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ABSTRACT Antibiotics are a mainstay of modern medicine, but as they kill their
target pathogen(s), they often affect the commensal microbiota. Antibiotic-
induced microbiome dysbiosis is a growing research focus and health concern,
often assessed via analysis of fecal samples. However, such analysis does not in-
form how antibiotics influence the microbiome across the whole host or how
such changes subsequently alter host chemistry. In this study, we investigated
the acute (1 day postadministration) and delayed (6 days postadministration) ef-
fects of a single parenteral dose of two common antibiotics, ampicillin or vanco-
mycin, on the global metabolome and microbiome of mice across 77 different
body sites from 25 different organs. The broader-spectrum agent ampicillin had
the greatest impact on the microbiota in the lower gastrointestinal tract (cecum
and colon), where microbial diversity is highest. In the metabolome, the greatest
effects were seen 1 day posttreatment, and changes in metabolite abundances
were not confined to the gut. The local abundance of ampicillin and its metabo-
lites correlated with increased metabolome effect size and a loss of alpha diver-
sity versus control mice. Additionally, small peptides were elevated in the lower
gastrointestinal tract of mice 1 day after antibiotic treatment. While a single par-
enteral dose of antibiotic did not drastically alter the microbiome, nevertheless,
changes in the metabolome were observed both within and outside the gut.
This study provides a framework for how whole-organism -omics approaches can
be employed to understand the impact of antibiotics on the entire host.

IMPORTANCE We are just beginning to understand the unintended effects of antibi-
otics on our microbiomes and health. In this study, we aimed to define an approach
by which one could obtain a comprehensive picture of (i) how antibiotics spatiotem-
porally impact commensal microbes throughout the gut and (ii) how these changes
influence host chemistry throughout the body. We found that just a single dose of
antibiotic altered host chemistry in a variety of organs and that microbiome altera-
tions were not uniform throughout the gut. As technological advances increase the
feasibility of whole-organism studies, we argue that using these approaches can pro-
vide further insight on both the wide-ranging effects of antibiotics on health and
how to restore microbial communities to mitigate these effects.
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Antibiotics, a cornerstone of modern medicine, have saved countless lives from
infectious disease since their widespread introduction in the 1940s (1). However, in

recent years, the collateral damage that antibiotics inflict on the commensal micro-
biome has become an increasing health concern. By ablating commensal microbes,
antibiotics can allow secondary infections, such as Clostridioides difficile colitis (2) and
candidiasis (3). Early life antibiotic exposure is particularly damaging (4) and has been
associated with greater risk of asthma (5), eczema (6), inflammatory bowel disease (7),
and obesity (8).

For antibiotic-induced microbiome perturbation to be transduced into altered
disease risk, changes in the metabolism and/or molecular composition of the host must
occur. However, little is known about how antibiotic-induced microbiome changes alter
the overall chemical makeup of the body. Numerous studies have used fecal samples
to assess microbiome composition (9–11) and stool metabolites (12–14) after antibiotic
treatment. Here, we deployed novel mass spectrometry informatics and three-
dimensional whole-organism data visualization approaches (15) to understand how a
single dose of parenteral antibiotics affects the gastrointestinal (GI) tract microbiome
and the local metabolome of every organ. We treated 10 mice with commonly
prescribed parenteral antibiotics, ampicillin (AMP), a broad-spectrum beta-lactam, and
vancomycin (VAN), a narrower-spectrum glycopeptide with activity against Gram-
positive bacteria (16), and 10 mice were treated with phosphate-buffered saline (PBS;
control) by intraperitoneal (i.p.) injection. One day and 6 days later, we dissected mice
to sample 77 different body sites from 25 different organs to evaluate the whole-
organism impact of antibiotics acutely and after microbiome recovery. We analyzed all
samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the
gastrointestinal tract samples (n � 38 per mouse) by 16S rRNA sequencing (see Fig. S1
in the supplemental material).

Antibiotic impacts on the microbiome. The greatest effects on the microbiome
occurred in mice that had received antibiotics 24 h prior (AMP.d1 and VAN.d1).
Compared to control mice, the centered log ratio (clr)-transformed proportion of
Gram-positive bacteria was significantly reduced in the fecal pellet, certain sections of
the stomach and colon of AMP.d1 and VAN.d1 mice, and certain sections of the cecum
in AMP.d1 mice (Fig. S2).

Compositionally, an increase in proteobacteria at the phylum level was observed in
both AMP.d1 (cecum and fecal) and VAN.d1 mice (duodenum and stomach), differen-
tially abundant sub-operational taxonomic units (sOTUs), also known as amplicon
sequence variants or exact sequence variants, were seen in both AMP.d1 and VAN.d1
mice, and the level of one Clostridium sOTU was significantly lower in VAN.d6 mice
(Fig. 1a and b). Antibiotic treatment also reduced microbiome alpha diversity (Fig. 1d).
Specifically, Shannon diversity was reduced in the lower GI tract (cecum, colon, and
fecal pellet) of AMP.d1 mice and in the upper GI tract (jejunum) of VAN.d1 and AMP.d1
mice. We next calculated unweighted UniFrac distance (17) for each group and
compared effect size to those of controls down the GI tract (Fig. 1e). AMP.d1 mice had
significantly altered beta diversity with high effect sizes, particularly in the lower GI
tract, while beta diversity changes for VAN.d1 mice were only significant in a few GI
sections. Effect size and diminished Shannon diversity were significantly correlated
(Fig. 1c). AMP had a greater effect on the gut microbiota overall than VAN, consistent
with its broader spectrum, recognizing that the biodistribution of parenteral VAN into
the gut is poorly studied. Both AMP and VAN are renally excreted, and it is possible that
some antibiotic was consumed orally via coprophagy through urine contacting fecal
pellets.

The global metabolome. To evaluate the global impact of antibiotics on metabo-
lome composition, we calculated effect size using Bray-Curtis distance comparing each
treatment group to controls and mapped the effect-size data onto a three-dimensional
(3D) mouse model to provide a spatial visualization (Fig. 2a). For each body site/organ,
averaging those with multiple samples (e.g., colon with 6 sections), only AMP.d1 and
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FIG 1 Antibiotics affect the GI microbiome. (a) Stacked bar plots of the average relative abundance of bacterial phyla by organ in control
mice and in mice 1 day after antibiotic treatment. (b) Count plot of significantly different sOTUs compared to the control; significance testing
was performed with ANCOM (44). (c) Spearman correlation of changes in Shannon diversity from the control with pairwise effect size (e) for
every noncontrol sample; the shaded area represents the 95% confidence interval (CI). (d) Shannon diversity down the GI tract. Asterisks
indicate Shannon diversity significantly different from the control (Mann-Whitney U test with a Benjamini-Hochberg FDR control level of 0.1);
error bars represent the 95% CI. (e) Pairwise effect size for each group compared to control samples, progressing down the GI tract.
Significance was determined by PERMANOVA with a Benjamini-Hochberg FDR control level of 0.1 (48). The effect size is the PERMANOVA R2

value.
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VAN.d1 showed significant differences in beta diversity (Fig. 2b). Both AMP.d1 and
VAN.d1 had significantly different Bray-Curtis distance versus control mice in fecal
samples. In peripheral organs, AMP.d1 mice differed significantly from the control in
Bray-Curtis distance in the gallbladder, while VAN.d1 mice differed significantly in
adrenal glands. We observed differentially abundant features in various organs com-
pared to control mice (Fig. 2a, inset barplots), some putatively annotated with Global
Natural Product Social Molecular Networking (GNPS) (18). Gallbladders of AMP.d1 mice
had many differentially abundant features, including elevated bile acids (cholic, tauro-
cholic, taurodeoxycholic, and cholenic acids). Uterine tissue of VAN.d1 and AMP.d1

FIG 2 Organism-wide impact of antibiotics on the metabolome. (a) Pairwise effect size for each group compared to control
samples, mapped onto body site using a 3D mouse model and a 2D illustration of the GI tract and percentage of
significantly different metabolites compared to the control; significance was determined by dsFDR (47) (FDR control level,
0.1). (b) Pairwise effect size for each group compared to control samples. For body sites with multiple samples (i.e., colon
cut into 6 sections), the metabolites were averaged for each mouse prior to calculating Bray-Curtis distance. Significance
was determined by PERMANOVA with a Benjamini-Hochberg FDR control level of 0.1 (48), and effect size is the
PERMANOVA R2 value.
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mice had significantly higher levels of arachidonic acid, its metabolites, including
8-HETE and prostaglandin E2, and linoleic acid metabolites, such as 9-OxoODE. Signif-
icantly different features in adrenal glands of all antibiotic treatment groups compared
to the control included a variety of elevated acylcarnitines and oxidized glutathione
(GSSG). Glutathione is a key antioxidant in the adrenal cortex, where steroidogenesis
generates reactive oxygen species (19), and GSSG is a biomarker of oxidative stress (20).
VAN is nephrotoxic (21), and only kidneys of VAN.d1 mice had differentially abundant
features, including elevated palmitoylcarnitine, a potential marker of renal toxicity in
rats (22).

Molecular networking analysis (18) of the raw metabolomics data revealed a cluster
of features (molecules or metabolites) associated with AMP (Fig. S3). Many of these
network features were present in our MS1 feature table and only in AMP.d1 mice, so
these were summed to examine the collective distribution of AMP and its metabolites.
Concentrated in the lower GI tract of AMP.d1 mice (Fig. S4A), the abundance of these
AMP network features correlated with metabolome effect size (Bray-Curtis distance)
and reduced Shannon diversity versus control mice (Fig. S3C and S4B), indicating that
metabolome and microbiome effects were greatest in areas of high local AMP concen-
tration. VAN (molecular weight, 1,449.2 g/mol) was not detected in our samples, limited
by the LC-MS/MS MS1 scan range of m/z 100 to 1,500.

In the lower GI tract, differential abundance testing revealed an increase in small di-
and tripeptides in AMP.d1 and VAN.d1 mice. To investigate this further, the metabo-
lomics data were processed through PEAKs (23) to yield peptidomics data. For most
sections of the lower GI tract and fecal pellet, the total number of peptides was
significantly higher in day 1 postantibiotic mice than day 6 postantibiotic mice and
untreated controls (Fig. S5A). These peptides aligned to several host proteins, including
histones, which were particularly enriched in the AMP.d1 and VAN.d1 mice. Peptide
fragments from histones H2A and H2B were significantly elevated in multiple sections
of the lower GI (Fig. S5B). These elevated histones could simply be a marker of increased
cell death, although histones also play an understudied role in innate immunity
(reviewed in reference 24). H2A and H2B can contribute to host defense by direct
antimicrobial activity (25, 26) or as components of neutrophil extracellular traps (27).
H2A is also elevated in the ileum of chickens with experimental gut damage (28).

To look at microbial and metabolite associations with histones, we ran a random
forest regression on colon and cecum samples for both the microbiome and
metabolome data, with each body site averaged for each individual mouse, for both
histone H2A and histone H2B. Colon and cecum samples were evenly split between
the train and test data sets. Regression performance for the microbiome data were
modest for H2A (R2 � 0.59, P � 0.0033) and H2B (R2 � 0.41, P � 0.023), and the
most important features in the regression model for H2A and H2B were mainly from
the Clostridiales order and positively associated with histone abundance, except for
one Anaeroplasma sOTU, the 6th most important feature for H2B, which was
negatively correlated with both H2A and H2B abundance. For the metabolomics
data, the regression performance was improved for H2A (R2 � 0.92, P � 7.3e�07)
and H2B (R2 � 0.75, P � 0.00029), although annotated features were not among the
top 20 most important features. The regression was repeated with the metabolome
data filtered to only contain putatively annotated features for H2A (R2 � 0.81,
P � 0.000068) and H2B (R2 � 0.737723, P � 0.000346). As expected, di- and tripep-
tides were among the top 10 annotated features for both H2A and H2B. Another top
feature for H2A was phytomonic acid, a saturated fatty acid present in bacterial
plasma membranes, which was positively associated with histone abundance;
accumulation of phytomonic acid is associated with ethanol stress in Oenococcus
oeni (29). Furthermore, 9,10-epoxy-12-octadecenoate, a metabolite that neutrophils
synthesize during oxidative burst (30), was also among the top features for H2A and
positively associated with histone abundance, hinting at neutrophil involvement.
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Metabolome-microbiome interactions. For gut samples with paired 16S sequencing
and metabolomics data, mmvec (31) was used to find cooccurrence probabilities between
metabolites and microbes. Metabolites of the same general class, defined by putative GNPS
annotations, had similar patterns of cooccurrence with microbes (Fig. S6A). To investigate
these relationships in more detail, a multinomial regression model (Songbird [32]) was used
to find sOTUs that were highly associated with AMP.d1 and VAN.d1 mice versus controls.
Coprococcus and Sutterella were associated with AMP.d1 mice, and two family S24-7
bacteria were associated with VAN.d1 mice. Looking just at putatively annotated metab-
olites, all of these sOTUs had high cooccurrence probabilities with tri- or dipeptides and
lowest cooccurrence probabilities with 13-docosenamide, a compound equally abundant
in blanks (Fig. S6B). Coprococcus and Sutterella, the sOTUs associated with AMP.d1 mice, had
high cooccurrence probabilities with several AMP network features and low cooccurrence
probabilities with certain bile acids. Both the S24-7 sOTUs and Coprococcus had low
cooccurrence probabilities with certain oligosaccharide- or sugar-related molecules, such as
maltose. Marker gene sequencing data limits the exploration of the metabolic capacity of
these bacteria to produce or consume these metabolites, although PICRUSt2 (33) predic-
tions of functional potential for these two S24-7 and Coprococcus sOTUs included maltose
O-acetyltransferase (KEGG entry K00661), an enzyme that acetylates maltose and other
sugars, and a variety of other sugar transport systems for the Coprococcus sOTU (KEGG
entries K10112, K10117, K10118, K10119, K03435, and K03436), suggesting the potential for
the consumption of sugars. Differential abundance testing recapitulates some of these
findings (elevated small peptides and AMP network features), although, in general, we did
not observe alterations in the abundance of bile acids or sugar-related molecules. Studies
with longer antibiotic courses report altered differential abundance of bile acids and
sugars/carbohydrates (34, 35), and our cooccurrence data hint at a relationship between
specific microbes enriched with antibiotic treatment and these metabolites.

Administering a single parenteral dose of either of the two common antibiotics did
not drastically alter the microbiome or metabolome beyond recovery; in fact, micro-
biome alterations were primarily resolved by day 6. Nevertheless, a single dose of AMP
or VAN still altered the metabolome at day 1 at a variety of body sites, both within and
outside the GI tract. Presumably, extended courses of antibiotics, as typically prescribed
in multiple daily doses, would exert even greater effects on the global metabolome, as
previously seen in studies focused on the GI tract (36). Notably, we observed differential
microbiome impacts with antibiotic type and by location in the GI tract. Successful
restoration of microbial communities after antibiotic administration may require tailor-
ing for antibiotic type and an understanding of which local GI communities are most
impacted.

Organism-wide analyses of the scale we have undertaken remain ambitious and still
encumber significant cost and manpower. However, as continual advances in technol-
ogy have markedly reduced the costs of -omics platform analyses, this work provides
a roadmap for understanding the real-time whole-organism-scale biological and chem-
ical effects of antibiotic administration.

Methods. (i) Experimental design. Thirty-seven-week-old female C57BL/6 mice
(Jackson Laboratory) were randomized to 3 or 2 mice per cage upon receipt and
allowed to acclimatize for 6 days before antibiotic administration. AMP and VAN were
administered by i.p. injection in doses of 100 mg/kg of body weight, dissolved in 100 �l
PBS. Control mice were given 100 �l PBS via i.p. injection. Cohoused mice were
administered the same antibiotic or PBS alone to avoid coprophagy across treatment
groups. All mice, including controls, were dissected at both day 1 and day 6 time points.
See Fig. S1 for a graphical representation of experimental design.

(ii) Sample collection and processing. Mice were dissected at both the day 1 and
day 6 postantibiotic administration time points, alternating between treatment groups.
The dissection protocol was as follows. Mice were sacrificed by CO2 asphyxiation,
followed by cardiac puncture. Dissection was carried out under an open flame with
forceps and scissors cleaned with 70% ethanol after the removal of each organ. Fresh
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fecal samples were collected prior to CO2 asphyxiation and organs removed in the
following order: spleen, gallbladder, liver, pancreas, stomach, duodenum, jejunum,
ileum, cecum, colon, kidneys, adrenal glands, urinary bladder, ovaries, uterine horns,
uterine body, cervix, vagina, thymus, heart, lungs, esophagus, trachea, and brain. Organ
subsections (e.g., lobes of the liver) were collected in separate tubes for a total of 77
samples per mouse.

Samples were flash frozen in 2-ml Eppendorf tubes in an isopropanol dry ice bath
(�77°C) and stored at �80°C. All samples were weighed, and 10 �l of sterile water per
milligram of tissue was added to each tube (i.e., 20 mg tissue, 200 �l water). For
samples under 15 mg, 150 �l of water was added. Samples were homogenized in a
Qiagen TissueLyser II using stainless steel beads.

(iii) Sample plating scheme. As the large number of samples required an extensive
amount of LC-MS/MS instrument time, which was not available in a continuous block,
we separated the samples into three organ groups to avoid issues with comparing
treatment groups across metabolomics runs. These groups included “gut” samples
(fecal, esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, pancreas, liver,
and gallbladder), “reproductive” samples (kidneys, adrenal glands, ovaries, vagina,
cervix, uterus, uterine horns, and bladder), and “circulatory” samples (blood, spleen,
heart, lung, trachea, thymus, and brain). To avoid plate effects biasing the results,
samples were plated by cycling through treatment groups, resulting in every 96-well
plate containing samples from multiple treatment groups. Both the metabolome and
sequencing plates were prepped at the same time for the gut samples to avoid extra
freeze-thaw cycles.

(iv) Metabolomics preparation and data acquisition. Five milligrams of tissue
homogenate (50 �l) was added to 96-well plates containing 150 �l of 70% high-
performance liquid chromatography (HPLC)-grade methanol (chilled) spiked with 5 �M
sulfamethoxine (final concentration, �50% methanol). Plates were sealed, vortexed,
and stored at 4°C overnight (12 h) for extraction. To remove insoluble material, plates
were centrifuged at 2,000 rpm at 4°C for 10 min, and 130 �l from each well was
aliquoted to a new 96-well plate. Plates were stored at �80°C, and, immediately prior
to running on the LC-MS/MS instrument, were centrifuged at 2,000 rpm at 4°C for
10 min; 100 �l was aliquoted to a new 96-well plate. LC-MS/MS data acquisition was
performed on a Vanquish ultrahigh-performance liquid chromatography (UPLC) system
using a core-shell silica C18 column (50 by 2 mm, 1.7-�m particle size, 100-Å pore size;
Kinetex, Phenomenex) coupled to a Q Exactive Orbitrap mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). Five microliters of sample was injected and run at
0.5 ml/min on a gradient of solvent A (HPLC-grade water with 0.1% formic acid) and
solvent B (HPLC-grade acetonitrile with 0.1% formic acid). The column was maintained
at 40°C. The UPLC elution gradient ran for 12.5 min per sample: 5% B from 0 min to
1 min, a linear gradient of 5 to 100% B over 8 min, a hold at 100% B for 2 min, a return
to 5% B over 0.5 min, and a hold at 5% B for 2 min to equilibrate the column for the next
sample. The flow was directed into a heated electrospray ionization source operated in
positive ionization mode with the following parameters: an auxiliary gas flow rate of 14
arbitrary units (a.u.), sweep gas flow rate of 3 a.u., sheath gas flow rate of 52 a.u., spray
voltage of �3.5 kV, capillary temperature of 270°C, auxiliary gas heater temperature of
435°C, and S-Lens RF level of 50. The data-dependent acquisition mode was used to
acquire the data in which MS1 scans from m/z 100 to 1,500 (scan rate, 7 Hz) were
followed by an MS2 scan, specifically a product ion scan produced using stepped
normalized collision energy higher-energy collisional dissociation, of the five most
abundant ions from the prior MS1 scan.

(v) LC-MS/MS raw data processing. Raw data were uploaded to MassIVE (https://
massive.ucsd.edu/), converted to .mzML files, imported into MZmine2 (37), and trun-
cated at m/z 1500 and a 9.5-min retention time (RT). Due to some retention time shift
while running the larger gut sample set, parameters are slightly modified versus
non-gut sample sets, as indicated in parentheses. The parameters for the gut samples
used in MZmine2 are as follows. Mass detection was performed with a noise threshold
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of 2.0e5 for MS1 and 2.0e3 for MS2 (1.0e3 for non-gut samples) in centroid mode, and
chromatograms were built with a 0.05-min time span, 1.0e6 minimum height, and
10-ppm m/z tolerance. Chromatograms were deconvoluted with the baseline cutoff
algorithm and a minimum peak height of 1.0e6, peak duration of 0.05 to 1.0 min, and
baseline of 1.0e4. Isotope peak removal was performed with 15-ppm m/z tolerance, 0.3
retention time tolerance (0.05 RT for non-gut samples), and maximum charge of 4, and
peaks were aligned with 10-ppm m/z tolerance, 75 weight m/z tolerance, and 0.4 RT
tolerance (0.05 for non-gut samples). Gap filling was also performed with 10% intensity
tolerance, 15-ppm m/z tolerance, and 0.3 RT tolerance (0.1 for non-gut samples). Peaks
were also filtered to remove singletons found in only one sample. Both MS1 and MS2
feature tables were exported, and the “export for GNPS” feature was used to generate
a .mgf file for GNPS (18). The signal intensities of the MS1 features were normalized
(probabilistic quotient normalization) (38) to the sulfamethoxine internal standard.

(vi) Metabolite annotation. GNPS (18) was used to obtain putative annotations for
the MS1 feature table via spectral library matching. The following parameters were
used: no MS-Cluster, network was filtered to have edges with a cosine score above 0.7
and at least 4 matched peaks, and matches between network spectra and library
spectra had a minimum of 6 matched peaks and a minimum cosine score of 0.7. For
molecular networking with the raw files, the following parameters were used: MS-
Cluster with a parent mass tolerance of 0.02 Da and an MS/MS fragment ion tolerance
of 0.02 Da; consensus spectra with fewer than 5 spectra were discarded. The network
filtered to have edges with a cosine score above 0.7 and at least 6 matched peaks, and
matches between network spectra and library spectra had a minimum cosine score of
0.7 and at least 5 matched peaks.

(vii) Peptidomics data processing. LC-MS/MS .mzXML formatted files were loaded
into PEAKS Studio 8.51 (23) for the identification of peptidic spectra matching the Uni-
Prot mouse protein database (www.uniprot.org; accessed 28 April 2018). Data were
imported and refined according to PEAKS settings for Orbitrap instruments under the
collision-induced dissociation fragmentation mode. Error tolerance parameters were
set to 15-ppm parent mass error tolerance and 0.02-Da fragment mass error tolerance.
The search settings included no added restriction enzymes as well as variable modifi-
cations for dehydration, acetylation (N terminal), oxidation (M), and formylation (N
terminal). The maximum number of variable posttranslational modifications per pep-
tide was set to 3. The label-free quantification mode was used, and the final false
discovery rate (FDR) for peptide spectral matches was reported to be 2.9%. Quantifi-
cation was normalized to the total ion chromatograph.

(viii) Microbiome sample processing. DNA was extracted from 100 �l of each gut
sample using a MoBio PowerMag soil DNA isolation kit (Qiagen, Carlsbad, CA) by
following the Earth Microbiome Project protocol (39). Samples were sequenced on an
Illumina MiSeq.

(ix) Microbiome and metabolome data processing and analysis. Raw sequencing
data were transferred to Qiita (40), where it was demultiplexed, trimmed to 150-bp
reads, and denoised to sOTUs using Deblur (41). QIIME2 v2019.4 (42) was used for
rarefaction (5,000 sequences per sample), to calculate beta diversity (unweighted
UniFrac) and alpha diversity (Shannon) on microbiome data, and to calculate beta
diversity (Bray-Curtis) on the metabolome data. Proportions of Gram-negative and
Gram-positive bacteria were determined using Bugbase (https://doi.org/10.1101/
133462). Bugbase requires an OTU table picked against the GreenGenes database, and
closed reference OTU picking was performed with the GreenGenes database (v13_8)
(43) at a 97% identity threshold. Using QIIME2 v2019.4 (42), the closed reference OTU
table was filtered to exclude blanks and samples with fewer than 5,000 reads. The
resulting .biom table was uploaded to BugBase for analysis. For ANCOMv (44) analysis
for differentially abundant sOTUs, the nonrarefied feature table was filtered to remove
samples with fewer than 5,000 reads/sample and all singleton sOTUs. GI body sites with
multiple samples (i.e., colon, cut into 6 sections) were averaged for each mouse prior

Vrbanac et al.

September/October 2020 Volume 5 Issue 5 e00340-20 msystems.asm.org 8

http://www.uniprot.org
https://doi.org/10.1101/133462
https://doi.org/10.1101/133462
https://msystems.asm.org


to performing ANCOM. PICRUSt2 (33) was used to predict functional abundances for
sOTUs.

(x) Statistics and data visualization. SciPy (45) was used to run the Mann-Whitney
U test for comparing proportions of Gram-positive bacteria, delta Shannon distance to
control, and peptide sum down the GI tract. SciPy was also used to run Pearson and
Spearman correlations. Statsmodels (46) was used to perform P value correction for
multiple comparisons. As we did not flush the luminal contents, we observed some
metabolome variation in GI sections depending on the volume of luminal contents
in the section. For differential abundance and beta diversity analyses, these GI
sections were averaged per body site per mouse (i.e., colon metabolome was the
average of 6 colon sections per mouse). dsFDR (47) was used for differential
abundance testing of metabolome data. Beta diversity significance was calculated
with the QIIME2 (42) beta-group significance function using PERMANOVA and a
Benjamini-Hochberg correction for multiple comparisons. Effect size was calculated
by computing the PERMANOVA R2 values in python, analogous to the r-function of
adonis (48). Figures were generated with matplotlib (49) and seaborn (50). The 3D
mouse model was generated as described in Quinn et al. (15) from a magnetic
resonance image of a mouse. Data visualization of metabolome effect size mapped
onto the 3D mouse model was performed with ‘ili (https://ili.embl.de/) (51). Random
forest regressions were performed with QIIME2 (42) using 100 trees, 20% of samples
were used to test and 80% used to train, and 5 k-fold cross validations were performed.

Data availability. Raw data are available on MassIVE under the data sets
MSV000082049, MSV000082157, and MSV000082048. Sequencing data are available
under EBI accession number ERP121045.
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