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Background: Brain glioblastoma multiforme (GBM) is the most common primary malignant intracranial 
tumor. The prognosis of this disease is extremely poor. While the introduction of β-interferon (IFN-β) 
regimen in the treatment of gliomas has significantly improved the outcome of patients; The mechanism by 
which IFN-β induces increased TMZ sensitivity has not been described. Therefore, the main objective of the 
study was to elucidate the molecular mechanisms responsible for the beneficial effect of IFNβ in GBM. 
Methods: Messenger RNA expression profiles and clinicopathological data were downloaded from 
The Cancer Genome Atlas (TCGA) GBM and GSE83300 dataset from the Gene Expression Omnibus. 
Univariate Cox regression analysis and lasso Cox regression model established a novel 4-gene IFN-β 
signature (peroxiredoxin 1, Sec61 subunit beta, X-ray repair cross-complementing 5, and Bcl-2-like protein 2)  
for GBM prognosis prediction. Further, GBM samples (n=50) and normal brain tissues (n=50) were then 
used for real-time polymerase chain reaction experiments. Gene set enrichment analysis (GSEA) was 
performed to further understand the underlying molecular mechanisms. Pearson correlation was applied 
to calculate the correlation between the long non-coding RNAs (lncRNAs) and IFN-β-associated genes. 
An lncRNA with a correlation coefficient |R2|>0.3 and P<0.05 was considered to be an IFN-β-associated 
lncRNA.
Results: Patients in the high-risk group had significantly poorer survival than patients in the low-risk 
group. The signature was found to be an independent prognostic factor for GBM survival. Furthermore, 
GSEA revealed several significantly enriched pathways, which might help explain the underlying 
mechanisms. Our study identified a novel robust 4-gene IFN-β signature for GBM prognosis prediction. 
The signature might contain potential biomarkers for metabolic therapy and treatment response prediction 
for GBM patients.
Conclusions: In the present study, we established a novel IFN-β-associated gene signature to predict the 
overall survival of GBM patients, which may help in clinical decision making for individual treatment.

Keywords: The Cancer Genome Atlas (TCGA); Gene Expression Omnibus (GEO); Chinese Glioma Genome 
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925

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-21-1986


Cheng et al. Identification of an IFN-β-associated gene signature

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(11):925 | http://dx.doi.org/10.21037/atm-21-1986

Page 2 of 12

Introduction

Brain glioblastoma multiforme (GBM) is the most common 
primary malignant intracranial tumor (50%), and is 
associated with high morbidity and mortality in both adults 
and children (1-4). A histopathological from low-grade to 
high-grade transformation is associated with poor overall 
survival (5). Currently, surgery, radiation, and chemotherapy 
are the main treatment modalities of GBM. Chemotherapy 
is a critical process in the postsurgical treatment of GBM 
(6-8). Alkylating agents, such as temozolomide, remain 
the standard of care in GBM chemotherapy, but response 
remains poor (9).

DNA repair  protein,  O6-methylguanine-DNA 
methyltransferase (MGMT), plays an essential role in 
cellular resistance to alkylating agents (10). Clinically, 
chemoresistance occurs frequently in patients with GBM 
that exhibit an aberrant activation of MGMT. β-interferon 
(IFN-β) can act as a drug sensitizer, enhancing toxicity 
against various neoplasias, and is widely used in combination 
with other antitumor agents, such as nitrosoureas (11-13). 
IFN-β sensitizes glioma cells that harbor the unmethylated 
MGMT promoter and are resistant to temozolomide 
(11,14,15). Likewise, IFN-β induces loss of spherogenicity 
and overcomes therapy resistance of glioblastoma stem 
cells (16). Nevertheless, the specific mechanisms and 
molecules associated with this phenomenon have not yet 
been completely elucidated. Therefore, the main objective 
of the study was to elucidate the molecular mechanisms 
responsible for the beneficial effect of IFNβ in GBM. 

So far, studies have focused mainly on one gene is related 
with the other. In the present study, we firstly explored 
and analyzed all differentially expressed IFN-β-associated 
genes [gene set enrichment analysis (GSEA) M2567] and 
IFN-β-associated lncRNAs by systematic bioinformatics 
analysis. In total, 596 GBM patients were included in The 
Cancer Genome Atlas (TCGA) GBM to construct the 
prognostic model. Univariate Cox regression model found 
5 survival-related genes. Lasso-penalized Cox analysis 
then identified 5 genes to construct the prognostic model. 
Using the methodology previously described, the result is 
validated on the Gene Expression Omnibus (GEO) datasets 
(GSE83300). We found that a 4 IFN-β-associated gene 

[peroxiredoxin 1 (PRDX1), Sec61 subunit beta (SEC61B), 
X-ray repair cross-complementing 5 (XRCC5), and Bcl-2-
like protein 2 (BCL2L2)] signature was a robust marker of 
seizure prognosis in patients with GBM. Using data from 
the Chinese Glioma Genome Atlas (CGGA), we found that 
4 IFN-β-associated genes were independent biomarkers 
of prognosis. Pathway enrichment analysis results 
demonstrated that several modules are enriched in GBM-
related pathways.

Long non-coding RNA (lncRNA) has been demonstrated 
to play an important role in human diseases (17), especially 
in GBM. LncRNA AC003092.1 regulates tissue factor 
pathway inhibitor-2 (TFPI-2) expression through the 
competing endogenous RNA mechanism, and lncRNA 
SOX2OT (SOX2 overlapping transcript) interacts with 
RNA-binding proteins to promote the expression level of 
SOX2, which is involved in glioma chemotherapy (18,19). 
However, the relevance between IFN-β and lncRNA has 
not been fully elucidated in GBM. Pearson correlation was 
applied to calculate the correlation between lncRNAs and 
IFN-β-associated genes. An lncRNA with a correlation 
coefficient |R2|>0.3 and P<0.05 was considered to be an 
IFN-β-associated lncRNA. Univariate and multivariate 
Cox regressions were used for the survival analysis, which 
indicated that AC093278.2, AC004067.1, LINC01116, and 
AC017104.1 were independent prognostic factors for the 
overall survival of GBM patients.

The findings of the present study may lay the foundation 
for future studies investigating GBM. We present the 
following article in accordance with the REMARK 
reporting checklist (available at http://dx.doi.org/10.21037/
atm-21-1986).

Methods

Clinical specimens and data collection

Fifty human glioma tissue samples and 50 normal brain 
tissues were obtained from the Jiangxi Cancer Hospital 
of Nanchang University, China. Samples were frozen in 
liquid nitrogen after surgical resection. All procedures 
performed in this study involving human participants were 
in accordance with the Declaration of Helsinki (as revised 
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in 2013). The present study was approved by the Ethics 
Committee of the Jiangxi Cancer Hospital of Nanchang 
University. Informed consent was obtained from patients or 
guardians.

Messenger RNA (mRNA) expression profiles and 
clinical data were obtained from TCGA GBM (https://
cancergenome.nih.gov/), the GEO (GSE83300) database 
(https://www.ncbi.nlm.nih.gov/geo/), and the CGGA 
(http://www.cgga.org.cn/). The IFN-β-associated gene set 
(M2567) was obtained by GSEA using the gene set database 
(http://www.gsea-msigdb.org/). All data were analyzed using 
R software (version 4.0.2) (http://www.r-project.org).

Identification of differentially expressed genes in TCGA 
GBM

The limma package was used to screen the differentially 
expressed genes of interest with R software version 4.0.2. 
The expression pattern of the 120 IFN-β-associated genes 
was then investigated in TCGA. Genes were selected as 
consistently altered IFN-β-associated genes for subsequent 
prognostic analysis if they demonstrated a consistent 
expression pattern in TCGA cohort and if they were listed 
in the GSE83300 dataset.

Construction of the prognostic IFN-β-associated gene 
signature

Univariate Cox regression analysis and lasso-penalized 
Cox regression analysis were used to identify the 
prognosis-related IFN-β-associated genes and to 
construct the prognostic gene signature. P<0.05 in 
the univariate Cox regression analysis was considered 
statistically significant. The prognostic gene signature was 
shown as risk score=(coefficient mRNA1×expression of 
mRNA1)+(coefficient mRNA2×expression of mRNA2)+…
+(coefficient mRNAn×expression mRNAn). R package 
“survival” and “survminer” were used to explore the optimal 
cut-off of the risk score and to draw the Kaplan-Meier 
survival curve. In particular, the “surv_cutpoint” function 
of the “survminer” R package was used to determine the 
optimal cut-off value to divide patients into the high- and 
low-risk groups. R package “survivalROC” was used to 
investigate the time-dependent prognostic value of the 
gene signature. A 2-sided log-rank P<0.05 was considered 
significant for the survival analysis.

IFN-β-associated lncRNA screening

The profiles of the lncRNAs and IFN-β-associated genes 
were obtained from TCGA RNAseq dataset. Pearson 
correlation was applied to calculate the correlation between 
the lncRNAs and differential genes. An lncRNA with a 
correlation coefficient |R2|>0.3 and P<0.05 was considered 
to be an IFN-β-associated lncRNA.

Construction of the prognostic IFN-β-associated lncRNA 
signature

Construction of the prognostic IFN-β-associated lncRNA 
signature was performed as previously described.

GSEA

GSEA was applied to investigate potential mechanisms 
underlying the influence of differential gene expression on 
GBM prognosis. GSEA was also applied to detect whether 
a priori-defined set of genes showed statistically significant 
differential expression between the high and low-risk 
groups. Gene sets with a standard P<0.05 were considered 
to be significantly enriched.

Immunohistochemical staining

The paraffin-embedded glioma tissues were cut into 
thin slices and then placed on glass slides for the 
immunohistochemical experiments. The specimens were 
incubated with rabbit anti-BCL2L2, anti-PRDX1, anti-
XRCC5, and SEC61B antibody (1:200 dilutions; Abcam, 
Cambridge, MA, USA) at 4 ℃ overnight, followed by 
1-h incubation of biocatalyst secondary antibody (1:200 
dilutions, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 
at room temperature. The avidin-biotin complex method 
was used to determine the target protein’s location and 
relative expression to visualize the bound antibodies.

Statistical analysis

R 4.0.2 (www.r-project.org/) and SPSS.22 (www.ibm.com/
software/it/analytics/spss/) were used to compute statistical 
analyses. The association between the IFN-β-associated 
genes and clinicopathologic features was tested using the 
chi-square test. Comparison of two independent groups 
was made by two-tailed Students t test. A one-way analysis 
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of variance (ANOVA) was used to determine differences 
among groups. Statistical significance was set at *P<0.05, 
**P<0.01, ***P<0.001. P<0.05 was considered to indicate 
statistical significance.

Results

Construction and validation of the prognostic IFN-β-
associated gene signature

In total, 596 GBM patients and 121 IFN-β-associated 
genes (70 upregulated and 51 downregulated) were 
included in TCGA GBM to construct the prognostic 
model. Differential gene expression analysis identified 
14 downregulated and 53 upregulated IFN-β-associated 
genes, respectively (Table S1). First, the heat map shows 
the differential genes and analyzed these significant genes 
further (Figure 1A). Univariate Cox regression model found 
5 survival-related genes (Table S2). Lasso-penalized Cox 
analysis identified 5 genes to construct the prognostic model 
(Table S3). Using the methodology previously described, 
the result is validated on the GEO datasets (GSE83300) 
(Table S4). Patients were divided into high- and low-
risk groups depending on their risk score. GBM patients 
with high-risk scores had poor prognosis (Figure 1B,C).  
The increased expression of the 4 different signature 
genes (PRDX1, SEC61B, XRCC5, and Troxerutin (TXN) 
and reduced expression of the 1 signature gene (BCL2L2) 
was observed as the risk value increased (Figure 1D,E). 
Taking all of our results together, 4 genes were found to be 
correlated with unfavorable clinical outcomes.

Prognostic significance of the 4 signature gene expression 
in GBM

To further validate the expression of the prognostic genes 
constructing the gene signature, Kaplan-Meier survival 
analysis was used. The findings indicated that the high 
expression of SEC61B and XRCC5 was associated with poor 
prognosis in the GEO dataset (Figure 2A,B). Moreover, 
the high expression of SEC61B, XRCC5, and PRDX1 was 
associated with poor prognosis, and the low expression 
of BCL2L2 was associated with poor prognosis in TCGA 
dataset (Figure 2C,D,E,F). To further verify whether the 
expression of SEC61B, XRCC5, BCL2L2, and PRDX1 was 
associated with prognosis in GBM, the Gene Expression 
Profiling Interactive Analysis (GEPIA) database (https://
gepia.cancer-pku.cn/) was used. SEC61B, XRCC5, and 

PRDX1  had significantly high expression in tumor 
samples compared with normal samples, and BCL2L2 had 
significantly low expression in tumor samples compared 
with normal samples (Figure 2G). GBM samples (n=50) and 
normal brain tissues (n=50) were then used for real-time 
polymerase chain reaction (PCR) experiments. The results 
were consistent with the GEPIA database (Figure 2H).  
Taken together, the 4 signature gene expression is 
considered to be of clinical significance in GBM. 

Validation of the 4 signature genes in the CGGA database

To further validate these results, we used the CGGA. 
Kaplan-Meier survival analysis of the CGGA dataset 
showed that the high expression of SEC61B, XRCC5, and 
PRDX1, and the low expression of BCL2L2 indicated poor 
patient prognosis (Figure 3A,B,C,D). The expression level of 
BCL2L2 significantly decreased with higher-grade gliomas 
(Figure 3E). Moreover, the expression of SEC61B, XRCC5, 
and PRDX1 significantly increased with higher-grade 
gliomas (Figure 3F,G,H). To further validate these results, 
we performed immunohistochemical experiments. The 
immunohistochemical results obtained in the present study 
were consistent with the results of the CGGA database 
(Figure 3I). The expression of the 4 signature genes was 
considered to be of clinical significance in GBM.

GSEA analysis of the 4 signature genes

To further clarify the impact of the 4 signature genes on 
GBM, gene ontology and pathway enrichment analyses were 
performed using GSEA. The results revealed that these genes 
are mainly enriched in 14 pathways based on TCGA GBM 
database, including the calcium signaling pathway, cell cycle, 
epidermal growth factor receptor family (ERBB) signaling 
pathway, glyceraldehyde-3-phosphate dehydrogenase 
(GAP) junction, glioma, inositol phosphate metabolism, 
mitogen-activated protein kinase (MAPK) signaling pathway, 
oxidative phosphorylation, phosphatidylinositol signaling 
system, purine metabolism, ribosome, RNA degradation, 
spliceosome, and vascular endothelial growth factor (VEGR) 
signaling pathway (Figure 4A). Moreover, in the GEO 
dataset, these genes were mainly enriched in 9 pathways as 
follows: the calcium signaling pathway, cell cycle, extracellular 
matrix receptor interaction, ERBB signaling pathway, 
inositol phosphate metabolism, oxidative phosphorylation, 
P53 signaling pathway, phosphatidylinositol signaling system, 

https://cdn.amegroups.cn/static/public/ATM-21-1986-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1986-supplementary.pdf
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Figure 2 Prognostic significance of 4 signature gene expression in glioblastoma multiforme (GBM). (A,B) Survival analysis of the 2 
prognostic β-interferon (IFN-β)-associated genes based on the Gene Expression Omnibus (GEO) database. (C,D,E,F) Survival analysis of 
the 4 prognostic IFN-β-associated genes based on The Cancer Genome Atlas (TCGA) database. (G) Expression analysis of 4 prognostic 
IFN-β-associated genes according to the Gene Expression Profiling Interactive Analysis database. (H) Real-time polymerase expression 
analysis of 4 prognostic IFN-β-associated genes in normal brain tissues (n=50) and GBM tissues (n=50). *P<0.05, ***P<0.001.

and pyrimidine metabolism (Figure 4B). These genes may be 
involved in the proliferation of GBM.

Prognostic impact of IFN-β-associated lncRNA signature 
for GBM

Considering the critical role of lncRNAs in GBM, the 
identification of important lncRNAs in cancer and 

developing lncRNA-based therapeutic strategies are 
important. Pearson correlation was applied to calculate 
the correlation between lncRNAs and IFN-β-associated 
genes. An lncRNA with a correlation coefficient |R2|>0.3 
and P<0.05 was considered to be an IFN-β-associated 
lncRNA. Univariate and multivariate Cox regressions 
were used for the survival analysis, and indicated that 
AC093278.2, AC004067.1, LINC01116, and AC017104.1 
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Figure 3 Validation of four signature-genes in the Chinese Glioma Genome Atlas (CGGA) database. (A,B,C,D) Survival analysis of the 
4 prognostic β-interferon (IFN-β)-associated genes based on the CGGA database. (E,F,G,H) Expression analysis of 4 prognostic IFN-β-
associated genes according to the CGGA database. (I) Immunohistochemistry of the 4 prognostic IFN-β-associated genes.

were independent prognostic factors for the overall 
survival of GBM patients (Figure 5A,B,C). Moreover, the 
high expression of the AC004067.1, AC017104.1, and 
LINC01116 is associated with poor prognosis, and the low 
expression of AC093278.2 is associated with poor prognosis 
in TCGA dataset (Figure 5D,E,F,G). GBM samples (n=50) 
and normal brain tissues (n=50) were then used for real-
time PCR experiments to validate the expression of the 
IFN-β-associated lncRNAs in GBM. RT-PCR showed 

that, compared with the normal brain tissues, AC004067.1, 
AC017104.1, and LINC01116 were highly expressed and 
AC093278.2 and a low expression in GBM (Figure 5H).  
Therefore, IFN-β-associated lncRNAs have a high 
diagnostic value for GBM.

Discussion

With the development of high-throughput sequencing 
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Figure 4 Gene set enrichment analysis (GSEA) analysis of the 4 signature genes. (A,B) GSEA analysis of the 4 prognostic β-interferon 
(IFN-β)-associated genes based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database.
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technology, the understanding of cancer is becoming 
clearer. As the scope of analyzed genes and diseases expands, 
bioinformatics analysis is becoming increasingly important. 
In the present study, we analyzed the biological functions 
of a prognostic IFN-β-associated gene signature using 
bioinformatics analysis. 

Univariate Cox regression model found 5 survival-related 
genes. Lasso-penalized Cox analysis identified 5 genes to 
construct the prognostic model. Using the methodology 
previously described, the result is validated on the GEO 
datasets (GSE83300). We found that 4 IFN-β-associated 
genes (PRDX1, SEC61B, XRCC5, and BCL2L2) signature 
was a suitable marker of seizure prognosis in patients with 

GBM. Using the CGGA data, we found that 4 IFN-β-
associated genes are independent biomarkers of prognosis 
and play important roles in many biological processes. For 
example, PRDX1 is a member of the peroxiredoxin family 
of antioxidant enzymes, which reduce hydrogen peroxide 
and alkyl hydroperoxides (20). PRDX1 forms a heterodimer 
with p38α MAPK14, stabilizing phosphate-p38α in glioma 
cells (21), and epigenetic silencing of PRDX1 is frequent 
in 1p/19q-deleted oligodendroglial tumors and likely 
contributes to radiosensitivity and chemosensitivity of 
these tumors (22). XRCC5 is the 80-kD subunit of the 
Ku heterodimer protein, which is also known as ATP-
dependent DNA helicase II or DNA repair protein XRCC5. 



Annals of Translational Medicine, Vol 9, No 11 June 2021 Page 9 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(11):925 | http://dx.doi.org/10.21037/atm-21-1986

Figure 5 Prognostic impact of the β-interferon (IFN-β)-associated lncRNA signature for glioblastoma multiforme (GBM). (A) Network 
of prognostic lncRNAs with co-expressed IFN-β-associated lncRNAs in GBM. (B) Survival curve of GBM patients based on risk score 
model in The Cancer Genome Atlas (TCGA). (C) Survival duration and status of GBM cases. IFN-β-associated lncRNA risk score analysis 
of GBM patients in TCGA. Heatmap of the 4 key lncRNAs expressed in GBM. (D,E,F,G) Survival analysis of the 4 prognostic IFN-
β-associated lncRNAs based on TCGA database. (H) Real-time polymerase chain reaction expression analysis of 4 prognostic IFN-β-
associated lncRNAs in normal brain tissues (n=50) and GBM tissues (n=50). ***P<0.001.
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The polymorphisms of XRCC5 play an important role in 
astrocytoma prognosis in the Chinese Han population, 
which could be used in the determination of astrocytoma 
prognosis in clinical research (23). Elevated XRCC5 
expression level can promote temozolomide resistance and 
predict poor prognosis in glioblastoma (24). BCL2L2 is a 
member of the Bcl-2 protein family. The proteins of this 
family form heterodimers or homodimers and act as anti- 
and pro-apoptotic regulators. The expression of (24) in 
various cancer cell types. Interestingly, BCL2L2 mRNA is 
highly expressed in the mesenchymal type of GBM (25). 
Through the wide variety of studies published to date, 
no clear consensus for the BCL2L2 is correlated with 
radiotherapy and chemotherapy in GBM. SEC61B is the 
central component of the protein translocation apparatus of 
the endoplasmic reticulum membrane (26). However, to the 
best of our knowledge, the expression pattern and function 
of SEC61B in GBM have not been previously reported; 
the role of the BCL2L2, XRCC5, SEC61B in glioma 
radiotherapy still remains unclear. Therefore, further study 
is warranted.

Considering the critical role of lncRNAs in GBM, 
the identification of important lncRNAs in cancer and 
developing lncRNA-based therapeutic strategies will 
be important in the future. Univariate and multivariate 
Cox Pearson correlation was applied to calculate the 
correlation between the lncRNAs and IFN-β-associated 
genes. regressions were used for the survival analysis, and 
indicated that AC093278.2, AC004067.1, LINC01116, 
and AC017104.1 were independent prognostic factors for 
the overall survival of GBM patients. LncRNA genes play 
important roles in many biological processes. For example, 
LINC01116 promotes tumor proliferation, migration, 
and invasion in glioma cell (27,28). However, the role of 
AC093278.2, AC004067.1, and AC017104.1 in GBM has 
not been reported, and it is important that it is elucidated 
in future studies. All in all, a novel IFN-β-associated gene 
signature to predict the overall survival of GBM patients, 
which may help in clinical decision making for individual 
treatment.

Conclusions

In the present study, we explored and analyzed differentially 
expressed IFN-β-associated genes  by  systemat ic 
bioinformatics analysis and established a novel IFN-β-
associated gene signature to predict the overall survival of 
GBM patients, which may help in clinical decision making 

for individual treatment.
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