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Summary 
In vitro experiments using purified rat CD4 + T cells in primary and secondary mixed leuko- 
cyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated 
autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous 
work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, com- 
pletely prevents the development of the paralysis associated with experimental allergic encephalomye- 
litis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The 
in vitro experiments described in this study have shown that when CD4 + T cells were acti- 
vated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) 
% but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in 
the absence of the mAb, the synthesis of IL4 and II.-13 mRNA was greatly enhanced compared 
with that observed from CD4 + T cells derived from primary cultures in which the mAb was 
omitted. As II.-4 and Ib13 are known to antagonize cell-mediated immune reactions, and as 
EAE is cell-mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying 
the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb 
to suppress IFN-3, synthesis provides, in part, an explanation for this change in cytokine produc- 
tion. These findings are discussed in terms of what is known of the factors that determine which 
cytokine genes are expressed on T cell activation. Possible implications for the evolution of T 
cell responses in human immunodeficiency virus infection are also discussed. 

C D4 is a 55-kD Ig superfamily membrane glycoprotein 
primarily expressed on the population of thymocytes 

and mature T lymphocytes that recognize peptide determinants 
associated with MHC class II molecules on APC (1). The 
binding of CD4 on T cells to MHC class II is thought to 
stabilize the T cell receptor-MHC class II interaction and 
to provide appropriate costimulatory signals (2). However, 
in rats and humans, but not mice, CD4 is also expressed on 
macrophages, where, in contrast to the situation with T cells, 
its function is not known. Mature CD4 + T cells have been 
shown to be phenotypically and functionally heterogeneous, 
differing in their ability to respond to alloantigen, mediate 
lethal graft versus host disease, or provide help for secondary 
antibody responses (3-5). 

Modulating the activity of CD4 + T cells by using mAbs 
to the CD4 molecule has proved extremely effective in 
preventing graft rejection and autoimmune disease in animals 
(for reviews see references 6 and 7), and has recently led to 
the use of anti-CD4 mAbs in the therapy of human autoim- 
mune diseases, particularly multiple sclerosis and RA (8, 9). 
Anti-CD4 mAbs can be classified as either depleting or non- 
depleting depending on their cytotoxic activity, and although 

attention has focused on anti-CD4 mAbs that kill their target 
cells as a form of general immunosuppression, nondepleting 
antibodies have also proved effective as therapeutic agents. 

A nondepleting mAb to rat CD4 (W3/25), known to in- 
hibit CD4 + T cell activation in vitro (10), has been shown 
to be extremely effective in Lewis rats in the prophylaxis and 
therapy of experimental allergic encephalomyelitis (EAE) 1, 
a cell-mediated autoimmune disease of the central nervous 
system induced by immunization with myelin basic protein 
(MBP) (11). Depending on the time of administration, W3/25 
mAb can either halt the course of active EAE or completely 
prevent the onset of disease (11, 12). W3/25 mAb-protected 
rats have normal levels of CD4 + T cells and are a good 
source of T cells capable of adoptive transfer of EAE to naive 
recipients after in vitro activation with MBP (12), confirm- 

1 Abbreviations used in this paper: EAE, experimental allergic encephalomye- 
litis; HIV, human immunodeficiency virus; MBP, myelin basic protein; 
1 ~ MLC, 2 ~ MLC, primary and secondary MLC, respectively; KT, reverse 
transcriptase; SpC, spleen cells; TDL, thoracic duct lyrnphocytes. 
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ing that the MBP-reactive T cells are not killed by the anti- 
body and are not anergic. 

The ability to treat disease wi thout  killing the target cell 
makes nondepleting anti-CD4 mAbs particularly attractive 
for therapy; however, to date it remains unclear how these 
mAbs provide their therapeutic effects. The aim of this study 
was to develop a system with which to examine how W 3 / 2 5  
mAb modifies the activity of CD4 + T cells to prevent EAE. 
For this purpose, the influence of  W 3 / 2 5  mAb on the al- 
logeneic MLC was analyzed. It was found that cytokine gene 
expression after secondary stimulation was strongly affected 
by the presence of  the anti-CD4 mAb in the primary cul- 
ture. The results provide a possible explanation for the ca- 
pacity of  W 3 / 2 5  mAb to control cell-mediated immunity 
in vivo and suggest criteria for the selection of anti-CD4 mAbs 
for therapeutic use in humans. They also suggest a mecha- 
nism whereby human immunodeficiency virus (HIV) can pro- 
mote its own expansion in vivo. 

Materials and Methods 

Animals. Male inbred PVG (RT1 c) and DA (KT1 a) strain rats 
were obtained specific pathogen free (SPF) from the MRC Cel- 
lular Immunology Unit, University of Oxford, and used on the 
day of removal from the SPF unit. 

Antibodies. W3/25 (IgG1, mouse anti-rat CD4 domain 1) (13) 
IgG was purified from ascites by ion exchange chromatography 
(Sepharose Q/FPLC; Pharmacia LKB, Uppsala, Sweden) using a 
0.15-1.5-M NaC1 gradient. The eluted antibody was dialyzed against 
PBS, filter sterilized, and stored at -20~ The OX6 (IgG1, mouse 
anti-rat MHC class II) (14), OX8 (IgG1, mouse anti-rat CD8) 
(15), OX12 (IgG2a, mouse anti-rat Ig g chain) (16), OX19 (IgG1, 
mouse anti-rat CD5) (17), OX21 (IgG1, mouse anti-human C3b 
inactivator) (18), and W3/13 (IgG1, anti-rat CD43) (13) mAbs 
were used as tissue culture supernatants, or where indicated as 
purified IgG prepared from ascites as described above. OX81 (IgG1), 
a mouse neutralizing mAb to rat 11_,4 (Fowell, D., M. Puklavec, 
S. Simmonds, and D. Mason, to be published), was used as purified 
IgG prepared from ascites as described above. Rabbit anti-mouse 
IgG cross-reacting with rat IgG (RAMK) was purified from sera 
of rabbits immunized with mouse IgG by affinity chromatography 
on rat IgG Sepharose 4B (Pharmacia LKB). 

Preparation of CD4 + Responder Cells. CD4 + T cells were 
purified from thoracic duct lymphocytes (TDL) of PVG rats by 
rosette depletion as previously described (19). Briefly, TDL obtained 
by cannulation (20) were washed in PBS containing 0.2% BSA 
(PBS/BSA) and incubated for 1 h on ice with a mixture of the 
OX6, OX8, and OX12 mAbs. Labeled cells were then rosette 
depleted by incubating with RAMR-coated SRBC followed by brief 
centrifugation, and the supernatants were recovered and cleared 
of erythrocytes by hypotonic lysis and washing in PBS/BSA. The 
remaining cells were consistently >99% pure CD4 + T cells as as- 
sessed by flow cytometry (FACScan| Becton Dickinson & Co., 
Mountain View, CA). 

Preparation of Allogeneic Stimulator Cells. Unfractionated spleen 
cells (SpC) from DA rats were prepared as single-cell suspensions 
by gently disrupting the tissue through stainless steel mesh into 
PBS/BSA. Debris was removed by filtration through lens tissue, 
and the cells were washed and irradiated with 25 Gy of 137Cs ir- 
radiation. 

Primary MLC. Primary (1 ~ MLC was carried out as follows. 
PVG CD4 § responder cells and DA stimulator SpC were resus- 
pended in RPMI-1640 medium supplemented with 2 mM gluta- 
mine, 2.5 x 10 -s M 2-ME, 1 mM sodium pyruvate, and antibi- 
otics, with heat-inactivated FCS added at a final concentration of 
10% (complete RPMI). Responder and stimulator cells were mixed 
in 96-well round-bottom tissue culture plates in a final volume of 
200 #1, incubated for 72 h at 37~ in 5% CO2, and then pulsed 
for 18 h with 0.5 #Ci [3H]thymidine. Cells were then harvested 
and assayed for radiolabel incorporation by liquid scintillation 
counting (1211 Rackbeta; Pharmacia LKB) and the results were 
expressed as mean cpm of triplicate wells. At various times 
throughout the culture, supematants were harvested for cytokine 
analysis and cells harvested for mRNA preparation (see below). 
Stimulator cell doses were kept constant at 5 x 10 s cells/well and 
responder cell doses were usually 2 x 106 cells per well, except 
where indicated, mAbs W3/25 or OX21 IgG were added at the 
beginning of the cultures at a final concentration of 5 #g/ml, ex- 
cept where otherwise indicated. 

For cytokine supplementation of 1 ~ MLC, cytokines were in- 
cluded from the beginning of the cultures at final concentrations 
of 50 U/ml for IL-2 and IL-4, or 100 U/ml for IFN-'y (see below 
for details of recombinant cytokines). 

IL-2 Expansion and Secondary MLC. After 1 ~ MLC activation, 
cells for secondary (2 ~ MLC) stimulation were washed in warm 
complete RPMI and resuspended to a concentration of 106/ml in 
complete RPMI containing 50 U/ml of recombinant rat II.-2 (see 
below for details). After an expansion phase of 72 h in Ib2 at 37~ 
the cells were washed, adjusted to 107 cells/m1, and 100 #1 was 
mixed with 100/~1 of irradiated DA SpC diluted to 5 x 106 cells/ 
ml. Subsequently, at various times, cell proliferation was assessed 
as described above, supernatants were harvested for cytokine anal- 
),sis, and cells were harvested for mRNA preparation (see below). 

Recombinant Cytokines and Cytokine Assays. Ib2 production was 
assessed using proliferation of the CTLL-2 cell line as previously 
described (21). Briefly, tissue culture supernatants were added to 
2 x 104 CTLL cells at a final concentration of 10% and incubated 
for 18 h at 37~ The cells were then pulsed with 0.5 #Ci of 
[3H]thymidine for 6 h, harvested, and radiolabel incorporation was 
determined by liquid scintillation counting. Values are expressed 
as units per milliliter of Ib2 as derived from a standard curve con- 
structed using a commercial preparation of recombinant human 
Ib2 (Boehringer Mannheim GmbH, Mannheim, Germany). Re- 
combinant rat II_,2 for use in cell culture was obtained as serum- 
free tissue culture supernatant (10 4 U/m1) grown from a trans- 
fected CHO cell line (22). The supernatant was dialyzed against 
PBS and filter sterilized before use. 

IFN-3/levels were determined by an antigen capture ELISA using 
96-well microtiter plates coated overnight at 4~ with 10 #g/ml 
of an anti-rat IFN-3, mAb (DB-1) and blocked for 30 rain with 
1% BSA in PBS. Undiluted tissue culture supematants (50/~l/well) 
followed by rabbit anti-mouse IFN-3, antiserum that cross-reacts 
with rat IFN-3, (diluted 1:200) and a swine anti-rabbit IgG-alka- 
line phosphatase-conjugated antiserum diluted 1:1,000 (Dakopatts, 
Glostrup, Denmark) were sequentially incubated for 2 h at room 
temperature, separated by washes with PBS containing 0.05% Tween 
20. Antisera were diluted in PBS containing 14% normal mouse 
serum, 5% FCS, 0.05% Tween 20, and 10 mM NAN3. OD at 405 
nm (Titretek Multiskan MCC/340; Labsystems, Hdsinki, Finland) 
was then determined after adding the enzyme substrate 4-nitro- 
phenylphosphate (Sigma Chemical Co., St. Louis, MO) at 5 mg/ml 
for 45 rain at room temperature. Values are expressed as units per 
milliliter of IFN-'y derived from a standard curve constructed using 
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serial dilutions of purified rat recombinant IFN-3' of known con- 
centration. The DB-1 mAb and recombinant rat IFN-3, were kindly 
provided by Dr. P. van der Meide (TNO, Rijswijk, The Nether- 
lands). The rabbit anti-mouse IFN-~/antiserum was provided by 
Dr. J. Tite (WeUcome Research Laboratories, Beckenham, UK). 

Detection of II~4 was achieved by a bioassay to determine up- 
regulation of expression of MHC class II molecules on B cells. Rat 
B cells were purified from TDL by direct rosetting using W3/13 
mAb-labeled SRBC (19). 50 #l of tissue culture supernatant was 
added to 5 x 10 s B cells in 96-well tissue culture plates and made 
to a final volume of 200 #1. After incubating for 18 h at 37~ 
the cells were washed and labeled with 12sI-OX6 IgG (1.5 x 10 s 
cpm) for 1 h at 4~ After washing, bound radiolabel was mea- 
sured by gamma counting (1261 Multigamma; Pharmacia LKB) 
using 15-s counts per tube. Assay specificity was determined by 
means of a neutralizing mAb to rat IL-4 (OX81) added at the be- 
ginning of the 18-h culture period at 100/zg/ml IgG final concen- 
tration. Values are expressed as units per milliliter of II.-4 derived 
from a standard curve constructed using serial dilutions of recom- 
binant rat IL-4 obtained as tissue culture supernatant (104 U/ml) 
from a transfected CHO cell line (22). 1 U was defined as that 
concentration of IL-4 that gave 50% of maximal induction of MHC 
class II on B cells, as assessed by the 125I-OX6 radioimmunoassay. 

Reverse Transcriptase PCR. Reverse transcriptase (RT)-PCR was 
performed as follows. Total RNA was prepared from 2 x 106 
MI-C-stimulated lymphocytes by RNAzol B | extraction according 
to the manufacturer's instructions (Biogenesis, Poole, UK) and 
mRNA reverse transcribed to eDNA using oligo-dT priming and 
murine Moloney leukemia virus reverse transcriptase (Gibco Labora- 
tories, Paisley, UK) in a final volume of 40 #1 as described (23). 
For semiquantitative PCR analysis of cytokine mRNA levels, 10- 
fold dilutions of the eDNA were amplified in 50-/,1 reaction volumes 
as previously described (23) using 2.5 mM MgC12 for ID4 and 
/~-actin or 3.0 mM for IL-13. Primer sequences for rat Ib4 and 
3-actin have been previously described (23), and for rat IL-13 were 
5' CAGGGAGCTTATCGAGGAGC 3'and 3' CGAGTTAGTAGG- 
ACTTTTGAAG 5; based on the published sequence for rat Ib13 
(24). Primers were designed to produce amplified products of 378 
bp for IL-4, 279 bp for IL-13, and 607 bp for B-actin. Cycle condi- 
tions were 93~ for I min, 60~ for 2 min, and 72~ for 3 rain 
using 35 cycles for IL-4 and IIA3 or 20 cycles for ~-actin. 10/A 
of amplified product was then separated by electrophoresis on 1.5 % 
agarose minigels, visualized by ethidium bromide staining, and saved 
as a digital image (Appligene Imager; Appligene Inc., Pleasan- 
ton, CA). 

Results 
Effect of FV3/25 Anti-CD4 mAb on CD4 + T Cell Prolifer- 

ation in the 1 ~ MLC. Previous studies have shown that the 
W 3 / 2 5  m A b  is a potent inhibitor of  T cell activation in the 
MLC (10), but  it has also been shown that this inhibition 
is not complete at high responder cell numbers (Mason, D., 
and S. Simmonds, unpublished observations). These findings 
suggested the presence of a population of CD4 + T cells that 
were at least partly refractory to the inhibitory actions of 
W 3 / 2 5  m A b  in vitro, and this effect was confirmed in this 
study. As shown in Fig. 1 A, the m A b  was a potent inhib- 
itor of the MLC at low responder cell doses (1.25-5 x 105 
cells/well), where almost 100% suppression was observed. 
In contrast, as CD4 + responder T cell numbers were in- 
creased in excess of  5 x 10 S cells per well, a significant de- 
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Figure l. Inhibition of cell proliferation in the 1 ~ MLC by W3/25 mAb. 
(A) Increasing numbers of purified FVG CD4 + responders were stimu- 
lated in an allogeneic 1 ~ MI.C using a constant number of irradiated DA 
SpC as stimulators (5 x 10 s cells/well). All cultures were incubated for 
a total of 90 h, and proliferation was determined by [3H]thymidine up- 
take during the final 18 h of culture. W3/25 IgG was added at the begin- 
ning of the cultures at 5/zg/ml (solid circles), while control cultures con- 
tained the isotype-matched OX21 mAb (open circles). Results are expressed 
as mean cpm +_ SE of triplicate wells of a representative experiment, and 
similar results have been observed in at least three independent experi- 
ments. (B) Increasing concentrations of W3/25 mAb IgG were titrated 
into a 1 ~ MLC using 2 x 106 purified FVG CD4 + responders and 5 x 
10 s irradiated DA SpC stimulators per well The open circle indicates the 
proliferation observed when W3/25 mAb was replaced by 10/zg/ml of 
OX21 mAb in the cultures. Results are expressed as described above and 
repeated on three independent occasions. 

gree of cellular proliferation was observed, reaching levels 
20-30% of that of control cultures at the highest cell dose. 

To exclude the possibility that this proliferation was simply 
due to limiting amounts of W 3 / 2 5  mAb, increasing con- 
centrations of the mAb were titrated into an MLC established 
at high responder cell numbers (Fig. 1 B).  Maximal inhibi- 
tion of proliferation was achieved at an mAb concentration 
of ~0 .5  #g /ml ,  after which point increasing the concentra- 
tion had no additional effect. A concentration of 5 / zg /ml  
mAb was routinely used in further assays, this being a level 
at least 10 times in excess of that required for maximal inhi- 
bition of proliferation at high responder cell doses. Further- 
more, flow cytometric analysis of  blast cells at the end of 
the culture period indicated that the W 3 / 2 5  m A b  had uni- 
formly bound all C D 4 + C D 5  + T cells and had not modu- 
lated cell surface expression of the CD4  antigen (data not 
shown). 

7 Stumbles and Mason 



Cytokine Production by CD4 + T Cells Activated in the Pres- 
ence of Anti-CD4 mAb in the 1 ~ MLC. As discussed in the 
introduction, the previous observation that the nondepleting 
W3/25 mAb was able to very effectively control EAE in rats 
given an encephalitogenic immunization with MBP suggested 
that the mAb was inducing a regulatory mechanism capable 
of suppressing cell-mediated immune responses. The present 
finding that some CD4 + T cells were refractory to the in- 
hibitory effects of W3/25 mAb in vitro has raised the possi- 
bility that such refractory cells might provide the regulatory 
mechanism capable of controlling EAE in vivo. The primary 
aim of this study was to determine whether the CD4 + T 
cells that proliferated in the presence of W3/25 mAb in the 
MLC possessed a cytokine repertoire compatible with this 
hypothesis. 

To examine this question, 1 ~ MLCs were established at 
high responder cell doses (2 x 106 calls per weil) in the pres- 
ence or absence of W3/25 mAb, and supernatants were ex- 
amined for the presence of cytokines indicative of a Thl- (II.-2, 
IFN-3,) or a Th2- (IL-4, Ibl0, IL-13) type CD4 + T cell re- 
sponse (25) (Fig. 2). Levds of IL-2 produced by cells grown 
in the presence of W3/25 mAb, although reduced when com- 
pared with control cultures, did tend to reflect the degree 
of cell proliferation. Thus, IL-2 was detectable by 48 h of 
culture in the presence of W3/25 mAb (before signs of cel- 
lular proliferation), and levels continued to increase in par- 
allel with the degree of proliferation in a similar manner to 
that seen in uninhibited control cultures (Fig. 2 C). This 
level of production of IL-2 was not affected by increasing the 
concentration of mAb in the cuhures (Fig. 2 D). In addi- 
tion, CD4 + T cells activated in the presence of W3/25 

mAb displayed normal levels of II.-2 receptor, as demonstrated 
by flow cytometric analysis (data not shown). 

In contrast, IFN-3' was virtually undetectable at all times 
of culture (Fig. 2 A) when mAb concentrations were >1 
/lg/ml (Fig. 2 B), despite a significant degree of cell prolifer- 
ation after 90 h (~20 x 103 cpm). This inhibition could 
not have simply been a consequence of a lower level of cell 
proliferation in the cultures containing W3/25 mAb because 
if IFN-3~ production were proportional to cell proliferation, 
then after 90 h the inhibited cultures should have produced 
~50 U/ml of IFN-% This complete suppression of IFN-'y 
production has been consistently observed in MLCs inhibited 
by W3/25 mAb. As subsequent experiments showed (see 
below), the inhibition of IFN-3, synthesis by W3/25 mAb 
in the 1 ~ MLC had profound effects on the subsequent syn- 
thesis of ID4 after 2 ~ MLC stimulation. 

For II,4, II.-10, and IL-13, mRNA encoding these cytokines 
was detectable after 1 ~ MLC activation, as determined by semi- 
quantitative RT-PCR. However, the message levels for these 
cytokines were similar in both W3/25 mAb-treated and con- 
trol cultures (data not shown). Furthermore, bioassays for 
II,4 showed that these 1 ~ MLCs produced little of this cytokine 
(data not shown). 

Effects of Exogenous 11..4 on CD4 + T Cells Activated in the 
1 ~ MLC in the Presence of Anti-CD4 mAlt Experiments were 
performed to determine the effects of adding various cytokines 
to the 1 ~ MLC on the subsequent proliferation of CD4 + T 
cells. Supplementing cultures containing W3/25 mAb with 
II.-4 produced a significant increase (,~,300%) in the level of 
T cell proliferation compared with control cultures not con- 
taining the mAb (Fig. 3). This effect was much larger than 
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Figure 2. IL-2 and IFN- 7 
production during the 1 ~ MLC. 
MLCs were established using 2 x 
106 PVG CD4 + responders and 
5 x 10 s irradiated DA SpC stim- 
ulators per well in the presence of 
5 /zg/ml W3/25 mAb and 
samples of tissue culture superna- 
tant taken at the indicated times 
for analysis of(A) IFNw and (C) 
Ib2 protein as described in 
Materials and Methods. Alterna- 
tively, W3/25 mAb was titrated 
into the cultures from 0.2 to 10 
/~g/ml, and supcmatants were 
analyzed after 90 h for (B) IPN-'y 
and (D) I1--2. Solid lines indicate 
cytokine production (IFN- 7 or 
Ib2), and broken lines indicate 
proliferation. Solid circles repre- 
sent cultures grown in the pres- 
ence of W3/25 mAb, while open 
circles represent control cultures 
containing 5/zg/ml OX21 mAb. 
The mean prolif~ation (CPM) or 
cytokine concentration (U/ml) + 
SE of triplicate wells from a rep- 
resentative of at least three inde- 
pendent experiments is shown. 
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Figure 3. Influence of supplementing the 1 ~ MLC with Ib4. 1 ~ MLCs 
were established at 2 x 106 CD4 * responders and 5 x 10 s irradiated DA 
SpC stimulators per well in the presence of 5 ~g/ml W3/25 IgG or con- 
trois containing 5 ~g/ml OX21 IgG. Recombinant rat II-4 was added 
at the beginning of some of the cultures at a final concentration of 50 
U/ml (open bars), and the proliferation of these cells was compared with 
that of cells grown in the absence of added IL-4 (solid bars). Results are 
expressed as the mean cpm -+ SE of triplicate wells of three experiments. 

that observed when cultures were supplemented with IFN-3' 
or IL-2, which both induced a <50% increase in prolifera- 
tion when added in the presence of W3/25  mAb (data not 
shown). Supplementing control cultures not containing 
W3/25 mAb with these cytokines produced no significant 
increases in proliferation, presumably because endogenous Ib2 
and IFN-3~ synthesis was already inducing optimum T cell 
proliferation. This finding indicated that the addition of the 
W3/25 mAb in the 1 ~ MLC cultures resulted in responsive- 
ness to Ib4 but, as the bioassays had already indicated, little 
Ib4  synthesis. This conclusion was further supported by the 
observation that incorporating the OX81 anti-rat II.-4 mAb 
in W3/25 mAb-treated 1 ~ MLCs had no appreciable effect 
on cell proliferation (data not shown). 

Cytokine Production after 2 ~ MLC.  To determine whether 
the presence ofW3/25 mAb in the 1" M I ~  had any significant 
effects on subsequent cytokine synthesis, cells activated in the 
presence of the mAb in a 1 ~ MLC were restimulated in a 
2 ~ MLC and cytokine synthesis analyzed. When assessed by 
semiquantitative RT-PCK analysis, mKNA encoding IL-4 
could be detected at high levels at all times of the 2 ~ MI.C 
when W3/25 mAb was included in the 1 ~ MLC (Fig. 4). 
In contrast, after 24 h of culture, II.-4 mKNA was no longer 
detectable in 2 ~ MLCs of cells stimulated in the 1 ~ MLC 
in the absence of W3/25  mAb, despite equal quantities of 
cDNA, as indicated by the similar/3-actin mRNA levels (Fig. 
4). Similarly, production of 1I.-13 mKNA was dramatically 
increased in 2 ~ MLCs of cells inhibited by W3/25  mAb in 
the 1 ~ MLC, to levels ~100-fold greater than those seen in 
control cultures (Fig. 4). In contrast, however, levels of mRNA 
encoding IL-10 were similar between W3/25 mAb-treated 
cultures and controls at each time point (data not shown). 

To confirm that the cytokine mRNA for 1I-4 was trans- 
lated into secreted protein, 2 ~ MLC supematants of cells treated 
with W3/25 mAb in the 1 ~ MLC were assayed for their ability 
to upregulate MHC class II expression on B cells. 24-h and 
48-h supernatants from these cultures induced significant up- 
regulation of MHC class II, which was blocked with OX81, 
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Figure 4. Semiquantitative RT-PCR analysis of IL-4 and Ib13 mRNA 
production after 2 ~ MLC. CD4 + T cells stimulated for 90 h in a 1 ~ MLC 
(2 x 106 FVG responders, 5 x 10 s DA SpC stimulators per well) in the 
presence (+) or absence (-) of 5 #g/ml W3/25 mAb were expanded in 
11=2 for 3 d and then restimulated in a 2 ~ MLC in the absence of W3/25 
mAb using 106 responders and 5 x 105 DA SpC stimulators per well. 
cDNA was reverse transcribed from mKNA prepared at 24, 48, and 72 h 
of 2 ~ MLC culture and diluted in 10-fold steps from neat to 1:100. PCK 
was then performed using oligonucleotide primers specific for rat Ib4, 
II:13, and fl-actin, and the products were separated on agarose gels and 
analyzed as described in Materials and Methods. Representative gels of 
three independent experiments are shown. 

a neutralizing mAb to rat IL-4, suggesting that the up-regula- 
tion observed was due to 1I-4 and not to IL-13 (Fig. 5 A). 
However, the possibility that OX81 also reacted with rat IL-13 
cannot be excluded, this being theoretically possible since Ib4 
and Ib13 share a common receptor element (26). Consistent 
with the mKNA data, cultures not containing W3/25 mAb 
in the 1 ~ MLC stimulation produced no significant up-regula- 
tion of MHC class II on B cells (Fig. 5 A). In contrast, simi- 
larly high levels of both IL-2 and IFN-3/were produced after 
24 or 48 h of secondary stimulation, regardless of whether 
or not the cells had seen the W3/25 mAb in the 1 ~ MLC 
(Fig. 5 B). 

In these experiments, the starting population of CD4 + T 
cells, although highly purified, was nevertheless heterogeneous 
in that it contained a mixture of activated cells, as well as 
naive and memory cells. To generate a more homogeneous 
starting population of responder cells and to examine the con- 
tribution of activated cells to the observed up-regulation of 
1D4 production, purified whole CD4 + T cells were depleted 
of activated (OX39 § cells by rosetting and subjected to 1 ~ 
and 2 ~ MLC in the presence or absence of W3/25mAb. It 
was found that removal of activated cells did not reduce, and 
if anything increased, the levels of II.-4 produced after 2 ~ MLC, 
when the cells were primarily activated in the presence of 
W3/25 mAb (data not shown). Further subdivision of the 
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IL-2, IL-4, and IFN-y protein production after 2 ~ MLC. 
CD4+ T ceils were activated in 2 ~ MLCs after exposure to W3/25 mAb 
in the 1 ~ MLC as described for Fig. 4, and supernatants were harvested 
at 24 and 48 h and analyzed for the presence of cytokines. (.4) Analysis 
of IL-4 by MHC class II up-regulation on B cells. (column 1) W3/25 mAb 
added to the 1 ~ MLC; (column 2) OX21 mAb added to the 1 ~ MLC; 
(column 3) OX81 anti-IIr mAb added to the bioassay for the superna- 
tants of column 1. (B) Analysis of IL-2 and IFN-3" by ELISA. Solid bars 
show W3/25 mAb added to the 1 ~ MLC; open bars show OX21 mAb 
added to the 1 ~ MLC. Results are expressed as mean units per milliliter _+ 
SE of triplicate wells for one representative out of three experiments. 

CD4 + T cell starting population is now required to deter- 
mine the nature of these I1:4-producing cells. 

Effect of Adding IFN-y or Neutralizing IL,4 in the 1 ~ MLC 
on Cytokine Expression in the 2 ~ MLC. As previously illus- 
trated, the inclusion o fW3/25  mAb in the 1 ~ MLC resulted 
in reduced T cell proliferation and the complete suppression 
of IFN-3~ synthesis (Fig. 2), while supplementing these cul- 
tures with exogenous IFN-'y resulted in a modest increase 
in cell proliferation. However, as shown by RT-PCR and MHC 
class II up-regulation on B cells, 1 ~ MLCs supplemented with 
a mixture o fW3/25  mAb and IFN-3' failed to show the sus- 
tained expression o f m R N A  for I1:4 (Fig. 6) and I1:4 protein 
synthesis (data not shown) that were characteristic of cul- 
tures treated with W3/25 mAb alone (Figs. 4 and 5). Fur- 
thermore, addition of the neutalizing antibody to I1:4 (OX81) 
together with the W3/25 mAb in the 1 ~ MLC cultures had 
no effect on I1:4 production in the 2 ~ MLC (data not shown). 
Thus, it appears that the enhanced 11:4 synthesis observed 
on 2 ~ MLC stimulation of cells treated with W3/25 mAb 
in the 1 ~ MLC is not dependent on the presence of I1:4 but 
rather depends, at least in part, on the ability of the mAb 
to suppress IFN-'y production. 

Figure 6. RT-PCR analysis of IL-4 production in the 2 ~ MLC after 
supplementing the 1 ~ MLC with IFN-% CD4 § T cells were stimulated 
in a 1 ~ MLC in the presence (+) or absence ( - )  of 5 #g/ml W3/25 mAb 
and in the presence of 100 U/ml of recombinant rat IFN-3' and then res- 
timulated in a 2 ~ MLC in the absence of both W3/25 mAb and exoge- 
nous IFN-'y. RNA was isolated at the times indicated, reverse transcribed 
to cDNA, diluted, and analyzed by PCR for IL-4 and ~-actin mRNA 
as described for Fig. 4. 

Discuss ion 

These studies have analyzed the effect of the anti-CD4 mAb 
W3/25 on CD4 + T cell activated in vitro in terms of cell 
proliferation and cytokine production by means of the 1 ~ and 
2 ~ MLC in an attempt to explain the ability of the mAb to 
inhibit cell-mediated immunity in vivo. In terms of cytokine 
production, the most striking effects of incorporating W3/25 
mAb during cell activation were the complete inhibition of 
IFN-y (but not Ib2) production in the 1 ~ MLC (Fig. 2) and 
the greatly enhanced levels of Ib4 and I1:13 synthesis after 
2 ~ MLC stimulation (Fig. 4). I1:4 and II:13 are known to 
antagonize the effects of ceU-mediated immunity in vivo (26, 
27), so the above finding suggests an explanation for the ca- 
pacity of this antibody to control EAE in vivo. This interpre- 
tation is supported by recently published observations that 
the suppression of allograft rejection in the rat by a non- 
depleting anti-CD4 mAb was associated with a decrease in 
Thl cytokines and maintenance of Th2 cytokine production 
by graft-infiltrating cells (28, 29), and by the observations 
of Mannie and associates (30), who demonstrated a positive 
correlation between 11:4 synthesis and resistance to W3/25 
mAb inhibition in vitro in MBP-specific T cell lines and 
hybrids. Interestingly, the four- to fivefold increase in the 
production of IL-4 in the 2 ~ MLC in these experiments was 
not matched by a significant reduction in IFN-'y synthesis 
upon 2 ~ MLC stimulation, indicating that the suppression 
oflFN-3, synthesis seen in the 1 ~ MLC was reversible. These 
in vitro observations of the reversibility of the suppression 
of IFN-'y production provide an explanation for the in vivo 
effects of the mAb when used to treat EAE, specifically, that 
splenocytes recovered from protected animals are able to pas- 
sively transfer EAE when secondarily stimulated in vitro with 
MBP (12). 
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The mAb's mode of action in enhancing I1-4 and I1-13 
synthesis in vitro is not fully understood. As shown in Fig. 
2 B, the inclusion ofW3/25 mAb in the 1 ~ MLC completely 
inhibited IFN-3' synthesis, and this inhibition may have ac- 
counted for the enhanced I1,4 synthesis in the 2 ~ MLC. Signi- 
ficantly, the supplementation of 1 ~ MLCs containing W3/25 
mAb with IFN-3, strongly inhibited Ib4 synthesis in the sub- 
sequent secondary activation. Consistent with this observa- 
tion, it has been reported that IFN-3, promotes the selection 
of Thl  clones over Th2 clones in mouse T cell cultures (31). 

If the addition of W3/25 mAb to the MLC favors the ac- 
tivation of cells that produce 1I.,4 because it inhibits IFN-'y 
synthesis, then the question arises as to why it should have 
this effect. It has been noted (32) that the activation of Thl 
T cells that respond to a given peptide requires that the pep- 
tide interacts with relatively high affinity with the relevant 
MHC molecules on the APC, and that relatively high con- 
centrations of peptide are available. These observations sug- 
gest that compared with a Th2 cell, an individual Thl cell 
requires a greater number of peptide-MHC interactions for 
activation to occur. If the blocking of CD4-MHC class II 
interactions by an anti-CD4 mAb generates a suboptimal ac- 
tivation signal for CD4 + T cells (as appears to be the case 
because most cells responded poorly in the presence of W3/25 
mAb), then it may be that only Th2-type cells proliferate 
in the 1 ~ MLC when the anti-CD4 mAb is present. A similar 
explanation has been advanced to account for the observa- 
tions reported for rat allografts (28, 29). However, whether 
the CD4 + T cells proliferating in the presence of the W3/  
25 mAb represented a distinct subpopulation of cells refrac- 
tory to the effects of the mAb, or alternatively that all the 
CD4 § T cells were responding, but at a reduced rate of 
proliferation, is not yet clear, and further experiments are 
necessary to resolve this point. Furthermore, it remains to 
be determined whether the cells that proliferate in the pres- 
ence of the anti-CD4 mAb in the 1 ~ MLC are responsible 
for the enhanced synthesis of I1,4 and IL-13 in the 2 ~ MLC. 
In any event, the fact that increasing the mAb concentration 
to levels >0.5 #g/ml induced no further inhibition of the 
MLC (Fig. 1 B), in conjunction with the observation that 
the mAb was uniformly labeling all cells, suggested that the 
cells proliferating in the presence of the W3/25 mAb at or 
above this antibody concentration were not using the CD4 
antigen as a costimulatory molecule, at least in its normal 
physiological role. In this respect, it may be noted that al- 
though at least the great majority of CD4 + T cells that 

proliferated in cultures not containing W3/25 mAb were re- 
sponding to MHC class II antigens, at present we have no 
direct evidence that the CD4 + T cells responding in the 
presence of W3/25 mAb in the 1 ~ MLC are similarly re- 
stricted. The fact that the mAb had a potent inhibitory effect 
in the 1 ~ MLC does not exclude the cytoplasmic portion of 
the CD4 molecule from playing a role in the activation of 
those T cells that proliferate in the presence of the mAb, nor 
does it exclude the possibility that these cells were recog- 
nizing non-class II MHC molecules. 

It has been shown (33; Ramirez, F., manuscript in prepa- 
ration) that corticosteroids promote in vitro the development 
of T cells that secrete IL-4 and I1-13 upon activation. The 
acute paralytic phase of EAE is associated with a greatly 
elevated level of circulating corticosterone, and this transient 
burst of steroid release has been shown to bring about the 
spontaneous remission that is characteristic of EAE in the 
rat (34). Given the effects of corticosteroids on 11-4 and I1-13 
synthesis referred to above, and the capacity for these cytokines 
to antagonize cell-mediated immune responses, it has been 
suggested that the corticosterone release that induces this 
remission is also responsible for the subsequent refractory phase 
of EAE (35). The current data showing that W3/25 mAb 
also enhances I1-4 synthesis raise the possibility that the use 
of this antibody to treat EAE in the rat may produce effects 
on cytokine synthesis that augment those induced by endog- 
enous corticosterone release. 

Finally, there is evidence that the pathogenesis of HIV-1 
infection in humans is associated with a predominance of 
CD4 § T cells secreting Th2 cytokines over those secreting 
Thl cytokines (36), and that the virus actively promotes this 
cytokine switch and preferentially replicates in Th2-type cells 
(37). To infect CD4 + T cells, HIV-1 uses the envelope gly- 
coprotein gp120 to bind CD4 in a region that overlaps the 
binding site of CD4 for the MHC class II molecule (38). 
Interestingly, significant amounts of gp120 are shed from the 
viral surface, and several groups have shown that this soluble 
protein is able to bind CD4 and block the interaction with 
MHC class II (39, 40). Consequently, the question arises as 
to whether or not soluble gp120 produced during the course 
of HIV infection is capable of blocking the CD4/MHC class 
II interaction in vivo with the effect of promoting the gener- 
ation of Th2-type CD4 + T cells, which constitute an envi- 
ronment favored by the virus for replication. The effects of 
gp120 on human T cell differentiation in vitro are under in- 
vestigation. 
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