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Abstract

Data on the distribution of plant species at spatial (grid) scales are required as input for inte-

grative analysis along with related climate, environment, topography and soil data. Although

the world’s scientific community is increasingly generating data on plant species at various

spatial grids and statistically interpolating and extrapolating the available information, data

on plant diversity from the Asian continent are scant. Such data are unavailable for India,

the mainland of which has part of three of the world’s 36 biodiversity hotspots. Although suf-

ficient field sampling is always impossible and impractical, it is essential to utilize fully any

available database by adjudging the sampling sufficiency at a given scale. In this work, we

used an exhaustive database of the plant species of the Indian mainland that was sufficient

in terms of sampling vegetation types. We transformed the data, obtained the distribution at

the 1˚ and 2˚ spatial grid levels and evaluated the sampling sufficiency at acceptable thresh-

old limits (60% to 80%). The greatest species richness values recorded in the 0.04 ha quad-

rant, 1˚ grid and 2˚ grid were 59, 623 and 1244, respectively.

Clench model was significantly (p value < 0.001) fitted using the plant species data at

both the grid levels with a very high coefficient of determination (>0.95). At an acceptable

threshold limit of 70%, almost all the grids at the 2˚ level and more than 80% of the grids at

the 1˚ level were found to be sufficiently sampled. Sampling sufficiency was observed to be

highly scale-dependent as a greater number of 2˚ grids attained asymptotic behaviour fol-

lowing the species–area curve. Grid-level sampling insufficiency was attributed to lower

numbers of sampling quadrats in forests with poor approachability, which coincided with the

world biodiversity hotspots’, suggesting that additional sampling was required. We prescribe

the use of the 1˚ and 2˚ spatial grids with sufficient sampling for any ecological analysis in

conjunction with other data and thereby offer grid-level plant species richness data for the

Indian mainland for the first time.
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Introduction

The heterogeneous distribution of species across biomes and concerns for their continued

existence in the future inspire ecologists and bio-geographers. The interest in understanding

them lies in improving the available data set and analytical tools through taxonomic inventory,

collation of the existing specimens and using remote sensing data for monitoring vegetation

[1]. Plant diversity data analysis has always had constraints at all scales from the local to the

global [2]. This problem can be resolved by transforming scattered data to an appropriate

spatial level or scale so that they can be uses with other collateral data sets for integrated

analysis.

It is imperative to monitor and map vegetation through taxonomic inventories with suffi-

cient sampling [3]. Incomplete sampling and biases may lead to erroneous interpretation of

ecological facts, affecting conservation and policy implications [4]. The common biases might

be introduced in inventories: (i) species (more sampling of one species relative to others); (ii)

species–area (over- or under-sampling of a species in relation to the size of the area); (iii) hot-

spot (excessive or insufficient collection in certain geographic areas); and (iv) infrastructure

bias (proximity to roads and residence) [5]. The sampling bias is also related to the spatial

scale. For example, at coarser scales, sampling biases get weaker due to the improved data cov-

erage. Nevertheless, it is impossible to conduct complete, uninterrupted numerical inventories

at regular intervals due to various limitations including site accessibility, cost-effectiveness and

time [6], [7]. Therefore, it is essential to make full use of any available database by judging the

sampling adequacy at a given scale even if the data had been collected with any pre-defined

objectives [8]. In general a sampling sufficiency value between 70% and 90% is often consid-

ered to be acceptable and fit for any further ecological analysis [9].

Various statistical models have been used in the past to assess sampling sufficiency: (i) log–

normal distribution fitting to species abundance data, (ii) asymptotic curve fitting to species

accumulation curves and (iii) using non-parametric estimators based on the abundance or

incidence of rare species [10],[11]. The most common non-parametric estimators are the

Chao [12], jackknife and bootstrap [13] estimators. These predict the species richness on the

basis of the number of rare species observed within samples, either from incidence data or

from abundance data. Species accumulation models have been successfully fitted to various

taxonomic groups including animals and plants [14], [15]. The accumulation curves obtained

(asymptotes showing the cumulative number of species against sampling effort) are useful in

describing the rates of addition of new species to inventories [16], [17]. These curves attain

asymptoteness when the probability of addition of new species approaches zero; they are non-

asymptotic otherwise. Two parameters have been suggested for assessing sampling sufficiency:

(i) the slope of the species accumulation curve, which describes the rate of addition of new spe-

cies [18], [8], and (ii) the ratio of the total species richness expected from the richness estima-

tors to the observed species richness [19], [20]. Recently Pardo et al. [14] used FIDEGAM,

which is based on species accumulation curves, under different scenarios of sampling exhaus-

tiveness, with receiver operating characteristic (ROC) analyses to quantify sampling suffi-

ciency. The use of various techniques involving repeated sampling and accumulation curves to

estimate species richness has been explored [21], [22]. The species richness in a controlled

area, i.e., grid area, depends not only on the inventoried plots but also on the area of the vegeta-

tion. For example, we may expect a smaller number of species in a grid that falls within an area

that is having less than 1% of the vegetation area even if the grid covers 100% of the geographic

area. This is due to the area restriction, which constrains an investigator from laying more

plots because of the lack of vegetation. Therefore, the proportion of the vegetation area might

serve as a criterion in assessing sampling sufficiency in asymptotic models.
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Clench equation was fitted to obtain species accumulation curves (e.g., Jiménez-Valverde

et al., [23]) to assess the sampling sufficiency of the species inventory of each grid. Clench func-

tion performs better by avoiding the problem of over-fitting and under-estimation of the criti-

cal richness and, therefore, is the most widely used function among asymptotic estimators

[24]. We examined the increase in the number of species with the addition of sampling areas

in a grid.

Plant species inventories carried out in India in the past are discrete—there are variations at

the local/regional level and in the size of the quadrat. Thus they fall short of the requirements

of country-level representation for interdisciplinary and multidisciplinary studies. The plant

database generated during the execution of a national-level project, ‘Biodiversity Characteriza-

tion at Landscape Level’, was utilized in this study to overcome this limitation. The data were

collected in 0.04 hectare for tree species. Nested quadrats were used with a stratified random

sampling approach [25]. To sample shrub species, two plots of size 5 m × 5 m each were laid at

opposite corners of tree plots, and for herb species five plots of size 1 m × 1 m each were laid at

the four corners and centre of tree plots. A 1:50,000 scale vegetation type map was generated

using satellite remote sensing data and an on-screen visual interpretation technique [26]. The

map had 100 vegetation classes wherein, the accuracy of the map was verified using the infor-

mation obtained by sampling and was found to be greater than 90%. The vegetation type and

area greatly affect the number of species. Spatial knowledge of these variables with respect to

species number will help understand the pattern. An analysis of the sampling sufficiency will

be useful in identifying grids in which sampling is insufficient. More effective survey cam-

paigns can be designed in the future. In the present work, we have provided for the first time

the pattern of plant species richness distribution in the Indian mainland in 1˚ and 2˚ grids.

The main objectives of our study were (i) to analyse the sampling sufficiency at both the grid

levels (1˚ and 2˚) at various sufficiency thresholds (60% to 80% at 5% intervals) and (ii) to pro-

pose priority-basis grid sampling in the under-sampled regions.

Methods

Study area

The present work was carried out for the Indian mainland (S1 Fig). India, a large country

with a total geographical area of nearly 329 million hectares, lies to the north of the equator,

between latitudes 6˚ 440 N and 35˚ 300 N and longitudes 68˚ 70 E and 97˚ 250 E. India has a

wide range of bio-climatic zones with distinctive ecology, biomes, communities and species

[27]. The climate of the country varies from temperate in the north to monsoonal in the south.

Four major monsoonal seasons are recognizable in the country: (i) essentially warm and

humid south-west (SW) summer monsoon, from June to September [28], (ii) north-east win-

ter monsoon, from October to December [28], (iii) cold and dry winter monsoon, from

December to February [29], and (iv) spring, from March to May [30]. Most of the annual rain-

fall (80%) is received during the SW summer monsoon. The large spatial variability of the

monsoonal activity has accounted for the diverse eco-regions and consequently the vegetation

types in the country. The Himalayan orography/topography plays an important role in defin-

ing variations in precipitation patterns of the mountain ranges [31]. This supports heteroge-

neous vegetation types including sub-tropical, temperate, alpine forms alpine pastures and

scrub in Himalayan regions. The heavy rainfall of south-western and north-eastern India pro-

vides favourable conditions for evergreen and moist deciduous forests. Being climatically

diverse, the Himalayan (East and West Himalaya) and south-western regions (Western Ghats)

support high species richness and therefore have been included among the major hotspots of

the world [32]. The western and north-western regions, with low annual precipitation, support
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desert and semi-arid ecosystems, and therefore mostly thorn forests with low species richness

are prominent.

Data source

We used the species richness data collected from the national-level project ‘Biodiversity Char-

acterization at Landscape Level’ [25]. The analysis was performed at two grid levels, namely, 1˚

and 2˚. Fishnets of two grid sizes covering the whole study area were created using the ‘Create

Fishnet’ tool of ArcGIS 9.3. The counts of unique plant species were spatially appended to the

respective grid cells using the spatial join method. The two grid levels were overlaid on each

other such that four grids of the 1˚ level contributed to a 2˚ grid level, leading to an increased

grid area (Fig 2) and subsequently more sample points. Finally, plant species raster data at two

scales (1˚ and 2˚) were generated using the ‘Polygon to Raster’ tool of ArcGIS 9.3 (S2 Fig). We

utilized the vegetation type map of India [26] to extract the vegetation area information at

each grid cell using the ‘Zonal Statistics’ tool (S2 and S3 Tables). All the maps were generated

using the ArcMap 9.3 software package.

Species richness estimation and sampling sufficiency

We fitted Clench equation to obtain the species accumulation curves to assess the degree of

sufficiency of the species inventories in each grid [23]. Therefore, we examined the increase in

the number of species accumulated with additional sampling in each grid. The curve suggests

that the probability of adding new species to the list decreases as the number of species already

recorded increases, but it increases over time. The curve follows a convex function until an

ideal asymptoteness of maximum species is attained, where the survey effort is almost infinite

[33]. The equation is

SðxÞ ¼ ax=ð1þ bxÞ; ð1Þ

where, x is a measure of the sampling effort, S(x) is the predicted number of species at effort x,

a represents the rate of increase at the beginning of the sampling, b is related to the mode of

accumulation of new species during sampling and a/b indicates asymptoteness.

The models were fitted using the Gauss–Newton method for least square non-linear prob-

lems using Statistica 7.0. The sampling sufficiency values were calculated using the asymptotic

value of Clench function for the cumulative number of species records [33]. The ratio of the

observed species richness to the asymptotic predicted species richness was calculated as a mea-

sure of the grid sufficiency. Clench function was fitted only to 277 and 92 grids at the 1˚ and 2˚

levels, respectively. Clench function was chosen because its fitness allows the estimation of

higher asymptotic values and thereby demonstrates more exigent degrees of sufficiency [34].

We used five sufficiency thresholds with respect to ±70% at 5% of variations as 60%, 65%,

70%, 75% and 80% of total Clench predicted values. We also calculated the theoretical effort

required (nq, in this case n0.70) to reach 70% of each inventory, which, according to Soberón

and Llorente [33], is given as

nq ¼ q=½bð1 � qÞ�; ð2Þ

where q is the relative proportion of the list of species to be detected.

We calculated the overall grid area, occupied Indian geographic area and vegetation area

within each 1˚ and 2˚ grid using the ‘Zonal Statistics’ tool in ArcGIS 9.3.

We proposed to lay out the quadrats at the 1˚ grid level on a priority basis in the under-

sampled grids using the heterogeneity and vegetation area as the criteria. For the purpose, we

extracted the vegetation type (a measure of heterogeneity) and grid vegetation area of each
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grid. The weighted method was used to define the sampling priority of each grid. Higher

weights were assigned to the grids having (i) the maximum grid vegetation area occupancy

and (ii) the maximum number of vegetation types. We used a 0–100 scale to measure both cri-

teria (i.e., vegetation type and vegetation area), with 0 being the least desired outcome for each

criterion and 100 the most desired outcome. Among the under-sampled grids, in assigning

weights for vegetation type, 1 was the least desired outcome and 13 was the most desired out-

come. For example, a grid having the maximum number of vegetation types (13) will get a

score of 100%:

½ð13 � 1Þ=ð13 � 1Þ ¼ 1 and 1� 100 ¼ 100%�:

Similarly, a grid having only one vegetation type will have a score of 0:

½ð1 � 1Þ=ð13 � 1Þ ¼ 0�:

The weightage for the vegetation area was defined similarly.

We assumed both the criteria to be equally important for sampling, and therefore they were

each assigned 50% weightages. Further, their weighted sum was calculated to define the prior-

ity grids for additional sampling.

Results

Species richness pattern

A total of 2,87,675 records for 6019 unique species from the Indian mainland were gathered

from 15,529 nested quadrats distributed over 100 vegetation types (S2A Fig). The greatest

number of quadrats (9158) was observed in the mixed forest class, with 20 vegetation types,

mostly tropical evergreen, sub-tropical broad-leaved, Himalayan temperate, sub-alpine, tropi-

cal sal and teak mixed deciduous, and temperate coniferous forests (refer to Roy et al. [26] for

all vegetation types). The smallest number of quadrats (161) was in woodlands, with only three

vegetation types: woodlands, tree savannah and shrub savannah (S1 Table).

Out of a total of 301 grids at the 1˚ level and 95 grids at the 2˚ level in the Indian mainland,

24 and three grids were observed to have fewer than five plots, respectively. These were dis-

carded from further analysis. A total of 207 and 40 grids were fully covered within the Indian

geographic area, leaving 94 and 55 grids to be partially covered at the 1˚ and 2˚ grid levels,

respectively (S2 and S3 Tables). The cumulative number of species was enumerated for all

grids falling within the Indian mainland that had forest vegetation (S2B and S2C Fig). The pat-

tern of species richness varied geographically. The number of species varied from a minimum

of 1 to a maximum of 59 at the individual quadrat level (S2A Fig). The ranges of species rich-

ness had minima of 3 and 6 and maxima of 623 and 1244 at the 1˚ and 2˚ grid levels, respec-

tively (S2B and S2C Fig). The highest number of species at the quadrat level (59) was found in

the south-eastern region of India, while most of the lower numbers of species, ranging from 1

to 8, were found in western India. At the 1˚ grid level, the greatest number of species (623) was

observed in the transition zone of Sikkim and West Bengal in the Himalayan region. At the 2˚

grid level, the greatest number of species (1244) shifted spatially to the southern region, includ-

ing the Western Ghats. The lowest numbers of species (3 and 17) were observed in the western

region, corresponding to Gujarat. There was no spatial shift at both the grid levels. At the 1˚

grid level, the maximum vegetation area (92.78%) was occupied in grids corresponding to

north-eastern Arunachal Pradesh, and nearly 45 grids had vegetation area greater than 50%

(S2 Table). At the 2˚ grid level, only seven grids had vegetation area greater than 50% and 14

grids had vegetation area less than 5%. The maximum vegetation area (79.76%) corresponds to

the grids falling in north-eastern India, including Assam, Meghalaya, Nagaland, Manipur,
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Mizoram and Tripura; the least vegetation area (0.31%) was in a 1˚ grid falling in Odisha (S3

Table).

Sampling sufficiency

Clench model fitness curves for all grids showed variations in the number of sufficiently

sampled grids at various thresholds, with sampling sufficiency inversely proportional to the

threshold limits. Clench model fitted well at both grid levels (r2 > 0.95 and p value < 0.001);

however, it tended to over-predict the true number of species by estimating higher degrees of

asymptoteness (S2 and S3 Tables). As the threshold of the sampling sufficiency increased at 5%

steps, the number of grids meeting the criteria decreased. Among 277 and 92 grids at the 1˚

and 2˚ levels, a total of 254 and 90 grids were observed to be sufficiently sampled at the 60%

threshold level, respectively (Table 1). Total numbers of grids of 243 and 88; 219 and 85; 177

and 77; and 119 and 66 were found to be sufficiently sampled at the 65%, 70%, 75% and 80%

threshold levels for the 1˚ and 2˚ grids, respectively (Table 1).

The number of sufficiently sampled grids decreased at higher threshold limits. The maxi-

mum numbers of grids with under-sampling at the 60% threshold limit were 91.7% and 97.8%

for the 1˚ and 2˚ levels, respectively, when grids with vegetation area less than 5% were not

considered. At the 80% threshold limit, 42.9% and 71.7% of the grids were found to be under-

sampled at the 1˚ and 2˚ levels, respectively. The numbers of grids with vegetation area less

than 5% at various threshold limits for the 1˚ and 2˚ grid levels were found to be 7 and 1, 11

and 2, 12 and 4, 18 and 7, and 25 and 10, respectively. Therefore, the number of sufficiently

sampled grids increased when the<5% vegetation area criterion was implemented, thus

including a few more grids (Table 1). At a threshold limit of 70%, more than 80% of grids were

found to be sufficiently sampled. When the<5% vegetation area criterion was considered,

nearly 84% and 90% of the grids were sufficiently sampled at the 1˚ and 2˚ levels with a 70%

threshold limit (Table 1).

Most of the insufficiently sampled grids were in the hotspot regions of India at both grid

levels. At the 1˚ grid level, for the 80% threshold limit, most of the under-sampled grids were

in the forest-rich regions of the Himalaya, the North-east, the Western Ghats and the arid

regions, including the Eastern Ghats in the Deccan Peninsula Zone (Fig 1). At higher threshold

limits, there were more under-sampled grids in the Himalaya, the Western Ghats and the arid

zones at the 2˚ grid level. The sampling sufficiency was greater in the Gangetic plain (including

the major part of the state of Uttar Pradesh) and the arid regions. The theoretical number of

samples needed to reach grid-level inventories at 70% (N70%) for the under-sampled grids

varied from 6 to 137 plots and from 22 to 94 plots for the 1˚ and 2˚ grid levels, respectively (S2

and S3 Tables).

Table 1. number of grids at different threshold level showing sampling in-/ sufficiency in Indian mainland.

1 degree 2 degree

% Threshold

level

Sufficient Insufficient Sufficient Insufficient

Excluding <5% veg area Including <5% veg area Excluding <5% veg area Including <5% veg area

60 254 (91.70) 261 (94.22) 23 (8.30) 90 (97.83) 91 (98.91) 2 (2.17)

65 243 (87.73) 254 (91.70) 34 (12.27) 88 (95.65) 90 (97.83) 4 (4.34)

70 219 (79.06) 231 (83.39) 58 (20.93) 85 (92.39) 89 (96.74) 7 (7.60)

75 177 (63.90) 195 (70.40) 100 (36.10) 77 (83.70) 84 (91.30) 15 (16.30)

80 119 (42.96) 144 (51.99) 158 (57.03) 66 (71.74) 76 (82.61) 26 (28.26)

* In parentheses % of sampling.

https://doi.org/10.1371/journal.pone.0173774.t001

Optimized grid representation of plant species richness in India

PLOS ONE | https://doi.org/10.1371/journal.pone.0173774 March 15, 2017 6 / 13

https://doi.org/10.1371/journal.pone.0173774.t001
https://doi.org/10.1371/journal.pone.0173774


Discussion

The sampling effort of the project ‘Biodiversity Characterization at Landscape Level’ demon-

strates sampling sufficiency with a 70% threshold limit at the 1˚ and 2˚ grid levels for the

Indian mainland. In general, a sampled species, when reaches at least 70% of the estimated spe-

cies for the particular group is considered the representative of the existing species richness

[35], [36].

1˚ grid

The sufficiency of grids is mostly due to a greater number of sampling plots, more infrastruc-

ture and better road access to forests. Most of the insufficiently sampled grids correspond to

the Himalaya and the Trans-Himalayan Zone, in north and north-eastern India. This might be

Fig 1. Spatial representation of sampling: Insufficiently sampled grids at various threshold levels (mentioned on top) for 1˚ and 2˚ grids; it

may be noted that all the grids those remained insufficiently sampled at 2˚ are bound to remain insufficiently sampled at 1˚ [*1˚ grids are

shown under the backdrop of 2˚ grid].

https://doi.org/10.1371/journal.pone.0173774.g001
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explained in terms of accessibility. The region spans an elevation range from below 100 m to

above 5000 m. It has the maximum deviation (nearly 1000 m) at 1˚, and the average tempera-

ture is ca. 8–10˚C. The harsh climate limits the accessibility of the region to the investigator for

sampling. Most of the studies have highlighted the issue of infrastructure biases, with sampling

being mostly influenced by the road network and infrastructure, leading to insufficiently sam-

pled areas [5]. Grids in the Western Ghats and parts of the Deccan Peninsula Zone might be

under-sampled due to the undulating terrain and restriction of accessibility. In contrast, most

of the sufficiently sampled grids in the Gangetic plains and parts of the Deccan Peninsula are

in close proximity to accessible areas.

2˚ grid

In the 2˚ grid, the species richness increases due to the cumulative effect of area. The curve is

more asymptotic in the 2˚ grid than in the 1˚ grid, essentially showing higher sufficiency (Fig

2). Sampling is highly dependent on the vegetation area. This is because high vegetation area

in a limited region (the grid in this case) offers investigators to lay more plots and vice versa.

The under-sampled grids at the 2˚ grid level (75% and 80% thresholds) in the Western Ghats

and the lower Deccan Peninsula were observed because of the presence of<5 quadrats at the

1˚ grid level.

Fig 2. Clench fitted species accumulation curves for (a) 1˚ grid and (b) 2˚ grid (attaining asymptoteness); *Highlighted in black color shows grid at

2˚ scale (a and b values shows no. of observed species, no. of asymptotic species (in brackets) and; total no. of sampling plots for the particular

grid).

https://doi.org/10.1371/journal.pone.0173774.g002
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Sampling sufficiency was observed to be highly scale–dependent, with greater sufficiency at

coarse grid level (Table 1). This might be due to the probability of larger numbers of sample

plots in coarse grids, which increases homogenous vegetation type and more common species

and supports the species–area curve hypothesis. Hence, the use of asymptotic functions facili-

tates rigorous comparisons by assessing the sampling sufficiency as demonstrated in the pres-

ent study [37], [33]. Clench model gives an estimate of the true number of species’ with the

prediction being at the ‘upper-limit’ asymptote. This is its strength in predicting species in spe-

cies-rich regions, i.e., hotspots. However, this can be reversed in species-poor areas, where the

model predicts a larger number of species where the number is actually low.

The survey was conducted specifically for the purpose of completing vegetation type–wise

sampling. Therefore the investigator might have spent more effort in laying plots in regions

with a specific vegetation type, ignoring under-sampled regions. We found a few densely sam-

pled grids in our data, with high species richness, overlapping hotspots. These can be regarded

as true hotspots, and thus the observed patterns can be regarded as valid in spite of the unequal

sampling. More rare and endemic species can be found in hotspots, and so with additional

sampling, the species richness will increase.

Prescriptions for additional sampling

We propose to lay out quadrats at the 1˚ grid level on priority basis in the under-sampled grids

(46; 16.6%) using the criteria of heterogeneity and vegetation area (Fig 3). Heterogeneity plays

a major role in determining the species richness pattern. In an area with heterogeneous vegeta-

tion types we can expect a greater number of species due to the distinct environmental condi-

tions. We observed that the grids from the Himalayan zone in north-eastern India suffer

severely from under-sampling and need to be urgently sampled since this is a major hotspot of

India. The priority grids clearly show that the under-sampled grids are mostly in hotspots

regions and require more sampling (Fig 3).

Although choosing a coarser grid level improves the sampling sufficiency, opportunities for

interpretation and ecological applications are poorer. The findings of the present study high-

light a significant issue of conserving plant biodiversity since coarse grid-level data are built

upon species inventoried at fine grid levels. For conservation research, the issue is critical

because fine grid-level studies are commonly used as the basic platform to estimate extinction

risks of species [38].

A spatial database is the need of the hour, and therefore the sampling adequacy of more

than 75% of the grids at the 1˚ and 2˚ grid levels represents the strength of our species data-

base, which can facilitate various researchers and scientific communities working at levels

ranging from the regional to the global.

This database will not only be helpful in linking and harmonizing various themes of raster

data, i.e., environmental data, so that they can be used as input in multi-scale models, but will

also be useful in aggregating data at multiple resolutions and using them in relational database

management systems.

Conclusions

Assessment of sampling sufficiency is crucial for any comprehensive study of plant species

richness patterns. Adequately sampled areas can be used to assess absence of species to

improve models of predicting species distribution patterns. Our study clearly reveals the sam-

pling-sufficient and sampling-deficient regions of the Indian mainland at the 1˚ and 2˚ grid

levels with various threshold limits. As expected, at lower sufficiency thresholds, larger num-

bers of grids were found to be sufficiently sampled. Larger numbers of grids were sufficiently
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sampled at the 2˚ grid level compared with the 1˚ level. The addition of environmental vari-

ables might help obtain more comprehensive pictures of broad-scale patterns of species. Field

surveys should be carried out in regions that are found to be under-sampled. Population den-

sity and infrastructure are surrogate variables for predicting sampling sufficiency. Our results

may serve as a guiding tool for future sampling efforts to generate a grid-level plant diversity

database of India.
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