contains the microtu-

bule-binding stalk of dynein motor (pfam12777 at Location:2910–

3244 of reference protein NP_001364.1), and it has been

demonstrated that taxol binds microtubules [28]. DNAH14 has

also been found to be differentially regulated in response to taxane

therapy in gastric cancers [31] and doxorubicin therapy in

endometrial cells [32].

These findings suggest that consitutional genetic variations in

these regions may play a role in ovarian cancer survival even

among late-stage cases. However, it should be noted that the

results presented here constitute a discovery–based analysis that

did not include a validation cohort. As such, the findings may be

spurious false positives, and require confirmation in follow–up

studies. If validated, these SNPs may have important clinical

potential as prognostic biomarkers since germline genotype can be

assayed noninvasively and because the variant alleles at the

significant loci are common (frequencies for rs4934282 A/C

alleles = 0.54/0.46 respectively; rs1857623 A/G alleles = 0.55/

0.45, respectvely; both comparable to allele frequencies for the

Caucasian CEPH population in HapMap [33]). The significant

loci are located in genes previously identified as having a possible

relationship to chemotherapeutic response, suggesting that their

association with survival may be due to their influence on

treatment response. Our study suggests potential targets for

prognositic tests and individualized therapies, and provides a basis

for follow-up research.

Materials and Methods

Data
Data were collected by the TCGA project as described

elsewhere [14]. Follow-up times, vital status, tumor stage, and

Table 2. Stage-adjusted survival.

rs4934282 (AGAP11/C10orf116, chr10:88732476)

N (482) HR p q pperm

AA 146 (ref) (ref) (ref) (ref)

AC 231 0.686 8.0e-03 7.5e-01 8.4e-03

CC 105 0.355 3.6e-08 3.7e-03 v2e-06

Logrank 1.1e-07 1.2e-04 v2e-06

rs1857623 (DNAH14, chr1:223131228)

N (486) HR p q pperm

AA 151 (ref) (ref) (ref) (ref)

AG 230 0.881 3.9e-01 9.8e-01 6.8e-01

GG 105 1.999 2.9e-05 4.5e-01 1.2e-04

Logrank 1.8e-07 2.4e-04 6.6e-05

rs4869 (C10orf116, chr10:88730312)

N (304) HR p

TT 102 (ref) (ref)

CT 152 1.763 2.6e-03

CC 108 2.132 1.3e-04

Logrank 3.4e-04

Significant survival associations after stratification by stage; rs4934282 and rs1857623 are from SNP6 data, rs4869 is from exome/capture data (29 SNPs tested). All tests
of Schoefeld residuals had pw0:07, meeting the proportional hazards assumption.
doi:10.1371/journal.pone.0055037.t002

Figure 2. Survival of stage-III ovarian cancer patients by rs4934282 genotype. Kaplan-Meier survival plots for Stage III patients, stratified by
germline genotype at rs4934282 (AGAP11): AA, black; AC, blue; CC, red. Confidence intervals are shown as a shaded region around each Kaplan-Meier
curve. Censored observations are denoted with vertical ticks. The dashed horizontal and vertical lines mark 50% survival and five years (1825 days)
respectively.
doi:10.1371/journal.pone.0055037.g002
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germline genotype data were obtained from the TCGA project

[14] via the data portal on 06/03/2011.

SNP6 genotypes. Genotype calls for the 906,600 SNP probes

assayed using the Affymetrix GenomeWide SNP6.0 platform and

processed using Birdseed were obtained from TCGA. Samples

that did not pass the TCGA quality control (per the TCGA copy

number Sample Data Relationship Format file) were removed. A

total of 496 ovarian serous cystadenocarcinoma patients had

survival time and germline (either blood or tumor-adjacent

normal) genotype data. Genotype calls were coded as 0, 1 or 2

according to the number of variant alleles and filtered according to

a Birdseed confidence threshold of 0.05.

The genotype data were subject to additional quality control

filtration criteria as follows. SNPs with call rates v0:95 or minor

allele frequencies v0:05 were excluded, as were SNPs out of

Hardy Weinberg equilibrium with pv10{4. All samples with a

call rate below 80% were excluded. Identity by state was

computed using the R GenABEL package, and closely related

samples with IBSw0:95 were removed. The SNP and sample

filtration criteria were applied iteratively until all samples and

SNPs met the stated thresholds. In total, 489 samples and 662,521

SNPs passed were kept in the analysis.

Tumor stage. Stage subcategories were coalesced for the

purposes of this analysis into summary stage categories yielding

four stage classifications (i.e., Stage IA, IB, IC were treated as

Stage I, etc.). The number of samples in each stage category is

given in Table 1.

Exome/capture data. Next generation exome/capture se-

quencing data were also retrieved for 375 patients with available

germline data. The analysis was restricted to 100 Kbp windows

centered about the two SNPs identified as significant in the SNP6

data, specifically chr10:88672456–88772455 and

chr1:223081228–223181227. Graphical descriptions of these

genomic regions are provided in Figures 5 and 6.

Binary Sequence Alignment/Map (BAM) files were downloaded

from dbGAP, using for each sample the largest available normal

BAM file. The ‘‘mpileup’’ and ‘‘bcftools’’ features of SAMtools

[34] were used to generate the variant call information, with

calling criteria as follows: if the coverage in a given sample for a

given locus was less than the coverage threshold (see following

paragraph), no call was made; otherwise, if non-reference allele

frequency was less than 10%, the call was ‘‘homozygous

reference;’’ if the non-reference frequency was greater than

90%, the call was ‘‘homozygous nonreference;’’ if it was between

10% and 90%, the call was ‘‘heterozygous.’’

To set the coverage threshold for the exome/capture data, we

compared the exome/capture calls to the SNP6 germline genotype

calls for 41 tag SNPs located in those regions. Treating the SNP6

calls as the gold standard for accuracy, we define the ‘‘mismatch

rate’’ to be the number of calls for exome/capture and SNP6 data

differ, divided by the total number of exome/capture calls made at

that coverage depth. As coverage threshold is increased and the

exome/capture data becomes more reliable, the mismatch rate

decreases, but fewer exome/capture calls can be made. We varied

the coverage threshold from 5 to 30, selecting the lowest coverage

that yielded a mismatch rate smaller than 0.05. The optimum

coverage was 9 (with a mismatch rate of 0.045).

We considered a locus to be informative (ie, having sufficient

variation) if at least 20 germline samples had a heterozygous call at

that coverage threshold; these criteria yield 29 total informative

SNPs in the 100 Kbp regions surrounding rs4934282 and

rs1857623, shown in Table 3, which we considered in the analysis.

Survival analysis
Survival analysis was carried out in R [35] using the ‘‘survival’’

package [36]. For each SNP represented in the data, Cox

proportional hazards regression was used to model survival as a

function of genotype. Because of the significant association of stage

with survival, all models were stratified by stage. Genotype calls

were treated as categorical variables with 0 as the referent group to

avoid imposing linearity in the number of variant alleles. Each

model yielded two hazard ratios per SNP (one for genotype = 1

with respect to genotype = 0 and another for genotype = 2 w.r.t.

genotype = 0). The significance of the association was assessed

using the logrank (Score) test [37]. A test of Schoenfeld residuals

was used to check whether the proportional hazards assumption

was met; only models with pw0:05 were considered valid. 639,510

SNPs tested met the proportional hazards assumption.

Because the large number of SNPs implies a vast number of

hypotheses being tested, multiple testing adjustments were made to

the p values. This was done in two ways. We report both the false

discovery rate [38] (q) for the p values obtained for the parametric

tests described above. In addition, we report permutation pperm

values obtained using 600,000 independent resamplings of the

data. Permutation tests, while computationally intensive, are

considered the strongest and most appropriate control of type-I

error rates in genome-wide studies [39–41].

To investigate the existence and effect of any population

stratification, the R package GenABEL [42] was used to examine

population substructure. The genomic inflation factor was

estimated to be l~1:09, indicating that population substructure,

if present, should have no appreciable effect on the results. Using a

randomly selected set of 12,000 independent (pairwise LD

r2
v0:01) SNPs with MAFw0:3, population substructure was

examined using principal component analysis. Pairwise plots of the

first four components are provided in the File S2. We adjusted the

models in two ways: using the first four PCs, and using cluster

assignments identified from the PCA using R package mclust [43].

As expected based on l~1:09, we observed no appreciable

changes in the Cox model results (data not shown). The results

Figure 3. Survival of stage-III ovarian cancer patients by
rs1857623 genotype. Kaplan-Meier survival plots for Stage III
patients, stratified by germline genotype at rs1857623 (DNAH14): AA,
black; AG, blue; GG, red. Confidence intervals are shown as a shaded
region around each Kaplan-Meier curve. Censored observations are
denoted with vertical ticks. The dashed horizontal and vertical lines
mark 50% survival and five years (1825 days) respectively.
doi:10.1371/journal.pone.0055037.g003
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presented here are therefore not adjusted for population substruc-

ture.

Sequencing data analysis
We compared the SNP6 genotypes at the significant loci

(chr10:88722456 and chr1:223131228) to those from whole-

genome sequencing data for 10 available samples; all 10 matched

the SNP6 calls for the significant SNPs, supporting the SNP6

genotype calls.

For the two SNPs showing significant association with

survival in the SNP6 data, we further investigated the

surrounding genomic regions using combined whole-genome

and exome/capture sequencing data. We investigated 29 SNPs

in the the genomic regions surrounding rs4934282 and

rs1857623 shown in Table 3 and chosen as described above.

Stage-stratified Cox proportional hazards models were then

constructed for the germline genotypes as described above. It

should be noted neither rs4934282 nor rs1857623 were

included due to insufficient exome/capture data (rs4934282

Table 4. SIFT and logRE predictions for missense SNPs.

substitution SIFT logRE

rsID Chr Position Gene RefSeq NT AA score prediction score prediction

rs3750823 10 88707134 MMRN2 NM_024756 c.G145A p.G49S 0.15 borderline 0.27 neutral

rs4934281 10 88692330 MMRN2 NM_024756 c.C2191G p.H731D 0.62 neutral NA NA

rs34587013 10 88686602 MMRN2 NM_024756 c.G2728C p.V910L 0.91 neutral NA NA

rs9864 10 88712378 SNCG NM_003087 c.A329T p.E110V 0.15 borderline 0.36 neutral

rs2641563 10 88758233 AGAP11 NM_133447 c.A244G p.I82V 1.00 neutral NA NA

SIFT and logRE predictions for missense SNPs. Shown are the location, gene, and RefSeq IDs for the SNPs, the nucleotide (NT) and amino acid (AA) substitutions, and the
SIFT and logRE scores and predictions. SIFT scores are classified into predictions as follows: 0.00—0.05, probably damaging; 0.051—0.10, possibly damaging; 0.101—
0.20, borderline; 0.201—1.00, neutral. logRE scores are classified into predictions as follows: 1—up, probably damaging; 0.7—0.99, possibly damaging; 0.5—0.69,
borderline; 0.0—0.49, neutral.
doi:10.1371/journal.pone.0055037.t004

Figure 4. Genomic region containing rs4934282 and rs4869. Detailed description of the genomic region of chromosome 10 containing
rs4934282 (second SNP from the right) and rs4869 (shown in green). Note the overlap between AGAP11 and C10orf116.
doi:10.1371/journal.pone.0055037.g004
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is in an intronic region and hence not assayed in the exome/

capture data; rs1857623 had no calls in the majority of

samples).

It should be noted that not all the genomic regions contributing

to these data have unique sequences. To assess this, we used the

‘‘mapability’’ criteria as implemented in CGWB [44]: for each

Figure 5. Genomic region surrounding rs4934282. Image from cgwb.nci.nih.gov of selected tracks for genome build NCBI36 (hg18) for the
region surrounding two germline variations associated with survival in ovarian cancer in C10orf116/AGAP11 region on chromosome 10. The tracks
are a custom track showing the SNPs rs4869 and rs4934282, RefSeq gene, mRNA, spliced ESTs and mapability.
doi:10.1371/journal.pone.0055037.g005

Figure 6. Genomic region surrounding rs1857623. Image from cgwb.nci.nih.gov of selected tracks for genome build NCBI36 (hg18) for the
region surrounding a germline variation associated with survival in ovarian cancer upstream of DNAH14 on chromosome 1. The tracks are a custom
track showing the SNP rs1857623, RefSeq gene, mRNA, spliced ESTs and mapability.
doi:10.1371/journal.pone.0055037.g006
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locus under consideration, we consider a sliding 75 base-pair

window containing that locus and attempt to match it to other

regions in the genome; the locus is flagged as unique if, for every

position of the sliding window, the sequence only maps to the

location of the window and no other genomic region. Loci for

which some (or all) positions of the sliding window contain

sequences that map to multiple genomic regions are flagged with a

dagger in Table 3, denoting that the reads contributing to the calls

at that locus may be nonspecific.

Prediction of amino-acid substitutions
We examined the SNPs in Table 3 for mis-sense substitutions

using program ANNOVAR [45] and predicted their functional

impact on protein sequences with logRE and SIFT. LogRE is the

log10 of the ratio of HMMER E-values for the fit to a PFAM motif

domain of two amino acid sequences that differ by an amino acid

substitution. A logRE score whose absolute value is greater than or

equal to 1 indicates that the amino acid alteration is likely to affect

protein [46]. SIFT is a sequence homology-based tool that Sorts

Intolerant From Tolerant amino acid substitutions and predicts

deleterious amino acid substitutions. SIFT values ƒ0:05 are

predicted to be deleterious [47]. Of the SNPs considered above

five mis-sense snps were identified: three in MMRN2 (rs3750823,

rs4934281, rs34587013), one in SNCG (rs9864), and one in

AGAP11 (rs2641563). However, there is no evidence that these

amino acid changes have functional impact on the proteins

(Table 4).

Analysis of somatic variations
To test the hypothesis that somatic changes might have an

additive or moderating effect on the association between germline

genotype and ovarian cancer survival, we used TCGA data

derived from paired tumor samples to assess whether tumor gene

expression, gain or loss of copy number in the tumor, or loss of

heterozygosity were significantly associated with survival. A full

description of the methods and results for this analysis is given in

the File S1. None of these additional covariates were significant.

Supporting Information

File S1 Methods and results of analysis of somatic
variations.

(PDF)

File S2 Methods and results of population substructure
analysis.

(PDF)
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