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Abstract

At every level of the visual system – from retina to cortex – information is encoded in the activity of large populations of
cells. The populations are not uniform, but contain many different types of cells, each with its own sensitivities to visual
stimuli. Understanding the roles of the cell types and how they work together to form collective representations has been
a long-standing goal. This goal, though, has been difficult to advance, and, to a large extent, the reason is data limitation.
Large numbers of stimulus/response relationships need to be explored, and obtaining enough data to examine even
a fraction of them requires a great deal of experiments and animals. Here we describe a tool for addressing this, specifically,
at the level of the retina. The tool is a data-driven model of retinal input/output relationships that is effective on a broad
range of stimuli – essentially, a virtual retina. The results show that it is highly reliable: (1) the model cells carry the same
amount of information as their real cell counterparts, (2) the quality of the information is the same – that is, the posterior
stimulus distributions produced by the model cells closely match those of their real cell counterparts, and (3) the model cells
are able to make very reliable predictions about the functions of the different retinal output cell types, as measured using
Bayesian decoding (electrophysiology) and optomotor performance (behavior). In sum, we present a new tool for studying
population coding and test it experimentally. It provides a way to rapidly probe the actions of different cell classes and
develop testable predictions. The overall aim is to build constrained theories about population coding and keep the
number of experiments and animals to a minimum.
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Introduction

A fundamental goal in neuroscience is understanding popula-

tion coding - that is, how information from the outside world is

represented in the activity of populations of neurons [1–7]. For

example, at every level of the visual system, information is arrayed

across large populations of neurons. The populations are not

homogeneous, but contain many different cell types, each having

its own visual response properties [8–14]. Understanding the roles

of the different cell types and how they work together to

collectively encode visual scenes has been a long-standing

problem.

One of the reasons this problem has been difficult to address is

that the space of possible stimuli that needs to be explored is

exceedingly large. For example, it is well known that there are

retinal ganglion cells that respond preferentially to light onset and

offset (referred to as ON cells and OFF cells, respectively).

Numerous studies, however, have shown that these cells also have

other properties, such as sensitivities to spatial patterns, motion,

direction of motion, speed, noise, etc., leading to new ideas about

what contributions these cells make to the overall visual

representation [15–21]. Probing these sensitivities, or even

a fraction of them, across all cell types, would require a great

deal of experiments and an uncomfortably large number of

animals.

Here we describe a tool for addressing this, specifically, at the

level of the retina, and we vet it experimentally. Briefly, we

recorded the responses of hundreds of retinal output cells (ganglion

cells), modeled their input/output relationships, and constructed

a virtual retina. It allows us to probe the system with many stimuli

and generate hypotheses for how the different cell classes

contribute to the overall visual representation.

To model the input/output relationships, we used a linear-

nonlinear (LN) model structure. LN models have been applied to

other problems, such as studying the role of noise correlations

[22]. Here we show that they can serve another valuable function

as well: studying the contributions of different cell classes to the

representation of visual scenes. In addition, the models described

here differ from other LN models in that they are effective for

a broad range of stimuli, including those with complex statistics,

such as spatiotemporally-varying natural scenes (see Methods).

The strength of this approach depends on how reliable its

predictions are. We tested this three ways, and the results show

that (1) the model cells carry the same amount of information as

their real cell counterparts, (2) the quality of the information is the

same, that is, the posterior stimulus distributions produced by the

model cells closely match those of the real cells, and (3) the model

cells are able to make very reliable predictions about the functions

of the different ganglion cell classes, as measured using Bayesian

decoding of electrophysiological data and behavioral performance

on an optomotor task.

In sum, a major obstacle in studying high-dimensional

problems, such as population coding with complex, heterogeneous

populations, is that a great deal of exploratory research is needed.

Exploratory research in live experiments is very slow and requires

large numbers of animals. If one has a reliable model for the

population, this problem can be greatly ameliorated. Here we
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describe such a model and then test it with both electrophysio-

logical and behavioral assays. The results also provide new data

about population coding, exemplifying the utility of the approach;

specifically, the data support the growing notion that the ON and

OFF retinal pathways are not simply mirror images of each other,

but in fact have distinct signaling properties, particularly

pertaining to the representation of motion information.

Results

Building the Data Set
We recorded the responses of several hundred mouse retinal

ganglion cells (492 cells) to a broad range of stimuli, including

binary white noise (checkerboards), natural scenes, and drifting

sine wave gratings. We then constructed, for each cell, a model of

its stimulus/response relationships using the binary white noise

and a subset of the natural scenes, and then tested the models

using the gratings and the remaining natural scene stimuli. Thus,

the models were tested on both out-of-sample stimuli (natural

scenes not used to construct the models) and stimuli with different

spatial and temporal statistics (drifting gratings of different spatial

and temporal frequencies).

Briefly, stimulus/response relationships were modeled using

linear-nonlinear cascade models of the form,

l(t; s)~N L � sð Þ(t)ð Þ ð1Þ

In this equation, the firing rate, l, at time t, is produced by

application of a linear filter, L, followed by a nonlinearity, N. For

a general review of linear-nonlinear cascade models for retina and

other systems, see refs. [23,24]. For the functional forms and the

parameter values of L and N that allow the models to capture

stimulus/response relations over a broad range of stimuli, see refs.

[25,26].

Assessing the Effectiveness of the Approach
To assess the effectiveness of the approach, we put it through

a series of tests that measured both the amount of information

carried by the model cells and the quality of the information carried

by the model cells.

For the first, we used Shannon information: we measured the

amount of information carried by each model cell and compared it

to the amount of information carried by its corresponding real cell.

For the second - for measuring the quality of the information - we

used posterior stimulus distributions: we decoded each response

produced by each model cell (using Bayesian decoding) and

obtained the distribution of stimuli that resulted. We then

compared this distribution to the distribution produced by

decoding each response of the real cell. This allowed us to

measure the extent to which the model cells’ responses mapped to

the same distribution of stimuli as the real cells’ responses, and,

therefore, whether the model cells convey the same kind of

information as the real cells. Finally, we also performed a bottom-

line assessment: we used the model cells to make predictions about

the functions of different ganglion cell classes, and then tested the

predictions using Bayesian decoding (electrophysiology) and

optomotor performance (behavior).

Figs. 1, 2, 3 show the results of the Shannon information

analysis. For this, we used three types of stimuli: drifting sine wave

gratings that varied in temporal frequency, drifting sine wave

gratings that varied in spatial frequency, and a set of natural scene

movies. (As mentioned above and given in detail in Methods, the

stimuli used to test the models were different from those used to

build the models: the models were built using binary white noise

and a different set of natural scenes.) For each model cell, we

calculated the mutual information between its responses and the

stimuli and compared it to the same for its real cell counterpart. As

shown in the figures, the model cells carried nearly all the

information carried by the real cells: using the finest bins, which

give the most conservative values (i.e, the highest information for

real cells), 91% of the information carried by the real cells was

captured by the models: the mean over all cells and all stimuli was

91.1%; the median was 90.1. The robustness of the results was

then checked by performing the calculations multiple times, each

time increasing the temporal resolution used to characterize the

responses by a factor of two until the processing time needed for

the calculation became prohibitive.

We then evaluated the quality of the information by plotting the

posterior stimulus distributions produced by the model cells and

comparing them to those produced by their real cell counterparts.

The evaluation was performed using the same stimulus sets as used

for the information analysis and is shown in Fig. 4. For each cell

and its corresponding model, we plotted a matrix (see examples in

Fig. 4A). The vertical axis of each matrix indicates the stimulus

that was presented, and the horizontal axis indicates the average

posterior stimulus distribution for that stimulus. For instance, in

the top left matrix, when the grating with the lowest temporal

frequency is presented (top row), the posterior is sharply peaked (as

shown by the presence of a single bright spot in the row),

indicating that the responses convey, with a high degree of

certainty, that the presented grating must have been the lowest

temporal frequency (since the peak occurs in the first column). In

contrast, when the grating with the highest temporal frequency is

presented (bottom row), the posterior has no sharp peak, but

rather is distributed over many frequencies, as indicated by the

wide red region; in this case, the responses provide little

information about what the stimulus is - they convey only that

the grating was in the high frequency range, but not which high

frequency in particular.

For each pair of matrices (real and model), we quantified the

distance between them in two ways. First, we performed a row-by-

row comparison based on mean squared error (MSE); the row-by-

row distance values for each example are shown in the histogram

to the right of the matrices, with the median row distance, called

the MSE a value, indicated by the red vertical line (see Methods).

Second, we performed a row-by-row comparison based on

Kullback-Leibler (K-L) divergence, and, likewise, took the median

K-L divergence across rows, called the K-L a value. In Fig. 4B, we

show the results for all the cells in the data set. For each stimulus

type, two histograms are shown: the histogram on the left shows

the MSE a values, and the histogram on the right shows the K-L

a values. As shown (Fig. 4B), the vast majority of the distances are

low, indicating that the vast majority of the cells have posteriors

close to those of their real cell counterparts. (The complete set of

matrices for the data set is provided in Figs. S1, S2, S3; for each

cell, the matrices for both the model and the real cell are shown. In

addition, we show in Fig. S5 analysis of the divergence between

the posteriors produced by the models and those produced by the

real cells using the Jensen-Shannon divergence, and the analysis

leads to the same conclusion: the divergence is small: 0.14 (close to

0 on a 0–1 scale); see Fig. S5.).

The significance of Fig. 4 is two-fold: first, it shows that there are

many different kinds of posterior stimulus distributions among the

real cells, and, second, that the model cells accurately reproduce

them. For example, some cells provide information about low

frequencies, others provide information about high frequencies, or

show complex patterns. But in nearly all cases, with several
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hundred cells examined, the behavior of the real cell is captured by

the model. This provides strong evidence that the model cells can

serve as proxies for the real cells and that the virtual retina

approach is sound - i.e., the models can be used to gather data

about what kinds of information the different ganglion cells carry,

and these data will be reliable.

Using the Virtual Retina Approach to Make Predictions
In the preceding section, we showed that the responses of the

model cells match those of the real cells in both the quantity and

the quality of the information they carry. Next, we took the

analysis to the next level and used the match between model and

real cells to make predictions about population coding. We made

predictions at two levels - the level of ganglion cell recordings

(electrophysiology) and the level of behavioral performance

(optomotor tracking).

We started with the electrophysiology predictions (Fig. 5). We

set up a visual discrimination task: The model was first presented

with stimuli - drifting gratings that varied in temporal frequency -

and model responses were obtained. We then decoded the

responses using maximum likelihood decoding (see Methods). On

each trial of the task we asked: given the responses, what was the

most likely stimulus, that is, the most likely frequency of the

grating? Lastly, for all trials we tallied the fraction of times the

responses provided the correct answer, the ‘‘fraction correct’’. To

make specific predictions about specific classes, we focused on two

well-defined cell types, the ON and OFF transient cells, as these

have been shown in the mouse retina to form statistically

significantly distinct clusters [27]. We performed the task with

populations made up exclusively of ON transient cells or

exclusively of OFF transient cells. We also ran the task with

models built both at scotopic and photopic light levels, since

ganglion cells are known to behave differently under these

conditions [28].

Several results emerged: The first was that the ON cells were

better able to distinguish among low temporal frequencies than the

OFF cells under scotopic conditions. The second was that the OFF

cells were better able to distinguish among high temporal

Figure 1. The amount of information carried by the model cells closely matched that of their real cell counterparts, when the
stimulus set consisted of drifting gratings that varied in temporal frequency. The mutual information between each model cell’s responses
and the stimuli was calculated and plotted against the mutual information between its corresponding real cell’s responses and the stimuli. Bin sizes
ranged from 250 ms to 31 ms; n=109 cells; stimulus entropy was 4.9 bits (30 one-second movie snippets). Note that there is scatter both above and
below the line because of data limitation.
doi:10.1371/journal.pone.0053363.g001

Figure 2. The amount of information carried by the model cells closely matched that of their real cell counterparts, when the
stimulus set consisted of drifting gratings that varied in spatial frequency. As in Fig. 1, the mutual information between each model cell’s
responses and the stimuli was calculated and plotted against the mutual information between its corresponding real cell’s responses and the stimuli.
Bin sizes ranged from 250 ms to 31 ms; n=120 cells; stimulus entropy was 4.9 bits (30 one-second movie snippets). Note that there is scatter both
above and below the line because of data limitation.
doi:10.1371/journal.pone.0053363.g002
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frequencies than the ON cells, also under scotopic conditions. The

third was that these differences existed only under scotopic

conditions: the two cell classes performed approximately equally

well under photopic conditions. Finally, the last was that the ON

and the OFF cells performed well only for a narrow range of

frequencies under scotopic conditions, but over a broad range

under photopic conditions.

We then tested the predictions: we presented the same stimuli to

retinas on a multi-electrode array and recorded ganglion cell

responses. We then decoded the real cell responses as we had

decoded the model cell responses, i.e., using maximum likelihood.

As shown in Fig. 5, the real cells behaved the same way as the

model cells, thus indicating that the model cells served as reliable

proxies for the real cells.

Finally, we advanced to predictions about behavior (Fig. 6). To

do this, we used a standard optomotor task because it’s readily

quantifiable and allows us to selectively probe the ON cell

population, since only ON cells project to the accessory optic

system (AOS), which drives the optomotor behavior [29,30]. Thus,

it eliminates the need to selectively inactivate OFF cells. With this

task, the animal is presented with a moving grating of a particular

temporal frequency. If the animal can see the grating, it tracks the

grating’s motion; otherwise, it doesn’t. The animal is essentally

asked: is the grating present or absent?

To make predictions about optomotor behavior, we asked the

model the same question as we asked the animal: is the grating

present or absent? To answer this, we used the same maximum

likelihood decoding approach as we used in the electrophysiolog-

ical experiments described above, except that instead of giving the

decoder seven options to choose from, it was given two options,

grating present or grating absent, to match the behavioral task.

Finally, for both the behavior and the model performance, we

measured contrast sensitivity, which is defined as the contrast at

which 75% of the stimuli were correctly decoded, as is standard for

two-alternative forced choice psychophysics [31].

As shown in Fig. 6A, the model cells predict that the tuning

curves will shift to higher temporal frequencies under photopic

conditions, with the predictions robust from 1 cell to 20 cells,

where performance starts to saturate. Fig. 6B, which gives the

behavioral performance, shows that this prediction is borne out.

When optomotor performance was measured under scotopic

conditions and under photopic conditions, with .3 hours in

between to allow for adaptation to the light level, the same shift in

tuning was observed – that is, the tuning curves obtained under

photopic conditions were shifted toward higher temporal frequen-

cies relative to those obtained from the same animals when they

were performing the task under scotopic conditions (n=5 animals).

Thus, both the model and the behavior show that there is a shift in

tuning that occurs as the animal moves from photopic to scotopic

conditions – that is, the ganglion cells show a difference in their

tuning properties, presumably to accommodate the different visual

environments.

Discussion

The visual system can represent a broad range of stimuli in

a wide array of different conditions. A major contributing factor to

this is the presence of different cell types with different visual

sensitivities and response properties. Understanding the roles of

the different cell types and how they work together has been a long-

standing goal, one that has been difficult to advance because of the

large space of possible stimulus/response relationships. Large data

sets are needed to allow one to pull out patterns and extract rules

about what the different cell types are doing.

Here we described a tool for addressing this. It’s a data-driven

LN model of retinal input/output relationships. LN models have

been used to address other population coding problems, in

particular, the role of noise correlations [22]. Our aim here was to

show that they can also serve another valuable function: they can

serve as a tool for studying the contributions of the different retinal

cell classes to the overall visual representation. Additionally, the

LN models described here differ from other LN models in that

they’re effective on a broad range of stimuli, allowing them to be

used to study the roles of the different cell classes using natural

scene stimuli in addition to artificial stimuli.

To demonstrate the effectiveness of the tool, we evaluated it

three ways: first, we measured the amount of information the

model cells carried compared to the amount carried by their

real cell counterparts. The results showed that the model cells

carried more than 90% of the information. Second, we assessed

the quality of the information. For this, we evaluated the

posterior stimulus distributions produced by the model cells and

compared them to those produced by their real cell counter-

parts. The results showed, using both MSE and K-L divergence

Figure 3. The amount of information carried by the model cells closely matched that of their real cell counterparts, when the
stimulus set consisted of natural scene movies. As in Figs. 1 and 2, the mutual information between each model cell’s responses and the stimuli
was calculated and plotted against the mutual information between its corresponding real cell’s responses and the stimuli. Bin sizes ranged from
250 ms to 31 ms; n= 113 cells; stimulus entropy was 4.9 bits (30 one-second movie snippets). Note that there is scatter both above and below the
line because of data limitation.
doi:10.1371/journal.pone.0053363.g003
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as measures, that the two closely matched: e.g., for .90% of

the cells, the K-L divergences were less than 0.5 bits out of a 4.9

bit stimulus.

Lastly, we made predictions about the contributions of two

ganglion cell types, ON transient and OFF transient cells, to the

representation of motion stimuli (drifting gratings varying in

temporal frequency) under different light conditions, and tested

the predictions using both electrophysiological and behavioral

experiments. The results show that the predictions were borne out;

they add to the growing notion that the ON and OFF pathways

are not simply mirror images, but in fact have distinct signaling

properties, particularly with respect to the representation of

motion information.

Note that the results in Figs. 1, 2, 3, 4, 5, 6 treat ganglion

cells as conditionally independent. In principle, though, the

virtual retina approach can include noise correlations among

Figure 4. The posterior stimulus distributions of the model cells closely matched those of their real cell counterparts. (A) Pairs of
matrices for each cell. The matrix on the left gives the posterior stimulus distributions for the real cell’s responses; the matrix on the right gives the
same for the model cell’s responses. The histogram next to the pair gives a measure of the distance between them. Briefly, for each row, we
computed the mean squared error (MSE) between the model’s posterior and the real cell’s posterior and then normalized it by dividing it by the MSE
between the real cell’s posterior and a randomly shuffled posterior. A value of 0 indicates that the two rows are identical. A value of 1 indicates that
they are as different as two randomly shuffled rows. Because of data limitation, occasional cells showed values higher than 1. The vertical red line
indicates the median value of the histogram, the MSE a value. (B) Histogram of the MSE a values for all cells in the data set, and histogram of the K-L
a values for all cells in the data set (n=109, 120 and 113 cells for the stimuli, respectively). As shown in these histograms, most of the distances are
low. For the MSE, the median a value is 0.21. As mentioned above, 0 indicates a perfect match between model and real responses, and 1 indicates
correspondence no better than chance. For the K-L divergence, the median a value is 0.18. As a reference, 0 indicates a perfect match between model
and real responses, and 4.9 bits (the stimulus entropy) indicates a poor match – this would be the K-L divergence between perfect decoding by a real
cell and random decoding by a model cell. The complete set of matrices for the data set are provided in Figs. S1, S2, S3.
doi:10.1371/journal.pone.0053363.g004
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cells, for example, by including coupling currents [22]. From

the recordings we presented here, in addition to fitting the

independent cell models, we also fit coupled models for several

patches of ganglion cells and compared the coupled populations’

performance on natural scenes and drifting gratings to that of

the independent models. We found that, for the three stimulus

sets tested, including coupling in the models had little effect on

the quality of the information conveyed by the population

(Fig. 7). This suggests that using a library of conditionally

independent virtual cells is an effective and practical approach

for the purposes of making predictions about population coding.

Decoding Versus Encoding
This paper focuses on decoding – on using this LN model as

a tool to understand how populations of neurons collectively

represent visual scenes, including spatio-temporally varying

natural scenes. The model also works well for encoding as

shown in ref. 26, where we used the model as the underpinning

for a retinal prosthetic, a context in which encoding is the key

Figure 5. The model was able to make reliable predictions about the behavior of the real cell classes. Each plot shows the ‘‘fraction
correct’’ as a function of temporal frequency for ON cells (red) and OFF cells (blue). Top left, the model indicates that ON cells are better at
distinguishing among low temporal frequencies than OFF cells under scotopic conditions, whereas OFF cells are better at distinguishing among high
temporal frequencies. Bottom left, the real cells indicate the same. Top, looking across scotopic and photopic conditions, the model indicates that these
differences only occur under scotopic conditions. Bottom, looking across scotopic and photopic conditions, the real cells indicate the same. Top, looking
across the two conditions, the model shows that ON and OFF cells perform well only for a narrow range of frequencies under scotopic conditions, but
over a broad range under photopic conditions. Bottom, looking across the two conditions, this prediction held for the real cells as well. Predictions
were made with increasing numbers of cells until there was indication of performance saturation. Error bars are SEM. The horizontal black line
corresponds to performance at chance (7 stimuli, 1/7 correct).
doi:10.1371/journal.pone.0053363.g005

Figure 6. The model predicted the shift in optomotor performance. Each plot shows normalized contrast sensitivity under photopic and
scotopic light conditions. (A) The model predicts a shift toward higher temporal frequencies as the animal moves from scotopic to photopic
conditions, with the peak shifting from 0.7 Hz to 1.5 Hz. The prediction was robust from 1 cell to saturation (20 cells). (B) The animals’ behavioral
performance shifted to higher temporal frequencies, as predicted (n= 5 animals). Error bars are SEM.
doi:10.1371/journal.pone.0053363.g006
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issue. In ref. 26 rasters demonstrating encoding performance

using a broad range of natural stimuli are shown (both in the

main text and Supp. Info.). Here, for the convenience of the

reader, we show rasters for all the cells used in this study: in

Fig. 8, we show raster plots for the first 12 cells whose average

posteriors are shown in Fig. 4, and, in Supp Info, we show the

rasters for every cell in the data set (.300 cells) (Figs. S7, S8,

and S9), just as we show the average posteriors for every cell

(Figs. S1, S2, and S3). Note that for clarity, the raw data is

given (the rasters and average posteriors) rather than, for

example, the r2 values, since r2 has well-known pitfalls for

measuring encoding (e.g., sensitivity to small time shifts).

In sum, ref 26 shows how the model works for practical

applications, such as building a retinal prosthetic, and in this

paper, we show that it serves as a powerful tool for basic science,

too: to address questions in population coding.

Conclusion
A major stumbling block in studying high-dimensional prob-

lems, such as population coding with complex, heterogeneous

populations, is that a considerable amount of exploratory research

is needed. Exploratory research in live experiments is very slow

and requires large numbers of animals. If one has a reliable model

for the population, this problem can be greatly ameliorated. The

model described here, the virtual retina, provides a way to rapidly

probe the roles of the different cell classes in the ganglion cell

population, guiding dimension reduction and the development of

population coding hypotheses, which can then be tested and

verified in the lab.

Methods

Recording
Electrophysiological recordings were obtained from the isolated

mouse retina. Recordings of central retinal ganglion cells (RGCs)

were performed on a multielectrode array using methods de-

scribed previously [21,32]. Spike waveforms were recorded using

a Plexon Instruments Multichannel Neuronal Acquisition Pro-

cessor (Dallas, TX). Standard spike sorting methods were used as

in ref. [21]. Cells that did not have a clear spike-triggered average

(STA) or that had excessive refractory period violations (.2%)

were discarded. All procedures on experimental animals were

carried out under the regulation of the Institutional Animal Care

and Use Committee (IACUC) of the Weill Cornell Medical

College of Cornell University and in accordance with NIH

guidelines; IACUC protocol number 0807–769A, approved July

25, 2011.

Constructing the Models
Each ganglion cell’s stimulus/response relationship was mod-

eled using a linear-nonlinear-Poisson structure (for general review,

see refs. [23] and [24]). For producing a linear-nonlinear cascade

that’s effective on a broad range of stimuli, we used the approach

described in refs. [25] and [26], which focus on developing models

for retinal prosthetics. Briefly, for each cell, the firing rate, l,
elicited by the stimulus s at time t is given by

Figure 7. Posterior stimulus distributions generated using models that included correlations among the ganglion cells and models
that treated the ganglion cells as independent. The posterior stimulus distributions (matrices) were calculated using three populations of cells:
a patch of transient ON cells (n= 10 cells), a patch of transient OFF cells (n= 11 cells), and a patch that included all the cells recorded in a local region
of the retina (n= 12 cells). For each population, models were built without correlations (left) and with correlations (right) included. Distances between
coupled and uncoupled posteriors were very low: MSE a values were below 0.05, and K-L a values were below 0.1 bits. To avoid data limitation,
response distributions for the population were taken directly from the analytical form of the model, as in [22,23].
doi:10.1371/journal.pone.0053363.g007
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Figure 8. Response rasters for the first 12 cells shown in Fig. 4. Fig. 4 shows real and model cell performance using three sets of stimuli. Here
we show rasters of the underlying responses. A. Rasters for the responses to the drifting gratings that varied in temporal frequency. The stimulus is
a continuous stream of drifting gratings with uniform gray fields interleaved (grating stimuli are 1 s; gray fields are 0.33 s). 5 s of a 41 s stimulus are
shown (repeated 50 times). Note that each cell is viewing a different location in the movie. B. Rasters for the responses to the drifting gratings that
varied in spatial frequency. As above, the stimulus is a continuous stream of drifting gratings with uniform gray fields interleaved (grating stimuli are
1 s, gray fields are 0.33 s). Each cell is viewing a different location of the stimulus. C. Rasters for the responses to the natural scene movies. The
stimulus is a continuous stream of natural movies with uniform gray fields interleaved (natural movie snippets are 1 s long, gray fields are 0.33 s).
Note again that each cell is viewing a different location in the movie: this is most notable in the rasters for the natural scene snippets, since these are
not periodic stimuli.
doi:10.1371/journal.pone.0053363.g008
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l(t; s)~N L � sð Þ(t)ð Þ, ð1Þ

where L is a linear filter corresponding to the cell’s spatio-

temporal impulse response, N is a function that describes its

nonlinearity, and * denotes spatio-temporal convolution. The

firing rate, l, was then used as the intensity of an inhomogeneous

Poisson process. Each cell’s linear filter was assumed to be

a product of a spatial function (on a 10610 array of pixels,

centered on the cell’s receptive field); and a temporal function (18

time bins, 67 ms each, total duration 1.2 s). Dimensionality was

reduced by assuming the temporal function to be a sum of 10 basis

functions (raised cosines), as in Nirenberg and Pandarinath [26],

following Pillow et al. [22]. The nonlinearities N were parameter-

ized as cubic spline functions with 7 knots. Knots were spaced to

cover the range of values given by the linear filter output of the

models. Parameters were determined by maximizing the log

likelihood of the observed spike trains under the model, averaged

over all stimuli s (stimuli are given below under Stimuli):

Z~S
X
i

log l t(i); sð Þ½ �{
ð
t

l(t; s) dtTs, ð2Þ

where t(i) is the time of the ith spike, and t ranges over all time

for the stimuli used for the fitting. To carry out the maximization,

we began by assuming that the nonlinearity N was exponential,

since in this case, the log likelihood Z (eq. 2) has one global

maximum [23]. After optimizing the linear filters for an

exponential nonlinearity (by coordinate ascent), the nonlinearity

was replaced by a spline. Final model parameters were then

determined by alternating stages of maximizing the log likelihood

with respect to (i) the spline coefficients and (ii) the filter

parameters, until a maximum was reached. For the data in Figs. 1,

2, 3, 4, 5, 6, the cells were modeled as conditionally independent;

for the data in Fig. 7, correlations among the cells were taken into

account, as in ref. [22].

Stimuli
Two stimuli were used to generate the models: binary spatio-

temporal white noise and a natural scene movie; the reasoning

behind this is described in detail in ref. [25], p. 30–32, and also ref

[26]. Both were presented at a frame rate of 15 Hz, and had the

same mean luminance and contrast (mean luminance was

1.7 mW/cm2 at the retina (measured using a New Focus Model

#3803 Power Meter (San Jose, CA)); RMS contrast was

0.27 mW/cm2). The natural scene movie had a temporal power

spectrum of 1/f2.04, where f is temporal frequency, and a spatial

power spectrum of 1/w2.09, where w is spatial frequency.

Three sets of stimuli were used to test the model: drifting sine-

wave gratings that varied in temporal frequency (the range was 1

to 8.25 Hz, to cover the range to which mouse retinal ganglion

cells are sensitive [33]; the spatial frequency was fixed at 0.058

cycles per degree); drifting gratings that varied in spatial frequency

(the range was 0.0012 to 0.155 cycles per degree, again, chosen to

cover the range to which mouse retinal ganglion cells are sensitive

[34,35]; temporal frequency was 2 Hz); and a set of natural scene

movies (different from the movie used to build the models, but

taken under the same conditions, i.e., same mean luminance and

contrast). All stimuli used for testing the model (gratings and

natural movies) were presented in 1 s segments, interleaved with

333 ms segments of uniform gray. Each of these segments was

considered to be a separate stimulus for the mutual information

calculations, described below.

Calculation of Mutual Information
Mutual information I between a set of stimuli, s, and a set of

responses, r, was calculated using the standard expression,

I(s; r)~
X
r,s

p(r,s)log2(p(rDs)){
X
r

p(r)log2(p(r)): ð3Þ

To estimate the probabilities in eq. 3, we first binned responses

into time bins of length Dt, so that each response could be

represented as a vector of spike counts, r~ r½1�,r½2�, . . . ,r½n�
� �

. We

then treated the number of spikes in a bin as a Poisson random

variable l(t; s), with mean rate estimated from the binned

responses:

l(t; s)~
1

Dt
n(t,tzDt; s), ð4Þ

where n(t,tzDt; s) denotes the average spike count in a bin

from time t to time tzDt, in response to the stimulus s. The

probabilities required by eq. 3 can now be written in terms of the

Poisson intensities l(t; s) by

p(rDs)~P
k
f r½k�,l(tk; s)Dt
� �

, ð5Þ

where r½k� is the number of spikes in the kth bin, tk is the time of

the kth bin, and f (n,u)~
une{u

n!
is the probability density function

for the Poisson distribution of mean u [36]. Calculations were

performed in parallel for several bin widths (4, 8, 16, or 32 bins per

1 s stimulus segment).

To complete the calculation of mutual information, the

equation for the conditional response probability (eq. 5) is

substituted into eq. 3. The summation over all possible responses

indicated in eq. 3 corresponds to sums over all possible values of

the spike counts in each bin, r½k�. This sum was estimated by

a Monte Carlo procedure, by drawing stimulus and response pairs

based on their probabilities.

To check the robustness of the information calculations, we also

used an alternate procedure that doesn’t rely on treating spike

counts as Poisson random variables (Fig. S4). In this procedure, we

take the observed spike counts (model or real) in each time bin and

divide them into a number of response levels (quartiles). We then

count the number of times a given level occurred in a given time

bin, i.e., we obtain the probability that a response level in a bin

falls into one of the quartiles. As shown in Supporting Information, Fig.

S4C, the results are very close to those determined with the

Poisson approach. (Note that the reason we chose four response

levels is because four levels captured the complete response

distribution, or very close to the complete response distribution:

i.e., for 63 ms bins and 31 ms bins, .95% of bins had at most 3

spikes, so using four response levels (0, 1, 2, or 3 or more spikes)

was essentially the same as using spike counts.) Note also that for

Fig. S4C, information was calculated using debiasing, following

the quadratic extrapolation method in ref. [37]; this was done

because the quartile method requires the estimation of multiple

response probabilities, raising the possibility of data limitation. For

completeness, we also performed a comparable debiasing for the
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Poisson approach (Fig. S4B). As shown in the figure, the

information results are robust to the differences in the different

methods of analysis.

Posterior Stimulus Distributions
Posterior stimulus distributions, p(sDr), were used to quantify

and visualize the type of information (the quality of the

information) transmitted by the model cells and by their

corresponding real cells. These distributions were summarized in

the form of a matrix Qij , which gives the average posterior

probability p(sj Dr) of each stimulus sj, calculated over all Ntrials trials

(Ntrials =25) in which the stimulus presented is si:

Qij~
1

Ntrials

X
r

p(sj Dr): ð6Þ

To calculate p(sj Dr), we used Bayes’ Theo-

rem:p(sj Dr)~
p(rDsj)p(sj)

p(r)
, where p(sj) was uniform across all

stimuli. We used uniform priors, since it puts the greatest emphasis

on the cell’s responses; thus, it’s the most conservative test. The

term p(rDsj), the probability that response, r, was elicited by

another stimulus, sj, was calculated as in eq. 5.

To determine the accuracy of the model’s average posterior

matrix Qmodel
i,j , we compared it row-by-row with the actual average

posterior matrix Qdata
i,j via a mean squared error (MSE),

MSEmodel
i ~

1

(Nstim)

X
j

(Qmodel
i,j {Qdata

i,j )2, ð7Þ

where Nstim is the number of stimuli (Nstim=30). To gauge the

departure of the MSE from 0, we compared it to the average MSE

obtained from matrices generated by shuffling the elements of

Qdata
i,j randomly within each row. This yields an index

MSE a~median
i

MSEmodel
i

MSE
shuf
i

 !
, ð8Þ

where MSEshuf is an average over quantities similar to eq. 7,

with shuffled rows taking the place of the model average posterior

row. Thus, MSE a~0 indicates that the model average posterior

(Qmodel
i,j ) perfectly reproduced the one calculated from the actual

responses (Qdata
i,j ), and MSE a~1 indicates that this correspon-

dence was no better than the correspondence between a shuffled

model row and the actual responses.

In addition to MSE, we quantified the accuracy of the model

posteriors using Kullback-Leibler (K-L) divergence, a standard

comparison for probability distributions. For each row i of a model

cell’s posterior matrix Qmodel and its corresponding real cell’s

posterior matrix Qdata, we first regularized both rows using the

standard method, adding 0.5 to each posterior stimulus bin j [38]:

Q�
ij~

Ntrials
:Qijz

1

2

Ntrialsz
1

2
Nstim

: ð9Þ

We then calculated the K-L divergence of the model row with

the real row, using the standard equation [39], and took the

median of these row-by-row divergences to get the K-L a value:

K{L a~median
i

DKL Qdata�
i Qmodel�

i

��� �� �

~median
i

X
j

Qdata�
ij log2

Qdata�
ij

Qmodel�
ij

 !
:

ð10Þ

See Fig. S5 for analysis using a measure that does not require

regularization, the Jensen-Shannon divergence, and see Fig. S6 for

analysis using the K-L divergence, but calculated using half the

data, the latter showing that the conclusions of the analysis using

this measure were robust to data limitation.

Testing Predictions using Electrophysiological
Experiments
As described in Results, we measure the models’ ability to make

reliable predictions about the behavior of different cell classes by

comparing the performance of real and model cells in the context

of a forced-choice stimulus identification task [40]. Specifically, we

performed a maximum likelihood decoding of responses to

a stimulus, using either real or model responses, and determined

the fraction of decoding trials that resulted in correct stimulus

identifications, the ‘‘fraction correct’’.

To calculate the fraction correct, we examined population

responses r to each stimulus si and tallied each population response

as a correct trial if the stimulus si was the most likely stimulus to

elicit it. As before, the posterior probabilities p(sDr) were calculated
from the conditional probabilities p(rDs) via Bayes’ Theorem.

When r includes responses from multiple cells (i.e., when multiple

cells were used to decode), the cells’ response probabilities were

treated as conditionally independent [32,41,42], so that

p(rDs)~ P
M

m~1
p(rfmgDs), where r{m} is the response of cell m, and

M is the total number of cells in the population. As with calculating

posteriors, we split the data in half, and used the training half to

estimate p(rfmgDs) using eq. 5.

For this analysis, models were fit, and analysis was performed

under two light conditions (photopic conditions, with a mean light

intensity of 0.25 mW/cm2, and scotopic conditions, with a mean

light intensity of 2.861025 mW/cm2). The same set of retinal

ganglion cells were used in both conditions to allow comparison

across the conditions. The stimulus was a set of drifting sine-wave

gratings at 7 different temporal frequencies, ranging from 0.44 Hz

to 6 Hz, with a spatial frequency of 0.039 cycles/deg.

Testing Predictions Using Behavioral Experiments
As described in Results, we measure the models’ ability to make

reliable predictions about animal behavior by comparing model

predictions with behavioral performance on a standard optomotor

task. Behavioral responses were measured as in ref. [40]. Briefly,

the animal was placed in a virtual reality chamber. A video

camera, positioned above the animal, provided live video feedback

of the testing chamber. The animal was assessed for tracking

behavior in response to stimuli that were projected onto the walls

of the chamber. The stimuli were drifting sine-wave gratings that

varied in temporal frequency and contrast (temporal frequency

ranged from 0.14 to 6 Hz, contrast ranged from 100% to 1%);

spatial frequency, as measured from the animal’s viewing position,

was held fixed at 0.128 cycles/degree. On each trial of the task, the
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animal either tracked it or failed to track the stimulus, measured as

in ref. [40]. The contrast threshold for each stimulus was then

determined by identifying the lowest contrast for which 75% of

trials were correct, as is standard for two-alternative forced choice

psychophysics [31].

For the model, we used the same maximum likelihood approach

as in the electrophysiological experiments described above, except,

instead of seven options (seven different frequencies), we decoded

each grating response using two options -grating present or grating

absent - to match the behavioral choice. Contrast threshold for

each grating was then determined by identifying the lowest

contrast for which 75% of trials were correct, as for the real

behavior experiment.

As with the electrophysiology experiments, two sets of models

were constructed, one under photopic conditions and one under

scotopic conditions (the same light intensities were used).

Supporting Information

Figure S1 The complete set of posterior stimulus
distributions (matrices) when the stimulus set consisted
of drifting gratings that varied in temporal frequency;
this is the complete set referred to in Fig. 4, left column
(n=109 cells).
(PDF)

Figure S2 The complete set of posterior stimulus
distributions (matrices) when the stimulus set consisted
of drifting gratings that varied in spatial frequency; this
is the complete set referred to in Fig. 4, middle column
(n=120 cells).
(PDF)

Figure S3 The complete set of posterior stimulus
distributions (matrices) when the stimulus set consisted
of natural scene movies; this is the complete set referred
to in Fig. 4, right column (n=113 cells).
(PDF)

Figure S4 Robustness of the mutual information calcu-
lation. Here we compare the mutual information between

stimulus and response as calculated in the main text, with two

alternative approaches. As in Fig. 1, 2, 3, we calculated the mutual

information between each model’s responses and the stimulus and

plotted it against the mutual information between the real cell’s

responses and the stimulus; the calculations here were performed

with the same cells and stimuli. Information was calculated at four

bin sizes, from 250 to 31 ms. (A) Mutual information calculated

by treating the spike count in each time bin as a Poisson random

variable, as in Fig. 1, 2, 3. (B) The same calculation, but now

debiased with quadratic extrapolation, as in [37]. (C) Mutual

information calculated by taking observed (real or model) spike

counts and dividing the counts into quartiles (see Methods). The

spike count in each time bin was treated as a multinomial

distribution, determined by calculating the empirical probability of

observing each response level in the time bin. The quadratic

extrapolation debiasing procedure of [37] was applied.

(PDF)

Figure S5 The posterior stimulus distributions of the
model cells closely matched those of their real cell
counterparts, as measured using the Jensen-Shannon (J-
S) divergence. The figure shows histograms of the J-S a values

for all cells in the data set (n = 109, 120 and 113 cells for the three

sets of stimuli, respectively). Briefly, as described in Methods, the

a value is the median of the row-by-row divergences for a pair of

matrices, where one matrix is produced by the model, and the

other is produced by the real cell. The J-S divergences are

calculated from the ‘‘plug-in’’ estimator, without regularization

(because regularization is not required). The median a value across

all stimulus sets is 0.14 (close to 0 on a 0 to 1 scale). Greater than

90% of the a values are less than 0.22. (Note that the J-S

divergence is on a different scale from the K-L divergence, even

though they’re both in bits. For the J-S divergence, the scale is

from 0 to 1 (the maximum J-S divergence is 1). For the K-L

divergence, we used 0 to 4.9, since 4.9 bits is the stimulus entropy.

For more detailed discussion of scale, see Fig. 4 legend.)

(PDF)

Figure S6 Estimates of the Kullback-Leibler (K-L) di-
vergence are not data-limited. This figure is a scattergram of

the a values across all experiments, calculated as in the main text.

The a values calculated from half the trials are plotted against the

a values calculated from all the trials. As shown, the points lie close

to the line of identity.

(PDF)

Figure S7 Raster plots for all cells viewing the stimulus
set consisting of drifting gratings that varied in tempo-
ral frequency (n=109 cells). The stimulus is a continuous

stream of drifting gratings with uniform gray fields interleaved

(grating stimuli are 1 s, gray fields are 0.33 s). 5 s of a 41 s stimulus

is shown (repeated 50 times). The vertical axis indicates the trials;

0 to 50 trials are shown for the real cell, followed by 0 to 50 trials

for the model cell, following the layout in Figure 8 in the main text.

The order of the rasters corresponds to the order of the posteriors

in Figure S1.

(PDF)

Figure S8 Raster plots for all cells viewing the stimulus
set consisting of drifting gratings that varied in spatial
frequency (n=120 cells). The stimulus is a continuous stream

of drifting gratings with uniform gray fields interleaved (grating

stimuli are 1 s, gray fields are 0.33 s). 5 s of a 41 s stimulus is

shown (repeated 50 times). The vertical axis indicates the trials; 0 to

50 trials are shown for the real cell, followed by 0 to 50 trials for

the model cell, following the layout in Figure 8 in the main text.

The order of the rasters corresponds to the order of the posteriors

in Figure S2.

(PDF)

Figure S9 Raster plots for all cells viewing the stimulus
set consisting of natural scenes (n=113 cells). The

stimulus is a continuous stream of natural movies with uniform

gray fields interleaved (natural movies are 1 s long, gray fields are

0.33 s). Note that each cell is viewing a different location in the

movie: this is the case for the cells in Figs. S7 and S8 as well, but it

is most obvious here in the natural scene rasters, since the movie is

not a periodic stimulus. 5 s of a 41 s stimulus is shown (repeated 50

times). The vertical axis indicates the trials; 0 to 50 trials are shown

for the real cell, followed by 0 to 50 trials for the model cell,

following the layout in Figure 8 in the main text. The order of the

rasters corresponds to the order of the posteriors in Figure S3.

(PDF)
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