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Integrative analysis to explore 
the biological association 
between environmental skin 
diseases and ambient particulate 
matter
Hyun Soo Kim1,2, Hye‑Won Na3, Yujin Jang1, Su Ji Kim1, Nam Gook Kee1, Dong Yeop Shin1, 
Hyunjung Choi3, Hyoung‑June Kim3* & Young Rok Seo1*

Although numerous experimental studies have suggested a significant association between ambient 
particulate matter (PM) and respiratory damage, the etiological relationship between ambient PM 
and environmental skin diseases is not clearly understood. Here, we aimed to explore the association 
between PM and skin diseases through biological big data analysis. Differential gene expression 
profiles associated with PM and environmental skin diseases were retrieved from public genome 
databases. The co-expression among them was analyzed using a text-mining-based network analysis 
software. Activation/inhibition patterns from RNA-sequencing data performed with PM2.5-treated 
normal human epidermal keratinocytes (NHEK) were overlapped to select key regulators of the 
analyzed pathways. We explored the adverse effects of PM on the skin and attempted to elucidate 
their relationships using public genome data. We found that changes in upstream regulators and 
inflammatory signaling networks mediated by MMP-1, MMP-9, PLAU, S100A9, IL-6, and S100A8 were 
predicted as the key pathways underlying PM-induced skin diseases. Our integrative approach using a 
literature-based co-expression analysis and experimental validation not only improves the reliability 
of prediction but also provides assistance to clarify underlying mechanisms of ambient PM-induced 
dermal toxicity that can be applied to screen the relationship between other chemicals and adverse 
effects.

Ambient air pollution is a serious public health hazard in modern industrialized societies. The World Health 
Organization (WHO) reported that seven million people die annually from exposure to polluted air1. Airborne 
pollutants comprise various contaminants, including inorganic compounds, volatile organic compounds (VOC), 
persistent free radicals, and biological allergens2. Such contaminants directly affect human health by inducing 
various adverse outcomes in the skin, respiratory, cardiovascular, and nervous systems through exposure from 
inhalation or physical contact3.

Particulate matter (PM) is a complex mixture of diverse harmful substances of ≤ 10 μm in size and is con-
sidered a representative airborne pollutant. PM is composed of various chemical species of diverse sizes and 
shapes, making it difficult to predict toxicity4. Harmful inorganic metals, carbon compounds, polycyclic aromatic 
hydrocarbons (PAH), and VOC comprise the largest proportion of the components. Based on their aerody-
namic diameter, PM ≤ 10 μm and PM ≤ 2.5 μm are called the coarse fraction (PM10) and fine particles (PM2.5), 
respectively5. In addition to the physiological toxicity induced by the harmful components, the physical damage 
caused by PM penetration has been studied by various researchers6,7.

Most studies have focused on the respiratory tract or pulmonary damage derived from inhaling PM. Numer-
ous studies have established an association between ambient PM concentration and respiratory disorders, 

OPEN

1Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, 
32, Dongguk‑ro, Ilsandong‑gu, Goyang‑si, Gyeonggi‑do  10326, Republic of Korea. 2National Institute of 
Environmental Research, Hwangyeong‑ro 42, Seo‑gu, Incheon  22689, Republic of Korea. 3Bioscience Research 
Institute, Amorepacific Corporation R&I Center, 1920, Yonggu‑daero, Giheung‑gu, Gyeonggi‑do 17074, Republic of 
Korea. *email: leojune@amorepacific.com; seoyr@dongguk.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-13001-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9750  | https://doi.org/10.1038/s41598-022-13001-x

www.nature.com/scientificreports/

including aggravation of asthma, decreased lung function, increased coughing, or difficulty breathing8–10. As 
with the respiratory system, the skin also directly contacts the external environment. Skin is the primary interface 
that protects the body from environmental stressors, such as ultraviolet light, ozone, and PM11, so physical or 
physiological adverse effects in the epidermis, dermis, and deeper subcutaneous layer of the skin are the earliest 
response against changes in the surrounding environment. Several epidemiological, in vitro, and in vivo stud-
ies have reported that skin irritation due to exposure to PM may exacerbate skin diseases or symptoms7,12,13. A 
correlation between ambient PM exposure and outbreaks of environmental skin diseases, including atopic der-
matitis, allergic contact dermatitis, and eczema, has also been suggested14–16. However, the detailed mechanism 
underlying air pollutant toxicity via skin absorption is not fully understood.

With the rapid development of high-throughput techniques, gene expression profiles associated with such 
diseases or chemicals are actively accumulated. The data that have been curated depend on the objectives of 
researchers and are provided through various public databases. Genome-wide clustering of large-scale gene 
expression profiles provides clues to interpreting dynamic co-regulation of genes and uncovering the mechanisms 
linking the chemical, genotype, and phenotype. In this respect, gene co-expression network analysis is actively 
suggested as an efficient method for biological big data analysis17. Various algorithms and tools for interpreting 
differential gene expression profiles have been developed. However, a lack of approaches can be expected to 
comprehensively interpret accumulated literature-based data and experimental results.

In this study, we focused on interpreting the etiological relationships between ambient PM and environ-
mental skin diseases by using large-scale gene expression profiles available in public databases. Knowing that 
the skin toxicity of PM relates to the chemical and physical characteristics of the PM, we explored the biological 
associations between ambient PM and major environmental skin diseases (atopic dermatitis, allergic contact 
dermatitis, and eczema) via a text-mining-based pathway analysis of publicly available gene expression data. 
The detailed relationships predicted by our analysis were validated using experimental data and RNA samples 
from RNA-sequencing (RNA-seq) of PM2.5-treated normal human keratinocytes. This study not only provides a 
comprehensive overview of PM-induced skin damage but also offers new perspectives on the biological associa-
tion between harmful substances and potential adverse effects, using a public gene expression dataset.

Results
Data grouping and identification of gene lists predicted to be involved with PM‑induced skin 
diseases using data collected from public databases.  Before analysis, retrieved genomic data were 
categorized by referring to the search keywords. Chemical–gene association data associated with “Lead,” “Cad-
mium,” “VOC,” “PAH,” or “Coal Ash” were grouped into “PM components.” Gene expression data of “PM10” and 
“PM2.5” shared a topic of “PM size,” but they were independently grouped to distinguish the effect of PM size. 
Microarray datasets related to “Allergic dermatitis,” “Atopic dermatitis,” and “Eczema” were grouped as “Skin 
diseases.” The group names, keywords, and the number of retrieved genes are summarized in Table 1. All genes 
are listed in the Supplementary Data. To identify the common genes associated with PM and environmental skin 
diseases, the intersection of each set was established (Fig. 1 and Supplementary Fig. S1).

Pathway analysis of publicly available data to explore altered biological functions and cellu‑
lar processes related to the common properties of PM and environmental skin diseases.  To 
explore the biological association between environmental skin diseases and PM, the biological networks among 
intersection genes were analyzed. Among 70 identified genes, 32 genes established significant signaling net-
works. To investigate the cellular functions or processes altered by PM-induced signaling networks in envi-
ronmental skin diseases, we expanded the analysis of the genes to include their functional classes and the cell 
processes involved (Fig. 2). “Functional class” categorizes the genes by their biological functions listed in the 
database of Pathway Studio. Based on the text-mining algorithm of the software, this analysis enables the pre-
diction of the cellular functions that may be altered in PM-induced skin diseases. The predicted genes in the 
pathway belong to classes related to inflammatory functions, including “inflammatory cytokine,” “IL-1 family,” 
and “NF-κB family” (Fig. 2a). In terms of the “cell processes,” the networks among the genes were closely related 

Table 1.   Keywords used for retrieving the public genomic data relevant to PM and skin diseases.

Topic Keyword used for searching the DEG data Number of searched genes Reference (or GEO accession number)

PM components

Lead 596 60

Cadmium 1854 61–65

VOCs 507 66

PAHs 2761 67–80

Coal Ash 134 81–84

PM size
PM2.5 1030 85–91

PM10 977 92–95

Skin diseases

Allergic dermatitis 178 GSE628196

Atopic dermatitis 4087 GSE5667, GSE32924, GSE2695246

Eczema 153 97–99
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to alteration of immune processes, such as “innate immune response,” “neutrophil migration,” “inflammatory 
response,” and “chemotaxis” (see Fig. 2b). In addition, associations with carcinogenesis, such as “angiogenesis,” 
“tumor growth,” and “epithelial-to-mesenchymal transition,” were also predicted. IL-6, MMP-9, PRKCA, SER-
PINE1, JUN, PLAU, MMP-1, and EGR-1 showed high betweenness and degree centrality with surrounded enti-
ties (Table 2) and were predicted as the key hubs of the analyzed pathway.

Identification of the differentially expressed genes (DEG) in PM2.5‑exposed skin cells through 
RNA‑seq and pathway analyses to seek the altered signaling networks.  To verify our public 
data-based prediction, we obtained transcriptomic profile data from skin cell-based experiments by perform-
ing RNA-seq using normal human epidermal keratinocytes (NHEK) that had been exposed to PM2.5. In total, 

Figure 1.   Principle of data crawling from public genome databases and next-generation sequencing (NGS)-
based analysis. Keywords for crawling genome data were selected based on characteristics of PM and names 
of environmental skin diseases. Criteria for differential gene expression were p < 0.05 and |fold-change| > 2. 
Groups of retrieved genes were compared, and intersections were identified. DEG data and RNA samples from 
NGS experiments were used for further analysis to select key regulators of the PM-induced pathway and for 
validation.
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Figure 2.   Potential biological signaling networks involved with PM-induced skin diseases predicted from the 
public data-based analysis. Direct biological interaction among the identified genes related to PM-induced 
skin diseases. (a) Biological functions of the genes predicted to be altered by signaling networks were analyzed 
using Pathway Studio. The predicted functions are presented as a “functional class” in the pathway. (b) Cellular 
processes predicted to be affected by signaling networks among the identified genes were analyzed using 
Pathway Studio. The descriptions of the schematic symbols are located to the left of each figure.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9750  | https://doi.org/10.1038/s41598-022-13001-x

www.nature.com/scientificreports/

122 genes were downregulated, and 148 genes were upregulated based on a |fold-change| > 2 and p-value < 0.05. 
With these 271 DEG, pathway analysis was conducted to determine the biological alterations in human skin cells 
under PM exposure. Finally, 30 genes were used to construct the significant signaling networks, and the analysis 
of cellular functions or processes altered by PM exposure was expanded among the genes in terms of their func-
tional classes and involved cell processes. “NF-κB family,” “cytokine,” “Jun/Fos,” and “inflammatory cytokine” 
were predicted as the major functional classes that may be altered by differential gene expression upon PM 
exposure (Fig. 3a). Cell processes involved with basic cell function (cell proliferation, cell differentiation, and cell 
motility), immune response (inflammatory response, T-cell activation, neutrophil migration/recruitment, and 
leukocyte recruitment), oxidative stress, and ROS generation were predicted (Fig. 3b). IL-1B, MMP-9, CXCL-8, 
CSF-2, IL-1A, HMOX-1, MMP-1, and S100A9 were predicted as key hub regulators of the pathway based on 
their betweenness and degree centrality (Table 3).

Integrative analysis of literature and experiment‑based results in terms of differentially 
expressed signals and PM component association to identify biological alterations in the 
skin caused by PM.  We simplified the literature-based network from Fig. 2 to select the final potential key 
networks that elucidate the etiological relationships between PM and skin diseases (Fig. 4a). All entities were 
selected based on the betweenness and degree centrality with surrounding nodes in the pathway (Table 2 and 
Supplementary Table S1). The top 10 genes with high degree values were selected as key genes for simplification. 
The relation between the selected key genes and centrality is presented in Supplementary Table S1. “Inflamma-
tory cytokine” and “NF-κB family” were predicted as the major functional classes, and “inflammatory response” 
was predicted as the major cell process closely related to PM-induced skin diseases. Each key regulator was 
highlighted based on gene–disease associations referred to in our retrieved dataset. S100A8, S100A9, and IL-6 

Table 2.   Profiles of the 32 genes identified through literature-based analysis and used to construct the 
significant signaling networks.

Gene name Description

Centrality with 
functional classes

Centrality with cell 
processes

Betweenness Degree Betweenness Degree

IL6 Interleukin 6 0.32786356 60 0.2606371 53

MMP9 Matrix metallopeptidase 9 0.14008759 43 0.08874194 42

PRKCA Protein kinase C alpha 0.10249921 23 0.06604883 26

SERPINE1 Serpin family E member 1 0.0940557 31 0.03619284 29

JUN Jun proto-oncogene, AP-1 transcription factor subunit 0.07616875 34 0.05170048 31

PLAU Plasminogen activator, urokinase 0.0535497 33 0.03590776 31

MMP1 Matrix metallopeptidase 1 0.04540664 18 0.06081282 24

EGR1 Early growth response 1 0.02858809 23 0.01102559 27

BIRC3 Baculoviral IAP repeat containing 3 0.01057176 4 0.04105898 6

NDRG1 N-myc downstream regulated 1 0.01028651 3 0.00756754 11

AKAP13 A-kinase anchoring protein 13 0.00621003 4 0.00486438 3

S100A8 S100 calcium binding protein A8 0.00602783 19 0.01403312 23

IGFBP3 Insulin like growth factor binding protein 3 0.00470338 12 0.00350003 14

S100A9 S100 calcium binding protein A9 0.00295347 13 0.01168803 18

ABCA1 ATP binding cassette subfamily A member 1 0.00271365 7 4.68E−04 6

SOX9 SRY-box 9 0.00195307 9 0.00333093 13

CXCL1 C-X-C motif chemokine ligand 1 0.00167127 8 0.01085271 17

ANGPTL4 Angiopoietin like 4 7.66E−04 3 3.80E−04 6

SH3KBP1 SH3 domain containing kinase binding protein 1 3.22E−04 2 0 1

STK4 Serine/threonine kinase 4 3.22E−04 2 7.43E−04 5

MAP3K20 Mitogen-activated protein kinase kinase kinase 20 2.42E−04 2 2.83E−04 2

GBP1 Guanylate binding protein 1 2.25E−04 2 0 1

THBS2 Thrombospondin 2 1.93E−04 6 4.16E−04 7

AKAP12 A-kinase anchoring protein 12 0 2 0 3

CFB Complement factor B 0 2 0 1

GREM1 Gremlin 1, DAN family BMP antagonist 0 1 0.00179531 7

IFI16 Interferon gamma inducible protein 16 0 2 0.00127899 5

ITGA2 Integrin subunit alpha 2 0 3 2.46E−04 4

MT1F Metallothionein 1F 0 1 0 2

MYH10 Myosin heavy chain 10 0 1 0 2

SERPINB2 Serpin family B member 2 0 4 1.47E−04 7

TFPI Tissue factor pathway inhibitor 0 2 3.20E−04 6



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9750  | https://doi.org/10.1038/s41598-022-13001-x

www.nature.com/scientificreports/

Figure 3.   Potential biological signaling networks related to PM-induced skin diseases predicted from our 
NGS-based experimental data. Direct biological interaction among the identified DEG from in vitro RNA-seq 
analysis. (a) Biological functions predicted to be altered according to the signaling networks were analyzed using 
Pathway Studio. The predicted functions are presented as a “functional class” among the genes in the pathway. 
(b) Cellular processes predicted to be affected according to the signaling networks were analyzed using Pathway 
Studio. The descriptions of the schematic symbols are located to the left of each figure. Upregulated and down 
regulated genes are highlighted in pink and blue respectively.
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were predicted as important hubs in the pathway, with relationships between more than two environmental skin 
diseases.

For integrative prediction about the potential mechanism of PM-induced environmental skin diseases, we 
overlapped activation/inhibition patterns in fold-change values from our next-generation sequencing (NGS)-
based experimental data with the result of our literature-based analysis. Activation of inflammatory responses by 
altered NF-κB family and inflammatory cytokine functions were predicted based on the up-regulation of PLAU, 
MMP-9, MMP-1, S100A8, and S100A9 (Fig. 4b), which we verified by quantitative real-time PCR (qRT-PCR). 
All five genes showed significantly upregulated expression under PM2.5 exposure compared to the control group 
(Fig. 4c). Interestingly, significant changes in mRNA expression levels of IL-6 were confirmed by qRT-PCR, and 
expression alteration of IL-6 at the protein level was validated by enzyme-linked immunosorbent assays (ELISA) 
(Supplementary Fig. S2), although fold-change values of IL-6 were not detected in the RNA-seq experiment.

Integrative prediction of biological alterations and upstream regulators in skin exposed to 
PM.  Based on the association obtained from the integrative analysis, we explored significant upstream regula-
tors for the key genes using upstream analysis algorithm in Ingenuity Pathway Analysis (IPA) software (Table 4). 
Among the predicted regulators, TNF, NF-κB, and ERK1/2 formed significant networks with the six key genes. 
Final key networks were summarized in Fig. 5a, which showed biological alteration in skin regulated by PM-
induced functional activation of TNF, NF-κB, and ERK1/2. Protein level change of upstream regulators were 
verified using Western blot or ELISA assay, it was found that the expression patterns were significantly changed, 
as predicted in the upstream analysis  (Fig. 5b,c, and Table 4).

Table 3.   Profiles of the 30 genes were identified through NGS experiment-based analysis and used to 
construct the significant signaling networks.

Gene Description

Centrality with 
functional classes

Centrality with cell 
processes

Betweenness Degree Betweenness Degree

IL1B Interleukin 1 beta 0.13962021 101 0.12458578 92

MMP9 Matrix metallopeptidase 9 0.05568858 96 0.05479244 82

CXCL8 C-X-C motif chemokine ligand 8 0.06465637 74 0.05802507 76

CSF2 Colony stimulating factor 2 0.0474571 61 0.03368819 60

IL1A Interleukin 1 alpha 0.03261944 57 0.0646008 57

MMP1 Matrix metallopeptidase 1 0.01289877 53 0.03324277 48

PLAU Plasminogen activator, urokinase 0.01147841 51 0.02266642 38

HMOX1 Heme oxygenase 1 0.02780391 46 0.03061453 50

CTGF Connective tissue growth factor 0.00517551 45 0.01824768 31

HBEGF Heparin binding EGF like growth factor 0.01092291 35 0.01220442 33

S100A8 S100 calcium binding protein A8 0.00613667 34 0.00206479 34

CXCL1 C-X-C motif chemokine ligand 1 0.01436634 33 0.0052915 39

TNFSF10 TNF superfamily member 10 0.01905219 33 0.03689294 32

S100A9 S100 calcium binding protein A9 0.00771954 31 0.00239278 42

IL1RN Interleukin 1 receptor antagonist 0.00817305 28 0.00851368 31

LCN2 Lipocalin 2 0.00851023 28 0.00293573 29

TGFA Transforming growth factor alpha 0.0128731 28 0.02490869 26

TNC Tenascin C 0.00345552 28 0.00364948 24

LIF LIF, interleukin 6 family cytokine 0.00398179 26 0.00563199 28

PLAUR​ Plasminogen activator, urokinase receptor 0.00785025 26 0.00437903 26

CYP1A1 Cytochrome P450 family 1 subfamily A member 1 0.00158859 18 0.0077291 24

DCN Decorin 7.98E−04 14 4.88E−04 14

NQO1 NAD(P)H quinone dehydrogenase 1 0.00275464 14 0.0074225 17

SERPINB2 Serpin family B member 2 2.35E−04 13 2.09E−04 20

IL24 Interleukin 24 0.0029033 11 9.61E−04 17

NOS1 Nitric oxide synthase 1 0.00371168 10 9.83E−04 13

S100A7 S100 calcium binding protein A7 0.00322041 9 0.00362133 14

CYP1B1 Cytochrome P450 family 1 subfamily B member 1 8.45E−04 8 4.23E−04 15

EREG Epiregulin 1.00E−04 7 6.22E−05 10

KRT10 Keratin 10 1.50E−04 3 2.11E−04 5



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9750  | https://doi.org/10.1038/s41598-022-13001-x

www.nature.com/scientificreports/



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9750  | https://doi.org/10.1038/s41598-022-13001-x

www.nature.com/scientificreports/

Discussion
In recent years, biological evidence supporting the role of PM in skin damage has been suggested via various 
approaches. Numerous epidemiological studies have reported a phenomenological association between the 
increase in airborne PM level and diagnosis frequency of skin diseases. Although characteristic variables of 
PM depend on weather or location, studies have commonly reported associations between ambient PM and 
progression of inflammatory skin symptoms or diseases, such as eczema, allergic contact dermatitis, and atopic 
dermatitis14,16,18,19. However, the underlying mechanism for these associations was not fully understood.

The size and component characteristics of PM are closely related to the source of the PM8,20. PM released 
directly from natural sources (e.g., crustal movement, dust storms, forest fires, and weathering of geographical 
features) and micro-sized biological particles (e.g., bacteria endotoxins, pollen, and spores) are classified as 
primary particles (mostly PM10)21. Anthropogenic sources (e.g., solid fuel combustion, attrition of brakes and 
tires on urban roads, and erosion during manufactural processes) are major causes of micro-sized solid chemi-
cal particles and gas or liquid particles in urban PM22,23. Most of the PM that originates from anthropogenic 
sources is derived from chemical reactions between oxides of sulfur and nitrogen, VOC, PAH, and other chemical 
derivatives of primary particles. Being mostly smaller than primary particles, this PM belongs to PM2.5. All PM 
types consist of organic carbon, elemental carbon, PAH, VOC, and metals24,25. The individual toxicity of each 
component has been widely studied; inhaled or penetrated ambient PM-sized heavy metals can accumulate in the 
body and stimulate chronic illnesses, including bronchial damage, lung malfunction, or skin carcinogenesis26,27. 
Organic components, such as PAH and their oxygenated derivatives, cause severe oxidative stress and mito-
chondrial damage28,29. However, in terms of heterogeneous particles, the contribution of each component to 
the PM-induced adverse effects is not fully understood. Here, we analyzed the contribution of chemical com-
ponents in the biological pathway of PM-induced skin diseases (Supplement Fig. S3). Identified genes in the 
pathway were sorted and marked based on knowledge of chemical–gene associations from our retrieved dataset 
in Table 1. PAHs and cadmium are the largest contributors to the pathway. MMP1, PLAU, SERPINB2, ITGA2, 
and CFB are commonly associated with the largest number of PM components and are closely related closely 
to ‘psoriasis,’ ‘melanoma,’ ‘dermatitis,’ ‘wounds,’ and ‘wounds and injuries.’ This suggestion has limitations that 

Figure 4.   Integrative identification of potential mechanisms and key regulators involved in PM-induced skin 
diseases. (a) Simplified pathway relevant to PM-induced skin diseases (refer to public data-based network in 
Fig. 2). Genes highlighted in orange, violet, and green, respectively, indicate atopic dermatitis-associated, allergic 
contact dermatitis-associated, and eczema-associated. Descriptions of the schematic symbols are located to the 
left of the figure. (b) Overlap with fold-change values from our RNA-seq experiments to identify activation/
inhibition patterns. Criteria for differential expression is p < 0.05 and |fold-change| > 2. Upregulated genes are 
highlighted in pink. Schematic legends are located to the left of the figure. (c) Validation of mRNA expression 
profiles of key regulators using qRT-PCR. The upregulation of MMP9, MMP1, S100A8, S1009, and PLAU was 
confirmed. IL6 did not show significant fold-changes in RNA-seq, but changes in RNA expression levels were 
confirmed by qRT-PCR.

Figure 4.   (continued)

▸
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Figure 5.   Integrative identification through simplified signaling network of upstream regulators and hub genes 
altered in skin under PM exposure. (a) PM-induced biological pathway consisting of hub genes, upstream 
regulators, cell processes, and disease. Genes highlighted in orange indicate upstream regulators. (b) Validation 
at the protein level was performed through Western blot. The expressions of NF-κB and ERK1/2 changed, as 
predicted. c ELISA-based validation of upstream regulator proteins. TNF expression changed significantly, as 
predicted. * indicates 0.001 < p < 0.05.

Table 4.   Upstream regulators identified from intersection between public data and NGS experimental data 
under PM exposure. Bold texts indicate the hub genes consonant with Fig. 5.

Upstream regulator Activation z-score p-value of overlap Target molecules in dataset

TNF 2.403 1.96E−14 CXCL1, GBP1, IL6, MMP1, MMP9, PLAU, S100A8, S100A9, SER-
PINB2

CD36 2.236 7.12E−12 CXCL1, IL6, MMP1, PLAU, SERPINB2

NFkB (complex) 2.376 5.32E−10 CXCL1, IL6, MMP1, MMP9, PLAU, SERPINB2

ERK 2.219 7.98E−10 CXCL1, IL6, MMP1, MMP9, SERPINB2

IL1B 2.188 6.52E−08 CXCL1, IL6, MMP1, MMP9, SERPINB2

TP53 − 1.913 0.00024 EGR1, IL6, MMP9, SERPINE1
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arise from inadequate keywords of PM components and the required validation for specifying components “in 
PM.” However, our approach provides important clues for clarifying the comprehensive toxic effects and main 
causes of skin disorders from PM exposure by considering comparative data on the differential contribution of 
the components to each mode of action.

The rapid evolution of NGS has accelerated research in genomics field by providing a massive amount of data. 
Researchers can quickly and easily access data through various public databases and utilize genome-wide gene 
expression profiling for their studies. In interpreting the dynamic pattern of gene expression profiles, co-expres-
sion network analysis for exploring gene functions and gene–disease associations have emerged as respective 
data-analysis methods17. In the present study, we aimed to integrate previous knowledge from literature-based 
data with our experimental data to identify the relationship between PM exposure and skin diseases. To interpret/
expand the biological meaning from the list of genes associated with the chosen keywords (Table 1), we applied 
text-mining software-based pathway analysis among the identified genes to obtain their co-expression network, 
related functional processes, and disease-related phenotypes. During the construction of the pathway, each gene 
was referred to as an “entity” and linked to another entity by “relation,” which represents the biological relation-
ship between two entities. A relation between two entities can be established by screening the sentences in mas-
sive volumes of scientific literature based on co-occurrence frequency in the same scientific publications30. The 
importance of each entity was determined by centrality concepts. Betweenness centrality quantifies the shortest 
path between adjacent entities, and degree centrality defines the number of relations between adjacent entities31. 
Higher values of these two parameters in the pathway explain the crucial point of interaction among multiple 
biological networks. We considered both values to cover connectivity with surrounding entities and the role of 
the hub genes in the predicted pathway, which shows the etiological relationship between PM and skin diseases.

From the experimental perspective, several in vitro studies have elucidated that PM-induced cytotoxicity 
may derive from activation of the IL-1β, IL-6, and NF-κB signaling pathways in keratinocytes32–34. However, 
cell line-based studies have critical weak points in that they do not account for the systemic response in the 
skin. Thus, recent publications have attempted to demonstrate PM-induced skin damage with consideration 
of the comprehensive profile of macrophenomena aspects and molecular mechanisms using both in vitro and 
in vivo models or artificial three-dimensional skin tissue models. Such studies have suggested a significant altera-
tion of several specific inflammatory markers, such as IL-1α, IL-8, or oxidative stress-induced NF-κB nucleus 
translocation7,35,36. With this consideration, we attempted to identify the comprehensive biological responses 
associated with PM-induced skin toxicity, as well as marker-specific knowledge, by interpreting the interactions 
among the entities and surrounding molecular networks, as shown in Figs. 2 and 3. From the public database 
(Fig. 2a) and experimental data (Fig. 3a), the NF-κB family and cytokines were commonly predicted as possibly 
altered cellular functions in the skin under PM exposure (Fig. 4a). In addition, inflammatory response-related 
cell processes mediated by MMP-9, S100A8, S100A9, and IL-6 were commonly predicted (Figs. 2b and 3b). These 
results reflect the previously mentioned data from various in vivo and/or in vitro approaches to demonstrate 
dermal toxicity of PM and provide improved information at the pathway level. All genes and their target proteins 
play individual and collective roles by interacting with each other. Our results suggest that PM exposure causes an 
inflammatory response mediated by alteration of the NF-κB family and cytokine functions through differential 
expression of MMP-9, S100A8, S100A9, and IL-6.

The inflammatory response is a complex and rapid biological process induced by extrinsic irritants37. The 
primary purpose of the inflammatory response is to defend the system against injurious stimuli38. Exposure to 
a toxicant or pathogen can cause a response that leads to tissue-level pathological conditions because of uncon-
trolled, excessive activation of the immune system. Inflammatory and immune responses induced by airborne 
toxicants are a major inducer of drastic adverse effects in skin cells during penetration of extrinsic irritants 
through skin. IL-6, S100A8, and S100A9 are three key regulators that display a positive biological relationship 
with atopic dermatitis (Fig. 4a) and serve as major inflammatory markers under PM exposure. IL-6 is a well-
known cellular stress and pro-inflammatory marker that is overexpressed after exposure to various extrinsic 
harmful substances39. It is also actively studied as a marker for skin diseases, such as atopic dermatitis and allergic 
dermatitis40. S100A8 and S100A9 belong to the S100 protein family and are released to the acellular compart-
ment, where they bind cell surface receptors and could act as major regulators of the inflammatory response41. 
One of those receptors is Toll-like receptor 4, TLR-442. Upon binding to TLR-4, signaling cascades are initiated 
that regulate inflammation and NF-κB-dependent tumor development42–44.

The activation pattern of the summarized pathway involved in PM-induced skin diseases was predicted using 
fold-change values from RNA-seq data analysis of human epidermal keratinocytes. Owing to the essential roles 
of keratinocytes in immune responses to exposure and penetration of extrinsic factors45, the epidermal keratino-
cyte model is widely used to determine the detrimental effects of PM33,46. This experimental procedure allowed 
validation of the relevance between PM exposure and the changes in the levels of key regulators in skin cells, as 
predicted from the integrative pathway analysis. The up-regulation of matrix metalloproteins (MMP) plays an 
important role in the skin and modulation of inflammation. MMP-1 intermediates cleave fibrillar collagens and 
contribute to collagen degradation and extracellular matrix remodeling in keratinocytes47,48. MMP-9 also cleaves 
extracellular matrix components and causes skin inflammation via activation of cytokines, including IL-1β and 
IL-1349. The direct association between upregulated PLAU and the skin or PM has not been fully understood, 
but it is closely related to MMP-1 and MMP-9. Upregulated urokinase-type plasminogen activator—the enzyme 
encoded by the PLAU gene—causes plasmin-dependent activation of MMP via catalysis-mediated conversion 
of plasminogen to plasmin50. This knowledge revealed predictable roles for additional key genes in PM-induced 
skin diseases. Based on the experimental validation using our NHEK sample (Fig. 4c), not only are the key 
regulators differentially expressed in experimental data, but another gene indicated changes in expression levels 
not included in the DEG data. In this regard, the integrative approach for screening/exploring the potential 
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association between environmental factors and diseases was informative in terms of important aspects that 
researchers might have missed if only the public or experimental data had been considered.

Here, we explored the adverse effects of PM on the skin and attempted to elucidate their relationships using 
public genome data. Through the literature-based biological pathway analysis of gene expression data from 
a public database, we identified the chemical–gene–disease associations of PM-induced environmental skin 
diseases. Through upstream analysis and validation, changes in biological functions and cellular processes of 
cytokines elicited by the inflammatory response were predicted as the major contributors of adverse outcomes, 
and expression level changes of key regulators in the pathway were validated (Fig. 5b,c). Further mechanism 
studies will be required to demonstrate the exact molecular interaction. However, our results provide evidence 
to assist in clarifying the underlying mechanism of ambient PM-induced dermal toxicity and exemplify the 
unconventional approach to screening the biological relationships between chemicals and diseases.

Materials and methods
Collection of global gene expression profiles from public databases.  We proceeded with key-
word selection to retrieve chemical–gene–disease associations from public databases. The genomic data were 
collected in three categories: “PM size,” “PM components,” and “Skin disease.” First, cadmium, lead, PAH, and 
VOC were selected as the major chemical components of PM in view of their frequent or common mention in 
numerous papers to eliminate possible variation in chemical composition because of geographical or time-based 
factors51–54. “Coal Ash” was also added to expand the informal definition of PM provided in the Comparative 
Toxicogenomics Database (CTD). DEG were collected from the CTD (http://​ctdba​se.​org/, last access date: Sep-
tember 2019), a literature-based public resource that provides curated information about chemical–gene/protein 
interactions and chemical–gene–disease relationships55. Second, PM size was integrated into the analysis by 
directly searching the keywords “PM10” and “PM2.5.” Gene expression data concerning PM size were obtained 
from research publications in the PubMed database, and the collection period was from 2018 to 2019. Finally, 
“atopic dermatitis,” “allergic dermatitis,” and “eczema” were selected as keywords for collecting gene expression 
data involving environmental skin diseases. The Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/, last access date: October 2019), a public functional genomics data repository, was used for collecting 
the disease-specific gene set analyzed from human-based research publications. All data in the dataset were 
trimmed based on p-value < 0.05, and |fold-change| > 2. The workflow scheme of the data crawling is provided 
in Fig. 1.

Chemical preparation and cell treatment.  Ambient PM2.5 was collected on a polytetrafluoroeth-
ylene (PTFE) filter (Zefluor™, Pall Life Sciences, Mexico City, Mexico) with a high-volume sampler machine 
(TE6070, Tisch Environmental, Inc., Cleves, OH, USA), equipped with a PM2.5 selective-inlet head at a flow rate 
of 1.13 m3/min. The sample collection of PM2.5 was carried out on the rooftop of the Amorepacific Corpora-
tion R&D building, located in Yongin, Korea (37°15′N, 127°06′E). PM2.5 was extracted with ethanol (EtOH) in 
a sonicator for 30 min. The obtained extract was dried using an evaporator and resuspended with 20% EtOH. 
NHEK from neonatal foreskin (Lonza, Walkersville, MD, USA) were cultured in keratinocyte growth medium 
(KBM-GOLD) with SingleQuots™ supplement (Lonza) containing hydrocortisone, transferrin, epinephrine, 
gentamicin/amphotericin B, bovine pituitary extract, human epidermal growth factor, and insulin. NHEK were 
starved for 24 h in KBM-GOLD medium with gentamicin/amphotericin B, followed by stimulation with PM2.5 
(100 μg/mL, 95% cell viability) for 24 h. All experiments were performed with cells passaged less than three 
times.

RNA‑seq and identification of DEG.  Transcriptome analysis using RNA-seq was performed by Mac-
rogen, Inc. (Seoul, Korea). RNA was extracted using an RNeasy mini kit (Qiagen, Hilden, Germany) following 
the manufacturer’s instructions. The quality of RNA samples was checked using the Agilent 2100 Bioanalyzer 
(Agilent Technologies, Inc., Santa Clara, CA, USA). Libraries were generated with the TruSeq Stranded mRNA 
Prep Kit (Part #15031047 Rev. E). Purified mRNA was fragmented, and pair-end RNA-seq was conducted using 
a HiSeq 2500 (Illumina, San Diego, CA, USA) sequencing system. TruSeq Stranded mRNA LT Sample Prep kits 
(Illumina) were used to establish libraries according to the sample preparation guide. To determine the RNA 
expression profiles, the RNA-seq reads were mapped to a human reference genome (hg19) using HISAT256. 
Human reference genome sequence and annotation data were downloaded from the University of California, 
Santa Cruz (UCSC) Genome Browser (http://​genome.​uscs.​edu). Mapped reads were assembled using StringTie57. 
Transcript counts were calculated at the isoform and gene levels, and the relative transcript abundances were 
measured in Fragments Per Kilobase of exon per Million fragments mapped (FPKM). P-value < 0.05 and |fold-
change| ≥ 2 were considered as criteria for DEG. All RNA-seq datasets used are available at the GEO repository: 
GSE143709. RNA samples and identified DEG were used in further analyses, as illustrated in Fig. 1.

Biological network analysis using retrieved gene set and overlapping with experimental 
data.  Pathway Studio web 12.1.0.9 (Elsevier), a literature-based software, was used to analyze biological net-
works among the identified gene set. Pathway Studio contains a curated literature database based on its own text-
mining module, which extracts relevant sentences concerning the relationship between two entities58. It provides 
molecular interactions among the entered genes, as well as an investigation of protein–protein or protein–cell 
process interaction maps. The relations with less than five references were excluded for analysis. The description 
of each relation type between entities is as follows: Binding: physical contact between two molecules; DirectRegu-
lation: influences target activity by direct physical interaction; Expression: regulator changes protein abundance 
by affecting levels of transcript or protein stability; ProtModification: regulator that changes the modification of 

http://ctdbase.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://genome.uscs.edu
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the target molecule; PromoterBinding: regulator that binds to the promoter of a gene30. The importance of the 
entities in the pathway was analyzed according to their betweenness and degree centrality, which were calculated 
using NetworkAnalyzer in Cytoscape 3.7.2 software. IPA (Qiagen) was utilized to perform upstream analysis. 
IPA is a software application that provides comprehensive biological knowledge and predictions relevant to 
entered gene expression data based on their curated database via a data mining interface59. The upstream analy-
sis function enables the prediction of the upstream transcriptional regulators linked to observed gene expression 
changes in the signaling networks.

qRT‑PCR.  cDNA was synthesized using the ImProm-II™ Reverse Transcription System (Promega, Madison, 
WI, USA) from 500 μg of extracted RNA following the manufacturer’s instructions. qRT-PCR was conducted in 
the Rotor-Gene Q Real-Time PCR system (Qiagen) using Takara SYBR Premix Ex Taq (Takara Bio, Inc., Japan). 
Thermal cycling conditions for PCR included an initial denaturation step at 95 °C for 5 min, followed by 40 
cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s. Melting curve 
analysis of the PCR products was performed at the end of the PCR step, and the data were analyzed using the 
Rotor-Gene Q Real-Time PCR system (Qiagen). Glyceraldehyde-3-phosphate dehydrogenase-encoding gene 
(GAPDH) was used to normalize the relative level of gene expression using the 2−ΔΔCT method. The sequences of 
the primers used for qRT-PCR are shown in Supplementary Table S2.

Western blot and ELISA assay.  Total proteins of NHEK cells were extracted with RIPA buffer containing 
1 mM DTT and 1 U of EDTA-free protease inhibitor cocktail (Roche, Manheim, Germany). An equal amount 
of protein was separated on 7.5% SDS-PAGE and then transferred onto polyvinylidene fluoride membranes. 
The membranes were blocked using 5% skim milk in TBS at 25 °C for 2 h and incubated with specific primary 
antibodies: anti-GAPDH (2188, Cell Signaling, MA, USA), anti-NF-κB (3035, Cell Signaling), and anti-ERK1/2 
(sc-514302, Santa Cruz Biotechnology, CA, USA) at 4 °C overnight. Membranes were incubated with secondary 
antibodies (HRP-linked IgG) at 25 °C for 1 h. The secondary antibodies were anti-mouse (A90-116P, Bethyl Lab-
oratories, Montgomery, TX) and anti-rabbit (A120-101P, Bethyl Laboratories). Membranes were washed with 
TBST, and proteins were detected using enhanced chemiluminescence (ECL) Prime Western Blotting Detection 
Reagent (GE Healthcare, Piscataway, NJ, USA). The GAPDH band was used as a loading control.

The supernatants of NHEK cells were collected, and TNF (TNF-alpha Human ELISA Kit, High Sensitivity, 
BMS223HS) and IL-6 (IL-6 Human ELISA Kit, High Sensitivity, BMS213HS) were measured using commercial 
ELISA kits (Invitrogen, CA, USA) in accordance with the manufacturer’s protocols.

Statistical analysis.  All data were obtained from at least three independent experiments conducted in 
triplicate. All graph data indicate mean ± standard error. Differences between experimental groups were evalu-
ated using the Student’s t-test, and comparisons among more than two groups were analyzed using ANOVA. 
P-values < 0.05 or < 0.01 were considered statistically significant.
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