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WHY ARE ENDOPHENOTYPES IMPORTANT? DEFINITIONS 
OF ENDOPHENOTYPES VERSUS BIOMARKERS AND 
MAJOR IMPLICATIONS
Schizophrenia is an inherited, complex genetic disorder currently 
defi ned categorically on the basis of cross-sectional symptoms and 
longitudinal course, but not underpinned by any objective biologi-
cal measures or physical/neurologic signs. This is problematic as: 

(a) schizophrenia is complex at the level of the phenotype, due 
to high variability and mutability of the defi ning clinical 
symptoms. 

(b) patients may refuse to disclose their symptoms (due for exam-
ple to paranoid suspiciousness, itself a common symptom of 
the illness), or 

(c) individuals may claim falsely to have symptoms (for example 
in a legal context), that are by nature unverifi able and 

(d) although the clinical symptomatology of schizophrenia can 
be striking, there are no pathognomonic symptoms, (for 
example considerable overlap exists between symptoms of 
schizophrenia and those of psychotic bipolar disorder).

Because the pathophysiology of schizophrenia is obscure, there 
is no laboratory test or biological marker deriving from the core 
etiopathology. Biomarkers are quantitative characteristics that  signal 
 normal or abnormal biologic processes, or predict treatment response. 
For particular pathologic states they are disease-specifi c fl ags of its 
existence or severity, directly associated with clinical manifestations 
and outcome (Allen et al., 2009; Ritsner and Gottesman, 2009). For 
example, hemoglobin A1c (or glycosylated hemoglobin) in Type 
II diabetes is related both to pathophysiology (altered carbohydrate 
metabolism) and indicates an important disease feature, (abnormally 
elevated blood glucose). Because the classical phenotype of schizo-
phrenia is complex, varied and overlaps extensively with that of other 
illnesses such as psychotic bipolar disorder, the search for biological 
markers associated with schizophrenia has been a diffi cult one.

Because of such problems investigators in recent years have 
focused more on endophenotypes then on biomarkers. In con-
trast to biological markers, endophenotypes or “intermediate 
 phenotypes,” are viewed as quantifi able biological variations or 
defi cits that are examples of stable trait markers or indicators 
of presumed inherited disease vulnerability (for recent reviews, 
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see Prasad and Keshavan, 2008; Allen et al., 2009; Ritsner and 
Gottesman, 2009). Endophenotypes, as conceived by Gottesman 
and colleagues (e.g. Gottesman and Gould, 2003; Chan and 
Gottesman, 2008) and elaborated by others (Pearlson and Folley, 
2008a,b; Prasad and Keshavan, 2008; Allen et al., 2009), are her-
itable, quantitative traits associated with an illness both epide-
miologically and also conceptually in the sense of being on the 
putative path from genes, via molecular biologic mechanisms, to 
brain states to overt behavior. They are state-independent (i.e. not 
only present during acute illness), co-segregate within families and 
occur in some unaffected relatives of individuals with the disorder, 
(because they represent vulnerability for the disorder), although at 
a higher prevalence than in the general population. They may not 
be visible to the naked eye and are generally assessed by experi-
mental, laboratory-based methods rather than by clinical observa-
tion; this approach may include challenge tests to “unmask” the 
marker. Because schizophrenia is likely a common, multi-genetic 
disorder (analogous to hypertension or type II diabetes) endophe-
notype strategies are increasingly used by researchers, based on 
the presumption that endophenotypes are more straightforwardly 
inherited and are underpinned by fewer genes than are complex, 
heterogeneous phenomenological entities such as clinical psychi-
atric diagnostic categories (Pearlson and Folley, 2008a,b). Because 
endophenotypes are “intermediate” between a clinical syndrome 
and the associated disease vulnerability genes (illness markers not 
illness features) using them therefore simplifi es the search for the 
etiopathology and genetic determinants of schizophrenia (Chan 
and Gottesman, 2008; Pearlson and Folley, 2008a,b).

The reader is referred to a recent review of schizophrenia-
 associated endophenotypes (Allen et al., 2009). Despite displaying 
some useful properties (Prasad and Keshavan, 2008),  employment 
of structural brain imaging endophenotypes in schizophrenia 
has generally been limited by their low diagnostic specifi city. 
Endophenotypes derived from functional imaging paradigms 
seem intuitively more promising, but there is an enormous vari-
ety of these from which to choose. This article contrasts two very 
different such functional endophenotypes; those associated with 
working memory (WM) tasks versus those related to simple or no 
cognitive tasks. As well as task type, analytic strategies also vary. 
The majority of task-related functional studies in schizophre-
nia are analyzed using classic general linear model (GLM) based 
approaches; recently, newer analytic paradigms such as independ-
ent  component analysis (ICA) have opened up new possibilities 
for both task-related and unrelated designs.

There are problems inherent in the predominant fMRI 
research strategy of focusing on challenge tasks based in cog-
nitive domains where schizophrenia patients are behaviorally 
impaired, such as WM. Such problems include that patients often 
do not fully comprehend complex instructions and have prob-
lems performing tasks consistently in the scanner. They fatigue 
easily, have generally reduced concentration and attention, may 
be poorly motivated, distracted by illness symptoms such as 
hallucinations and sedated from medication side effects. Poor 
performance and abnormal task-related BOLD response are thus 
confounded in a “chicken and egg” situation which may be dif-
fi cult to disambiguate. One solution to this problem has been 
to use easy or minimal-effort paradigms such as oddball tasks 

in which patients and controls perform at comparable levels of 
accuracy, or even imaging during rest, when there is no task (such 
as resting state/default mode paradigms), requiring no cognitive 
effort on the part of the subject (e.g. Greicius et al., 2004; Bluhm 
et al., 2007; Garrity et al., 2007).

Some of the major contrasts between these two divergent types 
of studies discussed in this article are highlighted in Table 1, which 
cites representative and recent widely cited illustrative articles and 
reviews whose general topic headings are elaborated in detail in 
the remainder of the paper.

CURRENT NEUROIMAGING APPROACHES USING COGNITION; DLPFC 
IN PATIENTS AND IN RELATIVES
Working memory, the ability to hold information on-line and 
manipulate it for short periods of time (Baddeley, 1992) has been 
studied in depth in humans and animals. WM and related execu-
tive abilities, (e.g. planning, multi-tasking), are characteristically 
impaired in schizophrenia, Silver et al. (2003). Schizophrenia 
patients exhibit defi cits on WM tasks of many designs (Park 
and Holzman, 1992; Cohen et al., 1996; Barch et al., 1998, 2009; 
Goldberg et al., 1998; Wexler et al., 1998; Park et al., 1999). Such 
WM performance disturbances in schizophrenia are present in 
never-treated, fi rst-episode, acutely ill and chronic patients and also 
(to a lesser degree) in their unaffected fi rst-degree relatives, includ-
ing discordant twins (Callicott et al., 2003a; Barch and Smith, 2008; 
Meda et al., 2008). Issues related to WM abnormalities in schizo-
phrenia have become methodological test-beds in the research 
fi eld as the allied pathophysiology has been so well studied in this 
disorder and refl ects daily life functioning (Green, 1996).

For these reasons, different types of WM paradigms have been 
chosen as the basis of dominant type of cognitive functional MRI 
task studied in schizophrenia patients. Following on WM stud-
ies of nonhuman primates (Friedman and Goldman-Rakic, 1994; 
Petrides, 1995; Miller et al., 1996), human WM fMRI studies have 
largely focused anatomically on the dorsolateral prefrontal cortex 
(DLPFC), a similarly involved area in humans (D’Esposito et al., 
1999; Rypma and D’Esposito, 1999; Manoach et al., 2003; Veltman 
et al., 2003). DLPFC likely plays a crucial role in coordinating a 
distributed, executive task-relevant functional network. Additional 
modules in this circuit include other frontal regions, (ventrolateral 
and polar PFC and anterior cingulate), plus inferior parietal lobule 
(Manoach et al., 2003; Meda et al., 2008) and hippocampus (Glahn 
et al., 2005; Meda et al., 2008).

fMRI studies in schizophrenia typically center on patient/control 
DLPFC activation differences. Reports disagree on the direction 
of differences (see meta-analysis of Van Snellenberg et al., 2006), 
with some fi ndings of patient DLFPC underactivation compared 
to controls (Yurgelun-Todd et al., 1996; Callicott et al., 1998) and 
others of patient overactivation (Manoach et al., 2000; Callicott 
et al., 2003b). Evidence suggests that the magnitude and direction 
of BOLD response vary depending on relative task diffi culty in 
relation to a given individual’s baseline effi ciency on a particular 
task, (Manoach et al., 2000; Callicott et al., 2003b; Johnson et al., 
2006; Meda et al., 2008). Thus, under conditions of equivalent task 
performance, schizophrenia patients activate DLPFC “ineffi ciently,” 
manifesting more WM-related activation than controls (Callicott 
et al., 1999, 2003b). With increasing task diffi culty, patients exceed 
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For the above reasons, some investigators have preferred 
to use versions of the Sternberg Item Recognition Paradigm 
(Sternberg, 1966) to examine WM (Manoach et al., 1997, 2000, 
2003; Veltman et al., 2003; Johnson et al., 2006; Meda et al., 
2008) because WM load can be increased more gradually and the 
 distinct task stages separated more easily; relative to the N-Back 
task, the Sternberg task allows a clearer temporal dissociation of 
 encoding, maintenance, and response selection/response selec-
tion phases of WM.

Despite the numerous WM studies in the schizophrenia litera-
ture, and the demonstration of abnormal cortical  connectivity 
(Meyer-Lindenberg et al., 2001), several important questions 
remain to be clarifi ed regarding the specifi c neural underpin-
ning of impaired cognition in schizophrenia. For example, 
task-related DLPFC activation in schizophrenia is often more dif-
fuse, less restricted to DLPFC and more likely to involve antero-
medial and ventral frontal activation., This phenomenon is not 
related to the specifi c WM task employed, but could represent 
a result of DLPFC ineffi ciency, resulting in the need for backup 
 recruitment of neighboring regions (e.g. as argued by Glahn 
et al., 2005; Ragland et al., 2007). In addition, the epicenter of 
DLPFC activation in schizophrenia differs from that identifi ed 
in controls, being located in regions close by (Glahn et al., 2005). 
This phenomenon could either be based on abnormal functional 
connectivity, or on deviant structurally-based functional locali-
zation e.g. see MacDonald et al. (2006). While a more recent 
quantitative meta-analysis (Minzenberg et al., 2009) discusses 
aspects of this issue, the more over arching question has to do 
with the fundamental underlying mechanisms. Until these are 
better clarifi ed for example in the biochemical or genetic level 

Table 1 | Comparison of endophenotypic properties of working memory and default mode/resting state studies in schizophrenia and controls.

 fMRI working memory paradigms fMRI resting state and default modes

Associated with illness  Meyer-Lindenberg and Garrity et al., 2007; Jafri et al., 

 Weinberger, 2006; 2008: Broyd et al., 2009

 Glahn et al., under review;

 Ragland et al., 2007

State independent Ragland et al., 2007 Broyd et al., 2009

Heritable Blokland et al., 2008** Glahn*

Present in unaffected family members Callicott et al., 2003a; Whitfi eld-Gabrieli et al., 2009

 Winterer et al., 2004; 

 Meda et al., 2008

May be related to “cause”  Winterer et al., 2004;  Calhoun et al., in press

(“disconnection”, DLPFC ineffi ciency, etc) Meyer-Lindenberg and 

 Weinberger, 2006

Quantitative, measured reliably Ragland et al., 2007 Broyd et al., 2009; Calhoun et al., in press

Stability over time (test-retest)  Broyd et al., 2009

Diagnostic specifi city  Calhoun et al., 2008b

  (Schizophrenia vs bipolar)

Partially identifi ed genetic basis Meyer-Lindenberg and  Meda et al., under review

 Weinberger, 2006

“Good candidate endophenotype” Allen et al., 2009 Meyer-Lindenberg, 2009

*D. Glahn et al., under review based on preliminary data in 333 subjects from the San Antonio study.

**h2 (heritability) was not signifi cant, but heritability values were higher in monozygotic than dizygotic twins.

their cognitive capacity, leading to their disengaging or  performing 
poorly, with consequent relative DLPFC underactivation (Callicott 
et al., 2000, 2003b; Manoach et al., 2000; Manoach 2003; Johnson et 
al., 2006). Thus, WM load correlates with DLPFC activation in an 
inverted U-shaped curve; the curve in schizophrenia is both be fl at-
ter and shifted towards the left compared to controls,  refl ecting their 
ineffi cient task-related BOLD- response (Callicott et al., 2003b; 
Johnson,  et al., 2006). Schizophrenia may also be associated with 
reduced ability to use context to guide task performance (Cohen 
et al., 1996; Servan-Schreiber et al., 1996; Barch et al., 2001; Henik 
et al., 2002; Ford et al., 2004; Johnson et al., 2006).

Different WM investigations in schizophrenia have utilized dif-
ferent task designs to best highlight particular aspects of abnormal 
responding in patients. Load vs BOLD response effects are most 
often demonstrated by measuring activation at several levels of 
increasing memory load, often by using N-back WM tasks (e.g. 
Callicott et al., 1999, 2000; Perlstein et al., 2001; Jansma et al., 
2004). N-back designs however have unavoidable design problems. 
Usually, they incorporate target stimuli as probes, confl ating the 
separate WM subprocesses of encoding, maintenance, and retrieval. 
Ideally, these are modeled separately, as their underlying functional 
anatomy may differ. Also in schizophrenia, the different subproc-
esses may be differentially impaired. Second, the steep diffi culty 
gradient of the task curtails WM load-related response to three 
WM diffi culty levels. Related to this, the 1-back level is generally 
easy for both control and schizophrenia subjects, but the 3-back 
condition exceeds WM capacity in many patients and some healthy 
controls. Patients, aware of their poorer task performance at more 
diffi cult levels, can become demoralized, unmotivated and disen-
gaged from the task.
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the resulting phenomena (i.e. reduced motivation etc.) introduce 
design issues that cloud the ability to integrate fully across levels 
of measurement.

With regard to identifying the precise nature and progression of 
WM abnormalities in schizophrenia (and unaffected relatives), one 
debate centers on the specifi city of WM defi cits to task phase (e.g. 
MacDonald et al., 2003). Future studies will likely focus more on 
modeling the maintenance period between encoding and retrieval, 
which has been relatively understudied, but may be crucial. For 
example, Driesen et al. (2008) showed reduced prefrontal activity 
in patients during the maintenance phase, related to a faster decay 
rate of activity over time.

In summary, abnormal WM-related fMRI activation in occurs 
in a network, not just a single region (the DLPFC). The network 
in schizophrenia patients performs less effi ciently, is less con-
text-responsive to and does not react smoothly to changing load 
demands; the maintenance period may be especially impaired. 
Both hyper- and hypo-activation in patients are explainable by an 
inability to effi ciently organize and distribute appropriate circuit 
resources as needed for effective WM performance.

Abnormal WM-based fMRI BOLD response was chosen as 
a potential schizophrenia endophenotype based on fi ndings of 
WM performance defi cits in non-affected siblings of schizophrenia 
patients and in discordant twin studies (Park et al., 1995; Goldberg 
et al., 2003; MacDonald et al., 2003). As predicted, in fMRI studies, 
unaffected siblings also show aberrant DLPFC activation during 
WM tasks, even in some cases in the face of normal task perform-
ance, emphasizing the point made earlier that the endophenotype 
may be closer to the pathologic mechanism than to overt behav-
ior. For example Callicott et al. (2003a) found increased DLPFC 
activation in unaffected sibs of patients versus controls during 
encoding and manipulation of information, despite normal task 
performance. Brahmbhatt et al. (2006) determined that high-risk 
siblings abnormally hyperactivated PFC during response selec-
tion. Thermenos et al. (2004), using a combined attention/WM 
task, showed  unaffected relatives had more task-related activation 
in prefrontal cortex and thalamus; when task performance was 
 controlled, relatives over-activated. Finally, Meda et al. (2008) in 
an fMRI Sternberg WM task, reported that performance accuracy 
in unaffected fi rst-degree relatives did not differ from controls 
(although relatives were slower in responding to probes). The 
major functional differences were that relatives hypo-activated 
bilateral dorsolateral/ventrolateral prefrontal cortices (DLPFC/
VLPFC) and the posterior parietal cortex during stimulus encod-
ing epochs and hypo-activated bilateral DLPFC and parietal areas 
during response selection. fMRI differences in both conditions 
were load-modulated, with a parametric increase in between-
group differences with load in key regions during encoding and 
an opposite effect during response selection. While Callicott et al. 
(2003a) and Thermenos et al. (2004), reported increased DLPFC 
activation, Meda found DLPFC underactivation in both encod-
ing and response selection task phases, likely related to differ-
ences in task design or diffi culty, as discussed earlier. Thus in 
sum, (as reviewed by Meyer-Lindenberg and Weinberger, 2006), 
abnormal WM fMRI responses in unaffected relatives in addi-
tion to those in patients confi rmed their suitability as potential 
endophenotype candidates.

A richer explanatory context is now emerging for the abnormal 
fMRI WM fi ndings in schizophrenia. As we mentioned above, an 
earlier, simpler approach was to view schizophrenia as a primary 
DLPFC defect, with resulting WM defi cits underlying both other 
cognitive defi cits and major positive symptoms of the disorder 
(e.g. see Cohen et al., 1996; Silver et al., 2003) However, cognitive 
neuroscience suggests that network-level abnormalities at the level 
of circuits can better account for the WM abnormalities in schizo-
phrenia than explanations based on a single region, in a manner 
that also has interesting implications consistent with the concept 
of schizophrenia as a “disconnection syndrome” (Friston and Frith, 
1995). Evidence for this hypothesis is emerging from ICA, a data-
driven approach especially useful for decomposing activation dur-
ing complex cognitive tasks where multiple operations may occur 
simultaneously. It is often used to identify temporally coherent 
networks (Calhoun et al., 2008a) as we discuss later.

Second, fMRI reveals that tasks other than WM can produce 
abnormal BOLD signal in DLPFC in schizophrenia (eg Winterer 
et al., 2004; Becker et al., 2008; Delawalla et al., 2008; Woodward 
et al., 2009). Some of these paradigms (e.g. choice reaction time; 
Woodward et al., 2009), are based on tasks whose performance is 
heritable, associated with genetic vulnerability for schizophrenia 
in twin studies and state-independent in patients, suggesting they 
are also endophenotype candidates.

Third, regions other than DLPFC, and not necessarily strongly 
connected to it, also behave abnormally in schizophrenia patients 
and their siblings (e.g. Vink, 2006; Bonner-Jackson et al., 2007). 
The anterior cingulate cortex is but one example of a brain region 
forming part of a network that is severely disrupted in schizo-
phrenia across many cognitive paradigms ranging from the com-
plex (e.g. confl ict monitoring/cognitive interference; Rubia et al., 
2001; Heckers et al., 2004; Kerns et al., 2005) to the simple, (e.g. 
auditory oddball detection (AOD) (Kiehl et al., 2005; Laurens 
et al., 2005). Additionally other types of cognitive tasks such 
as sentence completion also provoke abnormal network BOLD 
activation in unaffected siblings of schizophrenia patients (e.g. 
Whalley et al., 2005).

These network-related abnormalities in general could represent 
an underlying, unifying issue of central importance to schizophre-
nia, for example an abnormality in underlying dopaminergic “tun-
ing” or effi cient signal transduction.

Finally, as would be expected of an endophenotype, a genetic 
context for WM fMRI studies in schizophrenia is now emerging; 
such studies to date have generally examined a single risk gene, 
(e.g. Egan et al., 2001). Callicott et al. (2003b) examined effects 
of COMT met/val genotype on PFC fMRI activation in several 
performance-matched diagnostic groups, during an N-back task. 
Irrespective of diagnosis (schizophrenia, unaffected sib, control), 
met allele load predicted more effi cient physiological response (less 
PFC BOLD activation) in the 2-back condition. In other words, 
“the group with relatively more cortical dopamine available at the 
synapse (i.e. met homozygotes) had relatively greater behavioral 
“bang” for its physiological “buck”. In both cohorts, siblings and 
schizophrenia patients showed increased DLPFC activation (inef-
fi ciency) relative to controls, despite comparable performance, 
suggesting heritability of ineffi cient PFC activation. The fact that 
ineffi cient DLPFC activation is not straightforwardly correlated 
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with abnormal WM performance in relatives and is associated with 
schizophrenia risk genes such as COMT polymorphisms, supports 
its utility as a presumptive endophenotype as also suggested by 
Goldberg et al. (2003).

There are parallels to the above, for example that allelic varia-
tion in putative schizophrenia risk gene SNPs also infl uence hip-
pocampal activation during several cognitive fMRI tasks; as do a 
Ser704Cys SNP of the disrupted in schizophrenia-1 (DISC1) gene, 
and a common variant of the brain-derived neurotrophic factor 
gene, (Egan et al., 2003; Pezawas et al., 2004; Callicott et al., 2005; 
Di Giorgio et al., 2008).

To summarize the above, Karlsgodt et al. (2008) summarized 
that evidence across such studies implicates neurodevelopmental 
disruption of brain connectivity in schizophrenia likely involv-
ing susceptibility genes affecting development of intra- and inter-
regional connectivity. Similarly Tan et al. (2007) suggests that a fi nal 
common effect of dopaminergic (e.g. COMT) and glutamatergic 
(e.g. GRM3) risk genes on “macrocircuit stability and functional 
 effi ciency” affect cortical signaling and ultimately processing strate-
gies, leading to the characteristic cognitive defi cits in schizophrenia. 
Thus, patients engage larger networks of cortical regions during 
task performance, consistent with “reduced signal-to-noise com-
ponents and the recruitment of compensatory networks”.

OTHER APPROACHES
There are problems inherent in the predominant fMRI research 
strategy of focusing on challenge tasks based in cognitive domains 
where schizophrenia patients are behaviorally impaired, such as 
WM. As we discussed earlier, numerous illness-related factors 
confound abnormal task-related brain activation and poor task 
performance. One solution to this problem has been to use easy or 
minimal-effort paradigms such as oddball tasks in which patients 
and controls perform at comparable levels of accuracy, or even 
imaging during rest, when there is no task (such as resting state/
default mode paradigms), requiring no cognitive effort on the 
part of the subject (e.g. Greicius et al., 2004; Bluhm et al., 2007; 
Garrity et al., 2007).

USE OF “SIMPLER” TASKS SUCH AS THE AUDITORY ODDBALL
Several groups have studied the AOD paradigm, originally devel-
oped in event-related potential studies, in detail using fMRI 
because it is a straightforward, relatively simple task activating 
multiple, diverse cortical and subcortical regions and is abnormal 
in schizophrenia patients and their unaffected relatives (Winterer 
et al., 2003a,b). Functional brain imaging studies took advan-
tage of this existing task which could be extended informatively 
with the unique capabilities of functional MRI. Despite the fact 
that patients can perform the task almost as well (as accurately 
if slightly slower than) healthy controls, GLM-derived activation 
patterns are abnormal in most schizophrenia patients (Calhoun et 
al., 2004; Kiehl et al., 2005; Calhoun et al., 2006a,b,c; Garrity et al., 
2007; Demirci et al., 2009; Sui et al., 2009). The electrophysiologi-
cal equivalent of the auditory oddball fMRI task is the auditory 
oddball P300 paradigm, a recognized endophenotype candidate 
for schizophrenia, whose activation patterns are strongly heritable, 
minimally infl uenced by illness stage or antipsychotic medication, 
and often abnormal in fi rst-degree unaffected relatives (although 

not  necessarily diagnostically specifi c). Future auditory oddball 
studies will undoubtedly explore more endophenotypic properties 
of fMRI response in schizophrenia such as heritability estimates, 
specifi city of abnormal patterns to schizophrenia, responses in 
unaffected fi rst-degree relatives etc. In addition to primary task-
correlated BOLD patterns generally obtained through use of GLM 
analytic approaches, (e.g. Kiehl et al., 2005) the AOD when analyzed 
using Independent Component Analysis (ICA)-based approaches 
(e.g. Calhoun et al., 2004, 2008b), has been used as a convenient 
means to derive default mode data (see below).

RESTING STATE AND DEFAULT MODE NETWORK PARADIGMS
Complex cognition is not generated by local processing within a 
single task-engaged brain region such as DLPFC, but from widely 
distributed groups of brain regions acting as neural networks or 
circuits (Ramnani et al., 2002; Fuster, 2006). In addition to the 
well-documented networks underlying WM, vision, language, 
sensory, motor and focused attention, researchers were surprised 
to discover other sets of networks (typically 10 or so) unrelated 
to overt cognitive tasks and even present at rest when no task was 
being performed (Cordes et al., 2001), (so called “resting state net-
works” or “default mode”) in which the brain idles, but there is 
interconnected processing of activity among major centers in the 
cerebral cortex (Raichle et al., 2001) discussed below. Examination 
of spontaneous brain activity during “rest” potentially eliminates 
the type of behavioral performance difference-related confounds 
mentioned at the start of this section and captures differences in 
“baseline” cognitive activity.

Characteristics of the Default Mode are listed in Table 2.
A major statistical approach to identifying signal from such 

networks is ICA. ICA and similar techniques are methods for 
recovering underlying signals from linear signal mixtures using 
higher-order statistics to determine a set of components that are 
maximally independent of each other. The method is “blind,” so 
that no task-related time course information is required in the 
model. ICA also has the advantage of not requiring seed voxels or 
the use of temporal fi ltering, (see McKeown and Sejnowski, 1998; 
Broyd et al., 2009). ICA is based on the assumption of spatially 
independent, temporally correlated, coherent brain networks. In 
addition to the strong temporal correlations within each compo-
nent/network, ICA approaches can also be used to identify also 
weak temporal correlations among these different networks. The 
latter relationships, as we review later, are used to assess functional 
network connectivity. ICA has been used to identify several tempo-
rally coherent networks present in healthy subjects either during 
rest or during performance of various tasks.

Table 2 | Characterization of default mode.

• Specifi c, anatomically defi ned brain network

•  Most active when subject not focused on external environment or cognitive 

task

• One of a family of circuits active during rest

• Contains sub-networks

• Constituent regions communicate via low-frequency oscillations

•  Activity diminishes when brain engages with external environment eg 

relative to task diffi culty
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nia endophenotype, these data reveal abnormalities in unaffected 
 relatives of schizophrenia subjects, (Whitfi eld-Gabrieli et al., 2009) 
and are patterns are heritable (Broyd et al., 2009; Glahn et al., 
under review).

Combining information from separate TCNs is also useful. In a 
separate experiment examining diagnostic discrimination between 
schizophrenia, psychotic bipolar disorder and healthy controls, an 
approach incorporating data from both the classic default and tem-
poral lobe modes derived from an AOD task using a leave-one-out 
approach, was able to achieve an average sensitivity and specifi city 
of 90% and 95% respectively Calhoun et al. (2008b). This showed 
the utility of the default mode as a diagnostic classifi er even when 
two psychotic groups were included in the analysis.

FNC AS A MEANS OF EXTENDING RESTING STATE STUDIES
As discussed above, complex cognition arises from task-related, 
widely distributed groups or networks of brain regions (Fuster, 
2006). Functional connectivity analyses provide an opportunity 
to extend our knowledge regarding neural circuits. As discussed 
in Calhoun et al. in press (accompanying article, this volume), the 
profi le and strength of network-to-network infl uences, i.e. inter-
actions across, rather than within networks, (“functional network 
connectivity”; (FNC) contains useful information. ICA of fMRI is 
well-suited to characterize multiple functional networks because 
by defi nition the brain regions in each component have the same 
profi le of hemodynamic signal change. Demirci et al. (2009) and 
Jafri et al. (2008) recently examined functional network connec-
tivity in controls and schizophrenia patients during resting state 
alone or in addition to WM and attention tasks, to examine the 
weaker temporal relationships (such as lags) between circuits. 
Such studies not only found evidence for measurable, directed 
infl uences among large-scale distributed functional networks in 
controls, but also found that schizophrenia was characterized by 
widespread disruption, greater dependency, and greater variability 
of network inter-relationships, possibly refl ecting cortical process-
ing  defi ciencies. Schizophrenia subjects showed signifi cantly higher 
correlations than controls among many of the dominant resting 
state networks (see additional details in Calhoun et al., in press).

In sum, several different functional networks identifi ed through 
ICA of BOLD activation appear to be important indicators of 
schizophrenia pathophysiology. As suggested by Mesulam (1998) 
emerging neural network research indicates that these circuits are 
commonly engaged across many tasks in both schizophrenia and 
control groups, including networks subserving complex focused 
attention, “brain idling”, working memory/executive decision-
making, set maintenance and language (1) prefrontal-parietal, (2) 
cingulate-opercular, (3) temporal lobe and (4) the classic “default 
mode” network). These circuits are focused around four major 
anatomic hubs already implicated in schizophrenia and suggest 
illness-related defi cits might arise from abnormalities in the quality 
or strength of functional connections among major nodes. Earlier 
we discussed one of these networks, the prefrontal-parietal, exten-
sively in the context of WM; thus these two apparently separate 
lines of research (complex “stress test” and “no task”) converge 
as can analysis methods, (Arfakanis et al., 2000). Therefore, an 
overarching hypothesis is that the “disconnection syndrome” in 
schizophrenia represents miscommunication and/or disconnection 

This type of functional connectivity is often measured as inter-
regional correlations among spontaneous fl uctuations of hemo-
dynamic activity during a “resting state” while participants lie 
passively in the MRI machine, but no active cognitive or behavioral 
demands are imposed. Initial identifi cation of signifi cant temporal 
inter-correlation among the precuneus/posterior cingulate, ventral 
anterior cingulate, and ventromedial prefrontal cortex (i.e., regions 
now defi ned as comprising the classic “default mode” of brain activ-
ity) (Greicius et al., 2003; Buckner et al., 2008; Broyd et al., 2009) 
led to interest in locating additional functionally-integrated neural 
networks during resting state and soon led to related fMRI research 
in schizophrenia. These recent reviews speculate that several mesial 
temporal regions may also contribute a sub-network within the 
default mode, but it remains unclear whether this contribution is 
primarily from memory-related functional studies. Investigations 
applying ICA or similar methods to resting state fMRI data have 
identifi ed additional discrete neural circuits comprised of brain 
regions often engaged by higher-order cognitive tasks, including 
fronto-cerebellar, parietal-cerebellar, fronto-parietal, and cin-
gulo-opercular networks (Beckmann, et al., 2005; Fransson, 2006; 
Dosenbach, et al., 2007; Seeley, et al., 2007). In sum, fMRI rest-
ing state research has found reproducible evidence for a “family” 
of 10 or more distinct networks engaged during rest (Beckmann 
et al., 2005; De Luca et al., 2005; Damoiseaux et al., 2006; Calhoun 
et al., 2008a). Resting state networks are also present during and 
modulated by cognitive task performance (where they are usually 
referred to as “default mode networks”; DMNs). Such circuits are 
more generally termed “temporally coherent networks” (TCN’s; 
Calhoun et al., 2008a) and are robust, straightforwardly identifi ed 
using ICA and can be consistently identifi ed at rest and during 
cognitive tasks. As well as the “classic” DMN a bilateral temporal 
network is prominent.

The DMN is highly metabolically active, being responsible 
for approximately 80% of brain energy metabolism. It partici-
pates in organized baseline brain “idling” and maybe represent 
self- refl ection, focus on internal stimuli, stream of  consciousness 
or other activities (Gusnard et al., 2001); certainly it diminishes 
during task-related behaviors (Raichle et al., 2001) in a manner 
 proportional to task diffi culty (McKiernan et al., 2003). In gen-
eral, the more effortful the cognitive task, the more the classic 
resting state/default mode network activity diminishes during 
task engagement, (McKiernan et al., 2003): in addition multiple 
“families” of TCN’s also show temporal and spatial modulation 
during cognitive tasks versus rest. This information was used by 
Garrity et al. (2007), who extracted default mode activity during 
performance of an auditory oddball task, and showed abnor-
malities in schizophrenia that correlated with both positive and 
negative illness symptoms. While in healthy subjects the network 
resonated slowly and regularly, this activity in schizophrenia was 
increased, more irregular and correlated with positive symptoms. 
DMN BOLD in schizophrenia was both over-and under-active 
within different regions, but the entire circuit appeared unable 
to stabilize itself in the default mode.

Other groups have also demonstrated signifi cant differences 
between schizophrenia patients and controls using resting state 
or default mode data, (Liang et al., 2006; Whitfi eld-Gabrieli 
et al., 2009). Consistent with its status as a putative schizophre-
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adrenergic receptor gene. Thus ParaICA seems to be a sensitive 
technique for dealing with gene/functional circuit interactions in 
medium-sized data sets.

CONCLUSIONS
We have attempted to summarize briefl y both where the fi eld is 
currently with regard to endophenotype discovery and validation 
as well as related advances in model building, proceeding from the 
new genetic and neuroimaging tools available to the fi eld. In this 
context, we contrast data derived from fMRI studies using two 
counterposed approaches; the dominant paradigm of “cognitive 
stress tests” based on cognitive tasks on which schizophrenia sub-
jects are previously known perform poorly versus newer, resting 
state/default mode studies where cognitive effort is minimized, 
that represent conceptually different approaches to endopheno-
type discovery as summarized in Table 3. Because of the wealth of 
prior experiments in animals and humans on WM paradigms, a 
large body of data exists on WM including major regions involved, 
relevant neurotransmitters, possible cell types, and whether major 
genes are known to play a role in the process. In contrast, the 
major “purpose”, if indeed there is one, for the default mode is 
still under active debate (for example see a detailed discussion in 
Buckner et al., 2008), and no related genetic underpinning has 
yet been revealed. However the very specifi city of detail regard-
ing WM is both a strength and weakness; WM may yet prove to 
be only a particularly marked example of a more generalized 
process that characterizes the fundamental pathophysiology of 
schizophrenia. Abnormalities in the default mode or in the ability 
to switch between the default mode and effortful cognitive tasks 
such as WM may be of greater relevance. In any event both of the 
approaches we delineate identify brain patterns that meet many 
criteria for endophenotypes in SZ, as summarized previously in 
Table 1. The gaps in that table show that not all endophenotypic 
criteria are met, because some needed data are not yet available. 
This presents an exciting challenge to researchers.

More generally, do functional neuroimaging studies perform 
better than other putative schizophrenia endophenotypes? No 
studies have yet suffi ciently compared different  endophenotypes 
in the same populations of patients, relatives and healthy  controls 
to address this question, as well as clarifying their disease  specifi city, 
e.g. compared to psychotic bipolar disorder. Ultimately, under-
standing the genetic architecture of imaging endophenotypes is 
likely to prove extremely important in better comprehending what 

between these key networks, which can be best understood through 
analytic approaches that determine how structural or functional 
connectivity abnormalities underlie the well-documented cognitive 
defi cits or symptomatic syndromes.

BOLD MEETS GENETICS: PROBLEMS WITH HIGH-
DIMENSIONAL DATA SETS
Most of the presumed many schizophrenia risk genes remain 
unknown and may exert their effects epistatically. As functional MRI 
endophenotypes emerge, an obvious question is how to connect 
them to the complex patterns of emerging schizophrenia risk genes 
as the latter are identifi ed (e.g. see Harrison and Weinberger, 2005), 
especially using newer approaches such as genome-wide association 
studies (GWAS). Analyzing such large, complex data sets involving 
the millions of gene variants and hundreds of thousands of voxels 
typically involved in a GWAS/functional imaging study, can rapidly 
overwhelm any relevant signal (Pearlson, 2009). This challenge has 
led to the development of new exploratory statistical techniques 
such as parallel independent component analysis (paraICA), (Liu 
et al., 2008) for analyzing such high-dimensional, multimodal data. 
A recent paper (Liu et al., 2009a,b) used this algorithm to identify 
simultaneously independent components of imaging and genetic 
modalities and the relationships between them.

Parallel ICA is a variant of ICA designed for multimodality 
processing. It extracts components using an entropy term based 
on information theory to maximize independence (Bell and 
Sejnowski, 1995) and enhances the interconnection by maximiz-
ing an inter-modality linkage function (Liu et al., 2009a,b), i.e. it 
extracts the intrinsic relationship between identifi ed independent 
components from two distinct modalities based on higher-order 
statistics. The technique is readily used as an approach for reveal-
ing relationships between brain function and SNP groupings, 
i.e. to identify a combination of SNPs related to functional brain 
networks. This involves simultaneously solving three problems: 
revealing a set of specifi c independent brain functions, identifying 
independent SNP associations, and fi nding the correlative rela-
tionship (mutual  information) between them Liu et al. (2008). 
The resulting  components extracted from fMRI data can be inter-
preted as spatially distinct networks of brain regions expressing 
functional changes in different subjects to different degrees. For 
instance, the degree to which a given network is present may dis-
tinguish healthy subjects from schizophrenia patients. Similarly, 
components extracted from SNP data are distinct, independent, 
linear combinations of SNPs (“clusters” of functionally linked 
SNPs, likely representing SNPs with common interactions) that 
may affect certain genetic functionalities or phenotypes, or even 
clusters of physiologically interacting genes. Loading parameters 
(Liu et al., 2008, 2009a,b) which express the association for every 
component with each subject are calculated.

As proof of principle, using data derived from an fMRI audi-
tory oddball task in only 43 healthy controls and 20 schizophrenia 
subjects (all Caucasian) the paraICA approach was able to iden-
tify (Liu et al., 2009a,b) a fronto-parietal fMRI component that 
signifi cantly separated schizophrenia patients from healthy con-
trols, and an associated 10-SNP component that also signifi cantly 
separated groups, that contained several known putative schizo-
phrenia risk genes, including DISC1, CHRNA7 and the alpha-2 

Table 3 | Comparison of default mode versus “dominant” working 

memory functional paradigms.

 DMN/resting state Typical WM

 paradigms paradigm

Ease of performance for High Low

psychiatrically ill subject

Characterization of underlying  Unknown Partially delineated

neurotransmitter genes

Time demand of task Low Typically high

BOLD output ambiguated by  No Yes

ability to perform paradigm
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constitutes biological risk for schizophrenia. If schizophrenia proves 
to be a disorder of cortical connectivity and functional imaging 
intermediate phenotypes have a simpler genetic architecture than 
the full clinical disorder, uncovering gene interactions that under-
pin functional disconnections is a priority. In particular, fi nding 
genes infl uencing DMN/RS as suggested by Meyer-Lindenberg 
(2009) and discovering how such genes “build” functional circuits 
in both the normal brain as well as how these differ in risk-related 
variants in schizophrenia and at-risk individuals is crucial. Several 
recent large-scale studies of clustering patterns of multiple endo-
phenotypes within and between categories of psychosis, such as 
Consortium on the Genetics of Schizophrenia (COGS; Braff et al., 
2007; Calkins et al., 2007) and The Bipolar Schizophrenia Network 
on Intermediate Phenotypes (B-SNIP; Thaker, 2008; Pearlson, 
2009) are now addressing these questions. In addition, the fi eld 
needs to take better advantage of analytic tools of great power 
that have become available recently and that allow problems of the 
degree of complexity of schizophrenia pathophysiology to be ana-
lyzed adequately. These tools include approaches such as paraICA, 
in which multiple genes (and perhaps their epistatic interactions; 
Liu et al., 2009a,b) can be modeled and the gene clusters thereby 
identifi ed  studied  subsequently with molecular pathway tools to 
uncover their collective  interactions in cellular processes that likely 
underlie schizophrenia’s pathophysiology.
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