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1  | INTRODUC TION AND BACKGROUND

Species distribution modeling has been a popular topic in ecological 
statistics over the past decade. Many tools and methods have been 
developed to provide a means to explore the distributions of spe-
cies through mapping of suitable environments (Inoue et al., 2017; 
Jewell et al., 2007; Nezer et al., 2016; Peterman et al., 2013; Schank 
et  al.,  2017). Although there are a large number of algorithms 

and software platforms that can fit species distribution models 
(SDMs), generalization of these methods and specific applica-
tions to real datasets can be tricky (Aarts et al., 2012; Burnham & 
Anderson, 2002; Guillera-Arroita et al., 2015).

The most common sources of species information used in SDMs 
are presence-only (PO) and presence–absence (PA) data. PO data 
only contain information about species presences, in contrast to PA 
data which records both where species have been found present 
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Abstract
1.	 Species distribution modeling, which allows users to predict the spatial distribu-

tion of species with the use of environmental covariates, has become increas-
ingly popular, with many software platforms providing tools to fit such models. 
However, the species observations used can have varying levels of quality and can 
have incomplete information, such as uncertain or unknown species identity.

2.	 In this paper, we develop two algorithms to classify observations with unknown 
species identities which simultaneously predict several species distributions using 
spatial point processes. Through simulations, we compare the performance of 
these algorithms using 7 different initializations to the performance of models 
fitted using only the observations with known species identity.

3.	 We show that performance varies with differences in correlation among spe-
cies distributions, species abundance, and the proportion of observations with 
unknown species identities. Additionally, some of the methods developed here 
outperformed the models that did not use the misspecified data. We applied the 
best-performing methods to a dataset of three frog species (Mixophyes).

4.	 These models represent a helpful and promising tool for opportunistic surveys 
where misidentification is possible or for the distribution of species newly sepa-
rated in their taxonomy.
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and where they have not been found (Renner et al., 2015; Warton & 
Shepherd, 2010). Although PA data are generally of higher quality, it 
is also less common than PO data because it requires more rigorous 
planning to visit a set of predetermined sites. On the other hand, 
PO datasets are very common, arising from surveys or opportunistic 
sightings, but they usually have lower quality (Ruete & Leynaud, 2015; 
van Strien et al., 2013). Point process models (PPMs) are a common 
tool for fitting SDMs to analyze PO data (Mi et  al.,  2014; Renner 
et al., 2015; Warton & Shepherd, 2010) and have been used to fit 
models for real datasets and simulated data (Baddeley et al., 2006, 
2015; Illian et al., 2012; Renner & Warton, 2013).

Unreliable or unknown species identification is the main concern 
in ecology especially for PO data from citizen science. Another issue 
can arise from confounded records when species taxonomy changes 
(Mahony et al., 2006). For example, Mixophyes frogs are now classi-
fied in three genetically distinct species while previously only one 
species was recognized. The Mixophyes frogs are not an isolated 
case. Padial and De la Riva (2006) noted that taxonomy inflation and 
new species discovery had contributed to an increase of 48.7% in 
new species of various organisms by that time. In particular, they 
refer to a study from Köhler et al. (2005) where amphibian species 
counts had increased by 25% from 1992 to 2004. This increase in re-
classified and new species raises challenges to conservation biology 
(Catenazzi, 2015; Padial & De la Riva, 2006). Conservation planning 
efforts depend on clear identification of species and understand-
ing of their distributions and habitat requirements (Franklin, 2013; 
Guisan et al., 2013). Other than cleaning datasets with missing infor-
mation, little else is typically done in SDMs to account for misspec-
ification. These practices can lead to missing information and thus 
incomplete predictions. Consequently, there are new challenges in 
building appropriate species distribution models for such species, for 
which the Mixophyes example serves as an illustration.

One way we can consider dealing with unknown species 
identities is to relabel them using mixture modeling or machine 
learning algorithms. Mixture modeling is a common tool used to 
represent complex distributions and aims to identify different 
groups within a dataset while modeling heterogeneity (Fernández 
Martinez, 2015; Hui, 2016). In communities or groups of species, it 
is possible to classify or cluster species according to covariate in-
formation through their preferences by using finite mixture mod-
eling (Dunstan et al., 2013; Fernández-Michelli et al., 2016; Frame 
& Jammalamadaka,  2007; McLachlan & Peel,  2000). One particu-
lar application of this approach is to deal with over-dispersed data 
and to model ecological processes in parallel for different species 
(Matthews et al., 2001; Tracey et al., 2013; Zhang et al., 2004).

Machine learning algorithms are also becoming more common 
in statistical ecology because they can make use of unknown in-
formation and recognize specific structure in the data (Browning 
et al., 2018; Hastie et al., 2001; Thessen, 2016). Several algorithms 
exist such as unsupervised learning algorithms that can group obser-
vations with similar characteristics. Supervised learning algorithms 
use separate labeled datasets for classification and semisupervised 
learning algorithms learn from partially labeled data within the 

studied dataset to classify the observations (Fernández-Michelli 
et  al.,  2016; Vo et  al.,  2018; Wendel et  al.,  2015; Zhou,  2018). 
Recent publications have applied machine learning algorithms to fit 
PPMs in a Bayesian framework (Tran,  2017; Vo et  al.,  2018), but 
the literature on using machine learning algorithms to fit PPMs is 
not yet well developed. Additionally, several R packages apply ma-
chine learning procedures for classification procedures (Benaglia 
et al., 2009; Iovleff, 2018), but none accommodate the intersection 
of point process models with mixture modeling or machine learning 
algorithms.

In this paper, we develop new tools for fitting models to mul-
tispecies PO data with partial species identification by combining 
the PPM framework with mixture modeling and machine learning 
approaches to accommodate incomplete labeling. Our proposed 
methods rely on classification of points with unknown species la-
bels based on the locations with known species labels. Hence, these 
methods will only assign classifications of known species in the re-
gion with verified species labels. The first tool employs an iterative 
technique to fit separate PPMs to points with known labels aug-
mented by some points with unknown labels depending on classifi-
cation probabilities at each iteration. This method will be hereafter 
known as the Loop method. The second tool fits mixtures of PPMs to 
all available data with an expectation–maximization (EM) algorithm 
and uses them to classify the unlabeled points. This method will be 
called mixture method. Using simulations, we compare the perfor-
mance in classification and prediction for the proposed algorithms 
to the simple, standard approach of fitting individual PPMs to the 
points with known species labels only. In this article, we will first 
define the new algorithms developed in Section 2. Then, we describe 
how we apply these methods to simulated data sets showcasing dif-
ferences in abundance, correlation between species distributions, 
and percentage of data with unknown species labels in Section 3, as 
well as to the Mixophyes dataset we previously mentioned in Section 
3.3. We present the results of these analyses in Section 4 and pro-
vide a discussion in Section 5.

2  | NE W MODELING METHODS

2.1 | Background

In ecology, we will consider a spatial point pattern as the distribution 
of species observation records over a specific window or study area 
�. The point pattern intensity is defined as the density of points per 
unit area throughout �. For Poisson point processes, we model the 
intensity of species i as a log-linear function of covariates x:

with �i (s) being the intensity of species i at location s. Here, xj contains 
the values of covariate j, with which we associate the parameter βi,j. We 
fit a point process model by maximizing the log-likelihood, as follows:

(1)ln
(
�i (s)

)
= � i,0 +

∑
j

xj (s) × � i,j
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here β i is the set of parameters associated with the covariates x and s 
is the set of mi presence locations. The integral is intractable so we rely 
on numerical quadrature to get an estimate.

2.2 | Notation

The fitted point process models in our proposed methods make use 
of a total of M + N + Q locations as follows:

Let s1 =
{
s1,…, sm1

}
, s2 =

{
sm1+1

,…, sm1+m2

}
, …, sK =

{
sM−mK+1

,…, sM
}
 

be vectors that contain all of the observed locations with known 
species identities 1, 2,…,K, respectively. These are represented by 
the orange dots, purple triangles, and turquoise squares in Figure 1 
for a hypothetical dataset. Let ||s1|| = m1,

||s2|| = m2,…, ||sK|| = mK 
be the number of observed locations with known species identity 
for each of the K species. We collect the M = m1 + m2 +… + mK 
total locations with known species identities of all K species in 
s =

{
s1, s2,…, sK

}
. Let u =

{
sM+1,…, sM+N

}
 contain the N observed lo-

cations with uncertain species identities. These are represented by 
the question marks in Figure 1.

Let q =
{
sM+N+1,…, sM+N+Q

}
 contain the locations of Q quadra-

ture points placed along a regular c1 × c2 grid throughout the study 
region (Figure 1). Each quadrature point is placed at the center of one 
of Q unique rectangular grid cells throughout the study region. Let 
c(s) be the grid cell in which location s is contained.

The proposed Loop and Mixture methods presented in Sections 
2.3 and 2.4 assign some of the observations with uncertain species 
identities in u to the set of locations with known species identities in 
s, as in the right panel of Figure 1.

2.3 | Loop methods

The three-loop algorithms proceed by iterating between steps that 
augment the vectors of locations with known species identities 
s1, s2,…, sK with locations a1 ∈ u, a2 ∈ u,…, aK ∈ u, update the quad-
rature weights, and fit point process models as follows:

1.	 Fit K initial point process models using the vectors of observed 
locations with known species identity s1, s2,…, sK.

2.	 Compute the predicted intensities �̂i (s) for all s ∈ {s ∪ u} for 
i ∈ {1,…,K} maximizing the likelihood in ((2)).

3.	 Derive an (M + N) × K matrix of membership probabilities ω, 
where

The membership probability of location s for species i is defined 
as

That is, the membership probabilities for the locations with known 
species identity are 1 for the correct species and 0 otherwise, and for 
the locations with unknown species identity, they are proportional to 
the fitted intensities.

(2)�
(
�i, s

)
=

mi∑
1

ln
(
�i (s)

)
− ∫

�

� (s) ds

� =

⎡⎢⎢⎢⎢⎢⎢⎣

�1

�
s1
�

�2

�
s1
�

… �K

�
s1
�

�1

�
s2
�

�2

�
s2
�

… �K

�
s2
�

⋮ ⋮ … ⋮

�1

�
sM+N

�
�2

�
sM+N

�
… �K

�
sM+N

�

⎤⎥⎥⎥⎥⎥⎥⎦

(3)�i (s) =

⎧⎪⎨⎪⎩

1
�
s∈ si

�
: s∈ s

�̂i (s)∑K

i=1
�̂i (s)

: s∈u

F I G U R E  1   Three illustrative point patterns. The orange dots, purple triangles, and turquoise squares represent locations with known 
species identity, s1, s2, and s3. The gray dots represent quadrature points q, which are spaced evenly along a regular grid such that one 
quadrature point is at the center of each rectangular grid cell. The black question marks (left and right) represent observed locations u with 
uncertain species identity. Some locations in a1 ∈ u, a2 ∈ u, and a3 ∈ u are classified as belonging to one of the species are represented by 
colored question marks (right)
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4.	 Define an augmented vector for species i as yi = si ∪ ai for 
all i ∈ {1,…,K}, where ai consists of a subset of the vector 
of observations with unknown species labels u. We define ai 
as follows

•	 For the LoopA method, ai = u (left panel of Figure  2). The A in 
LoopA reflects the fact that we add all points in u.

•	 For the LoopT method, ai = u[�i(s)≥�h], where �h is a minimum 
membership probability threshold that takes the following values 
successively at each iteration {�max, �max − �step,…, �min }. That is, 
the LoopT method augments the locations with known species 
identity i (s i) with the subset of locations with unknown species 
identity (u) that have membership probabilities that are higher 
than the current threshold �h for the species i (middle panel of 
Figure 2). The T in LoopT reflects the fact that we add points with 
membership probabilities above a certain threshold.

•	 For the LoopE method, ai = u[
�i(s)≥�i,(M+N−ah+1)

], where �i,(j) repre-
sents the jth smallest entry of vector �i, the ith column of ω, and 
ah represents the number of locations to be augmented. That is, 
the LoopE method augments the locations with known species 
identity i (s i) with the subset of locations with unknown species 
identity (u) with the ah highest membership probabilities (right 
panel of Figure 2). The E in LoopE reflects the fact that we add an 
equal number of point for each species.

5.	 Update the quadrature weights for each species. First, assign each 
location in 

{
y1,…, yK,q

}
 to a grid cell. Then, compute the vector of 

quadrature weights wi for all points t ∈
{
yi ∪ q

}
 as follows

This derivation of the quadrature weights is an extension of stan-
dard quadrature weight schemes for point process models (Berman & 
Turner, 1992), in which the weight for location s is equal to the area of 
the grid cell c(s) that contains s divided by the total number of quadra-
ture and observed locations in c(s). Here, we define the quadrature 
weight of the point at location t to be the product of the point's mem-
bership probability for the given species by the area of the grid cell, 
divided by the sum of the membership probabilities of the observed 
locations in the grid cell (both with and without known species identi-
ties) plus 1 (for the one quadrature point in the grid cell).

6.	 Fit point process models using the augmented vector y i, 
quadrature points q and quadrature weights w i for all spe-
cies i ∈ {1,…,K}

7.	 Return to step 2 and stop when we either reach likelihood conver-
gence or we reach a maximum number of iterations that is differ-
ent depending on the method chosen. Likelihood convergence is 
determined by:

(4)wi (t) =
c1 × c2 × �i (t)

1 +
∑

s∈{yi ∪ q}

1 (c (s) = c (t))�i (s)

(5)Δ�h
=

∑
K
i= 1

����
i
h
(�) − �

i
h− 1

(�)
���∑

K
i= 1

�
i
h− 1

(�)
< 𝜀

F I G U R E  2   Points added to each species are represented by full circles, the ones that we do not add are open circles. (Left) LoopA 
function. We add all points with unknown species labels to each species. (Middle) LoopT function. We add all points with membership 
probabilities higher than the current threshold �h, set to 0.6 in the middle panel. (Right) LoopE function. We add the points ah with the 
highest membership probabilities for each species, illustrated for ah = 2 in the right panel

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LoopA: add all points

Observation

M
em

be
rs

hi
p 

pr
ob

ab
ili

tie
s

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LoopT: threshold probability 0.6

Observation

M
em

be
rs

hi
p 

pr
ob

ab
ili

tie
s

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LoopE: add 2 points to each species

Observation

M
em

be
rs

hi
p 

pr
ob

ab
ili

tie
s

Species 1
Species 2
Species 3

Species 1 not added
Species 2 not added
Species 3 not added



5224  |     GUILBAULT et al.

for some choice of �, where �i
h
(�) is the fitted log-likelihood for the ith 

species at the hth iteration.
The maximum number of iterations varies for the different meth-

ods, as follows:

•	 For the LoopA method, the maximum number of iterations is 
set by the user. We set the default number of iterations to be 
50.

•	 For the LoopT method, the maximum number of iterations is de-
termined by:

•	 For the LoopE method, the maximum number of iterations is ⌊
N

K

⌋
− a1, where ⌊c⌋ rounds the number c down to the nearest in-

teger, and a1 is the first value of ah chosen by the user. In the case 
of decimal numbers, only the floor is considered as we cannot add 
more points than available per species.

2.4 | Mixture of PPM method

Mixture methods can be fitted by maximizing a log-likelihood func-
tion and reclassifying the locations with uncertain identity using an 
EM algorithm framework. We developed the tool such that both soft 
and hard classification methodology are available. Various initializa-
tion schemes can be used, and we have chosen to use four different 
schemes, described below:

1.	 Initialize the membership probabilities ω for each location s for 
each species i in one of the following ways

•	 For the knn method, we calculate the distance of the unknown 
labeled location u to all the point locations s. For each u, we con-
sider the k closest neighbors in s regardless of species. Then, we 
calculate the membership probability of location s for species i 
using:

where

where the di,k (s) are the kth distances for the species i at the location s.

•	 For the kmeans method, we define �i (s) as in ((7)) but define zi (s) as

where dC
i
(s) is the distance to the ith centroid of the ith cluster. The 

kmeans initialization is performed by the kmeans function in R, where 
we repeat the initialization multiple times as defined by the parameter 
nstart in R.

•	 For the random method, we define �i (s) as in ((7)) and zi (s) is 
drawn randomly from a uniform distribution:

The random method is used as an uninformative approach for 
comparison to other methods.

•	 For the CoinF, we set the initial membership probabilities as 
follows:

where we define the augmented vector y i similarly to Step 4 of the 
Loop algorithm in Section 2.3 and a i is defined as the vector of obser-
vations with unknown species labels randomly assigned to one of the 
species.

Regardless of the initialization method, the sum of membership 
probabilities across the species is equal to 1 for all points.

2.	 For soft classification: Create a list of point patterns, one for 
each species, each containing the locations with known identity 
s i as well as the locations of the observations with unknown 
identity u. For each point pattern, we define the quadrature 
weights as in ((4)), using the membership probabilities �i defined 
in Step 1.

For hard classification: Assign the locations in u to belong to one of 
the K species based on the membership probabilities ω. The classifica-
tion is based on the highest membership probability.

3.	 Fit a point process model for each pattern defined in Step 2.
4.	 E step: Compute the predicted intensities �̂i (s) for each species.
5.	 Calculate the predicted intensity of the mixture of K densities 

using:

(6)
�max − �min

�step
+ 1

(7)�i (s) =

⎧
⎪⎨⎪⎩

1
�
s∈ si

�
: s∈ s

zi (s)∑K

i=1
zi (s)

: s∈u

(8)zi (s) =
∑
k

min
k

1

di,k (s)

(9)zi (s) =

min
(
dC
i
(s)

)

dC
i
(s)

(10)zi (s) :U
[
0, 1

]

(11)�i (s) =

⎧
⎪⎨⎪⎩

1: s∈yi

0: otherwise

(12)� (s) =

K∑
i=1

�i (s) =

K∑
i=1

�i × �̂i (s)
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Here, �̂i (s) is the intensity at location s for the ith species and �i 
is the mixing proportion or weight of the ith species and is given by:

where �i (s) represents the membership probability of the ith species 
at the location s. The resulting �i (s) is thus the mixture intensity of the 
ith species.

6.	 Update the membership probabilities for the locations with 
unknown species identity u using

7.	 For soft classification, M step: Update the quadrature weights 
for all locations in s and u as in Step 2. If any location with 
an unknown label u ∈ u has a membership probability of 
�i (u)  =  0 for species i, that location is removed from the 
point pattern of species i before proceeding to the next step 
for the current iteration.

For hard classification, M step: Assign the locations in u to belong 
to one of the K species. The classification for each point s corre-
sponds to the highest membership probability �i (s) for i ∈ {1,…,K}.

We compute each species' proportion of the whole by summing 
the membership probabilities for each species across both s and u.

8.	 For soft classification, fit an updated PPM using the updated 
quadrature weights and membership probabilities

For hard classification, compute a marked PPM based on the up-
dated classifications.

9.	 Calculate the model log-likelihood using

where f (s,�) is the mixture density function defined at locations 
s ∈ s ∪ u and parameterized by β.

10.	Repeat steps 4–9 until we achieve likelihood convergence, 
defined as follows

where �h (�) is the log-likelihood at the hth iteration and � is a prespec-
ified tolerance level.

When the model has converged, we use hard classification for 
the locations u with unknown species identity when evaluating 
model performance.

3  | SIMUL ATION FR AME WORK AND 
APPLIC ATION

3.1 | Simulation data

To compare the performance of the different algorithms, we simu-
lated patterns t1, t2, and t3 of individuals for three species based on 
“true” distributions defined by four different predictors. Because 
performance could vary based on sample size, the correlations �i−j 
among the species distributions, and the proportion of observations 
with unknown labels, we simulated point patterns in which relative 
abundance patterns and correlation among distributions vary. In 
summary, we tested the following cases:

•	 test 1: m1  =  80, m2  =  60, m3  =  40; �1−2  =  0.09, �1−3  =  −0.42, 
�2−3 = 0.20;

•	 test 2: m1  =  60, m2  =  60, m3  =  60; �1−2  =  0.09, �1−3  =  −0.42, 
�2−3 = 0.20;

•	 test 3: m1  =  80, m2  =  60, m3  =  40; �1−2  =  0.85, �1−3  =  −0.09, 
�2−3 = 0.20;

•	 test 4: m1  =  60, m2  =  60, m3  =  60; �1−2  =  0.85, �1−3  =  −0.09, 
�2−3 = 0.20.

We chose low values for abundances as they would be small 
enough such that potential value of adding points with unknown 
species identities could be investigated. We chose these cutoffs 
for correlation to create clearly distinguishable contexts. We note 
that species are independent, and we do not investigate interac-
tions between the species.

We then created locations with unknown labels u by hiding uni-
formly at random a certain proportion of the total observations (20%, 
50% and 80%). The locations in t1, t2, and t3 that retained their true 
species identities therefore became the simulated point patterns s1
, s2, and s3 with known species identities. The hidden points form u.

Simulations were conducted using the version 4.0.2 of R (R 
Development Core Team,  2017). We implemented 1,000 simu-
lations of each of the 4 sets of test patterns previously described 
using a high performance computing cluster from the University of 
Newcastle, on 512 GB nodes powered by 3.0 GHz Intel Xeon Gold 
(E5-6154) processors. We display the Hard classification imple-
mentation hereafter because it showed the best performances. We 
tested the effects of different parameters on method performance 
for the following methods:

•	 knn: the value of k neighbors,
•	 kmeans: the number of random initializations nstart,
•	 LoopT: the maximum threshold �max, minimum threshold �min and 

the step size �step,

(13)�i =

∑
s∈ yi

�i (s)∑
K
i= 1

∑
s∈ yi

�i (s)

(14)�i (s) =

⎧
⎪⎨⎪⎩

1
�
s∈ si

�
: s∈ s

�i (s)∑k

i=1
�i (s)

: s∈u

(15)� (�) =
∑

s∈ s∪ u
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∑
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)

(16)
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•	 LoopE: initial number of points added to the point pattern a1.

We show how these parameters affect the performance in 
Appendix A.

3.2 | Suite of evaluation tools

We considered various measures of performance for comparing the 
distributions. For classification methods, misclassification/accuracy 
analysis is a common measure of performance (Wendel et al., 2015). 
We chose the highest membership probability for each observation 
to determine the labeling of hidden points and compared it with its 
true label when computing the accuracy:

where N is the number of observations with uncertain species 
identities.

We also compared the final membership probabilities of the re-
classified point labels of each point to 1 (the true weight) with a re-
sidual sum of squares (RSS).

where �i (s) is the final membership probability for location s for the 
reclassified point of species i  computed using the methods outlined in 
Sections 2.3 and 2.4. Considering residual sum of squares (RSS) alone 
does not provide a reliable comparison because the number of un-
known observations can vary, so we considered meanRSS instead to 
standardize the measure for all fitted models:

We also obtained these performance measures for models fit-
ted using only the locations with known species identity, hereafter 
referred to as the “individual PPM” method. In this way, we have a 
baseline with which to judge whether the mixture and Loop meth-
ods outperform the standard approach of discarding points with un-
known species identity.

We also computed performance measures based on predicted 
intensities. We compared the true distribution from which we gener-
ated the points to the predicted distributions of the various models 
we fitted. We used a sum of correlations between the true and pre-
dicted distributions across all species (hereafter referred to as “sum-
cor”) to assess how well the predicted distributions align with the 
true distributions. We can use various correlation measures such as 
Pearson's correlation coefficient, Kendall's �, or Spearman's � when 
computing sumcor.

Another global measure of predictive performance of the inten-
sity estimates is the Integrated Mean Square Error (IMSE) (Es, 1997; 
Swanepoel, 1988). The function is defined as:

where f̂n (x) is an estimator of the density function f (x). Because the 
scale of the IMSE depends on the magnitude of the true intensity, we 
rescaled both true and predicted intensities to have a common mean to 
make for an equitable comparison. We computed the IMSE using the 
values of the true and predicted intensities at the quadrature points q, 
and sum across the three species (sumIMSE):

where ̂�ti
i
(s) is the predicted intensity of species i  at location s rescaled 

to have mean ti. We also displayed the standard error of the point pre-
dictions as a measure of uncertainty. We weight the standard error 
measure by the number of points for an equitable comparison across 
different percentages of hidden observations.

3.3 | Application to eastern Australian frogs

Our study case dataset uses presence-only records from the on-
line database of the Atlas of Living Australia (ALA, 2018). On this 
platform, any person that sees a frog in the wild can report the co-
ordinates and other relevant information. We focused the analysis 
on the three northern species of Mixophyes genus that have been 
recently separated in Mahony et al. (2006). We cleaned our dataset 
by including only observations of adult specimens with date infor-
mation and through verification by a specialist of these species, M. 
Mahony. The observations with known species labels were those for 
which we have associated genetic information as well as any obser-
vations reported after the taxonomic split in 2006. The rest of the 
observations were considered as having unknown species labels. We 
also included data from Oza et al.,  (2012) as part of the known la-
beled points. Altogether, we count 181 out of the 444 observations 
with unknown labels (approximately 40.8%).

We extracted relevant covariates for these species on a 
5 km × 5 km grid from different sources as presented here (Table 1).

We fitted models using the methods that performed best in 
the simulation study and compared them with the individual PPM 
method for which no points with unknown labels were used.

4  | RESULTS

Here, we present the model performances on the simulated data 
parameters (abundance, correlation, and percentage of points with 
hidden species labels). We explore the role of different parameters 
within the various mixture and loop methods in Appendix  A. The 
individual PPM results will be used as a point of comparison with the 

(17)Accuracy =
Number of correct labels

N

(18)RSS =

K∑
i=1

∑
s∈ u∩ ti

(�i (s) − 1)2

(19)meanRSS =
RSS

N

(20)IMSE = E

⎛⎜⎜⎝

+∞

∫
−∞

(̂fn (x) − f (x) )2dx

⎞⎟⎟⎠

(21)sumIMSE =

K∑
i=1

Q∑
q=1

(�̂
ti
i

(
sM+N+q

)
− �i

(
sM+N+q

)
)2
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other methods as the individual PPM method does not include any of 
the points with unknown labels. We choose to use Pearson's correla-
tion coefficient when computing sumcor. We conclude the section 
by comparing maps and membership probabilities of the Mixophyes 
species.

4.1 | Testing species distributions

In this section, we compare the results of varying abundance, the 
correlation between species distributions, and the percentage of 
hidden observations on the performance measures and member-
ship weights for classification as presented in Section 3. We only 
present the best-performing methods in this section: knn mixture, 
LoopA, LoopT, LoopE, and the individual PPM and coinF method for 
reference.

4.1.1 | Relabeling performance measures

In terms of relabeling, only LoopT consistently performs as well or 
better than the individual PPM method across all simulation designs 
and percentage of hidden observations, as shown in Figure 3. The 
mixture methods are more competitive than the LoopA and LoopE 
methods at 20% and 50% of hidden observations but still do not 
perform as well as the individual PPM or LoopT methods.

Comparing accuracy, all three Loop methods perform compara-
bly to the individual PPM method. The knn and coinF methods are 
equally competitive at 20% of hidden observations but their perfor-
mances get worse than the other methods for 50% and 80% per-
centages in Figure 4.

TA B L E  1   Description and origin of the different covariates used 
in the analysis of the Mixophyes dataset

Name Description Source

Bio05 Max Temperature of Warmest 
Month

BBCVL

Bio06 Min Temperature of Coldest 
Month

BBCVL

Bio11 Mean Temperature of Coldest 
Quarter

BBCVL

Bio13 Precipitation of Wettest Month BBCVL

Bio18 Precipitation of Warmest 
Quarter

BBCVL

Altitude Altitude BBCVL

Dist road Distance to the nearest roads UC Davis 
Biogeo group

Dist stream Distance to the nearest 
hydrological features

Bureau of 
Meteorology 
(2014)

F I G U R E  3   MeanRSS for the best methods: knn, coinF, individual PPM (reference), LoopA, LoopT, and LoopE. Each color boxplot 
represents a different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green for 
50% and in blue for 80%. For each method, we fitted models to the three simulated point patterns using four simulated predictors. A low 
meanRSS value indicates a high performance
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4.1.2 | Predicted intensity performance measures

Now, we consider performance based on predicted intensity. The 
LoopT method performs as well or better than the individual PPM 
method according to sumIMSE as shown in Figure  5. The LoopA, 
LoopE, knn, and CoinF methods are mostly never competitive with 
the other methods at high percentage of hidden observations.

The relative performance is different when using sumcor as the 
performance measure as shown in Figure  6. It looks like LoopT 
is consistently best, and the individual PPM method and LoopE 
methods are broadly comparable for nonhighly correlated distri-
butions. The knn and coinF methods perform almost equally to 
the individual PPM method when a relatively low percentage of 
observations have hidden labels and when distributions are highly 
correlated.

Comparisons of the estimated standard errors appear in 
Appendix A. Standard errors for the predicted intensities increase, 
as expected, when the number of observations used in the models 
decreases, as shown in Figures A5 and A6. This is evident from the 
higher standard errors for higher percentages of observations with 
hidden labels as well as for the individual PPM method, which does 
not add any points.

4.1.3 | Final membership probabilities and 
classification

Figures  7-10 show the final membership probabilities of the loca-
tions with hidden species identity corresponding to each species. 
The higher the membership probability is to 1, the better the classi-
fication performance. It appears that the high correlation among the 
species distributions as in tests 3 and 4 results in lower classification 
performance. When there are differences in abundance (test 1 and 
test 3), the mixture methods seem to show superior performance 
for the most abundant species and worse performance for the least 
abundant species.

4.2 | The Mixophyes case

4.2.1 | Prediction of Myxophies' species distribution

In this section, we fit the best-performing method within each cat-
egory (knn among the mixture methods and LoopT among the Loop 
methods) to analyze the distribution of the Mixophyes species and 
compare the predictions to the individual PPM approach in which 

F I G U R E  4   Accuracy for the best methods: knn, coinF, individual PPM (reference), LoopA, LoopT, and LoopE. Each color boxplot 
represents a different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green for 
50% and in blue for 80%. For each method, we fitted models to the three simulated point patterns using four simulated predictors. A high 
accuracy value indicates a high performance
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no unlabeled observations are included in the model. The resulting 
fitted intensity maps are shown in Figure 11. Both the knn mixture 
method and the LoopT method add small areas of distribution for 
Mixophyes schevilli. The maps from the LoopT method show in-
creased areas of relatively high intensity in the south for Mixophyes 
carbinensis and Mixophyes coggeri.

4.2.2 | Classification of Myxophies observations

Differences in the predicted distributions are also shown by the 
classification of the locations with uncertain identities in Figure 12. 
While there is broad agreement in the south for the knn mixture 
method and the LoopT method, the LoopT method classifies more 
records as M.  coggeri in the north and M.  carbinensis in the cen-
tral part, while the knn mixture method classifies more records as 
M. schevilli in the north and central parts. This may reflect the fact 
that the mixture methods tend to have high classification for the 
most abundant species, and M. schevilli had the highest number of 
verified records among the three species.

The colors of the question marks in Figure 12 are based on the 
final membership probabilities, with higher membership probabili-
ties leading to bolder colors. This Figure indicates that the mixture 

knn method tends to result in lower membership probabilities than 
the LoopT method except for the most abundant species M. schevilli, 
which is also supported by Figure 13, in which the final membership 
probabilities for the LoopT method tend to be more variable, with 
the third quartile markedly higher for each species. The final mem-
bership probabilities appear more balanced for the LoopT method, 
whereas the knn mixture method tends to favor the most abundant 
species, M. schevilli.

5  | DISCUSSION

In this article, we present a new modeling framework implemented 
in R that aims to incorporate the observed locations with unknown 
species identities to improve species distributions. These tools ac-
commodate two ways of reclassifying information using mixture 
modeling and a machine learning framework with 7 different im-
plementation methods overall. We tested our algorithms in differ-
ent contexts where we vary the abundances of our species (equal 
across the species or different), the correlation between them (two 
distributions are highly correlated or all have low correlation), and 
the proportion of unknown species identities (20%, 50%, and 80%). 
We compared our methods with the individual PPM method which 

F I G U R E  5   SumIMSE (logarithmic scale) for the best methods: knn, coinF, individual PPM (reference), LoopA, LoopT, and LoopE. Each 
color boxplot represents a different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in 
green for 50% and in blue for 80%. For each method, we fitted models to the three simulated point patterns using four simulated predictors. 
A low sumIMSE value indicates a high performance
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ignores locations with unknown species identities to see whether 
the proposed algorithms allow us to fit distributions that are closer 
to the initial processes.

The novelty of these methods makes it difficult to compare to 
other existing tools that do not combine point pattern processes, 
mixture models, or semisupervised learning methods. Most mix-
ture models also use the EM algorithm but are implemented for 
Gaussian mixture distributions only (Benaglia et  al.,  2009; Di Zio 
et al., 2007; Quost & Denoeux, 2016; Scrucca et al., 2016). A few 
implementations use both mixture and semisupervised learn-
ing but do not use presence-only data or point pattern processes 
(Figueirido & Jain, 2002; Frame & Jammalamadaka, 2007; Melnykov 
& Maitra,  2010; Woillez et  al.,  2012). Flexible R packages such as 
Flexmix (Leisch, 2004), mixtools (Benaglia et al., 2009) and MixAll 
(Iovleff, 2018) are not suitable to our design. The work of Taddy and 
Kottas (2012) is noteworthy in that it models a mixture of marked 
point processes in a Bayesian framework, but it does not allow 
for semisupervised learning and therefore cannot accommodate 
settings such as ours in which some points have unknown species 
labels. However, as the goal is to investigate whether there is any 
benefit from adding points with unknown species labels when fitting 
models, comparison to the individual PPM method which does not 
add any unlabeled points allows us to compare the proposed meth-
ods to a natural baseline.

In our simulations, we have considered a relatively general 
case of point patterns and we only varied species abundance and 
correlation among distributions in addition to the proportion of 
observations with hidden information. The results show that some 
methods benefit from adding points with unknown species labels, 
leading to improved performances. We noticed a discrepancy in 
performances that is more significant when we increase the pro-
portion of observations with hidden labels. While at 20% of hid-
den observations, all methods performed fairly similarly, at 50% 
and 80% of hidden observations the Loop methods performed the 
best. In particular, the LoopT method showed consistently good 
performances across all measures studied. For this method, only 
the points with the highest membership probabilities are added. 
We explore the roles of the �h parameters in Appendix A. We set 
the maximum and minimum thresholds at �max = 0.5 and �min = 0.1 
and a step size of �step = 0.1 as it appears to be the best combina-
tion. LoopE showed competitive results to LoopT or the individual 
PPM method looking at predictive performances in the case of 
not highly correlated distributions, but may not be able to distin-
guish highly correlated distributions. For this method, we add the 
ah points with highest membership probabilities, with the number 
of points ah increasing at each iteration. We explore the role of 
this parameter in Appendix A. For the LoopA method, we add all 
unknown points to the known points; thus, the reclassification and 

F I G U R E  6   Sumcor for the best methods: knn, coinF, individual PPM (reference), LoopA, LoopT, and LoopE. Each color boxplot represents 
a different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green for 50% and in 
blue for 80%. For each method, we fitted models to the three simulated point patterns using four simulated predictors. A high sumcor value 
indicates a high performance
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F I G U R E  7   The boxplots display the estimated membership probabilities of the correct species for points with hidden labels in test 1. 
Each color boxplot represents a different species. Each row corresponds to the different percentage of hidden observations tested: 20%, 
50%, and 80%. Test 1 is based on simulated point patterns with abundances of m1 = 80, m2 = 60, m3 = 40; and correlations between the 
species distributions of �1−2 = 0.09, �1−3 = −0.42, �2−3 = 0.20
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F I G U R E  8   The boxplots display the estimated membership probabilities of the correct species for points with hidden labels in test 2. 
Each color boxplot represents a different species. Each row corresponds to the different percentage of hidden observations tested: 20%, 
50%, and 80%. Test 2 is based on simulated point patterns with abundances of m1 = 60, m2 = 60, m3 = 60; and correlations between the 
species distributions of �1−2 = 0.09, �1−3 = −0.42, �2−3 = 0.20
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F I G U R E  9   The boxplots display the estimated membership probabilities of the correct species for points with hidden labels in test 3. 
Each color boxplot represents a different species. Each row corresponds to the different percentage of hidden observations tested: 20%, 
50%, and 80%. Test 3 is based on simulated point patterns with abundances of m1 = 80, m2 = 60, m3 = 40; and correlations between the 
species distributions of �1−2 = 0.85, �1−3 = −0.09, �2−3 = 0.20
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F I G U R E  1 0   The boxplots display the estimated membership probabilities of the correct species for points with hidden labels in test 4. 
Each color boxplot represents a different species. Each row corresponds to the different percentage of hidden observations tested: 20%, 
50%, and 80%. Test 4 is based on simulated point patterns with abundances of m1 = 60, m2 = 60, m3 = 60; and correlations between the 
species distributions of �1−2 = 0.85, �1−3 = −0.09, �2−3 = 0.20
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density distribution can be biased by the unknown points not be-
longing to a certain species. The LoopA method displayed similar 
results as the mixture methods for predictive performances (sum-
IMSE) but outperformed these methods in relabeling.

The methods using the mixture algorithm tend to perform 
worse than the Loop methods and the individual PPM method for 
moderate and high percentages of hidden observations (50% and 
80%). However, mixture methods performed relatively better for 
highly correlated distributions in their predictive performances, 
which relate to the mixture methods' ability to distinguish multi-
ple distributions inside one distribution. We note that the mixture 
methods displayed high membership probabilities for the most 
abundant species. Indeed, the method makes use of mixing pro-
portions, which give further emphasis to the most dominant spe-
cies. Hence, they tend to favor the most abundant species while 
not classifying well the other species with lower abundances. The 
methods (kmeans, random) not presented previously in the results 
are presented in Appendix  A (see Figures  A1-A4). All methods 
showed relatively similar performance to each other across all 
measures.

Contrary to what we found, previous studies using the EM 
algorithm for classification and clustering data show that such 
algorithms are highly dependent on the initialization method 

(Figueirido & Jain,  2002; Melnykov & Maitra,  2010; O'Hagan 
et al., 2012). Studies link the performance of the knn method to 
the metric chosen to calculate the nearest neighbor distances and 
the value of the number k of nearest neighbors (Guo et al., 2003; 
Weinberger & Saul, 2009; Wu et al., 2008). Even the established 
kmeans method shows drawbacks as its performance depends on 
overlapping densities and whether the distributions are roughly 
circular. The choice of the centroid is also not consistent and 
chosen at random for the first calculation (Wu et  al.,  2008; Yoo 
et al., 2012). The coinF method, which randomly assigns species 
labels, is in line with the other mixture methods and never reaches 
the performance of the Loop methods. Consequently, we have 
shown that the loop methods outperform not only the individual 
PPM method but also a method that randomly assigns species la-
bels. A future research area could look into the different metrics to 
evaluate nearest neighbors (knn) or the centroid choice (kmeans).

We also tested the best-performing method LoopT and the knn 
method on the Mixophyes dataset. As mentioned in the results, the 
knn method will favor the most abundant species of the dataset 
and in our context assigned more points with unknown species 
labels to M. schevilli, while the LoopT method produced more bal-
anced species assignments. The value of the proposed Mixture 
and Loop methods is to make use of observations with uncertain 

F I G U R E  11   Distribution of the Mixophyes species predicted intensities for the mixture knn initialization method, the individual PPM 
method without the reclassified points and the LoopT method. Mcarb stands for Mixophyes carbinensis, Mcog stands for Mixophyes coggeri, 
and Msch stands for Mixophyes schevilli

Myxophies species predicted distribution

Mcarb Mcog Msch

Lo
op

T
in

di
v

M
ix

tu
re

 k
nn

0.05

0.10

0.15

0.20

0.25

0.30

0.35



5234  |     GUILBAULT et al.

species identities, and our results suggest that the LoopT method 
provides the best combination of accuracy in prediction and 
classification.

There are more factors to consider for real ecological datasets 
that can influence how a model will perform. First, the abundances 
tested in the simulation are quite low (40 points at the lowest) 
and some methods can show convergence issues in this context. 
While we use the spatstat package (Baddeley et  al.,  2015) to fit 
PPMs, we could make use of similar functions in the ppmlasso 
package (Renner & Warton, 2013) which integrate regularization 

methods like the lasso penalty that can boost performances with 
low sample sizes. In our model, we included all covariates used to 
generate the true point patterns; however, for real datasets we 
may not have access to the best covariates or know which ones 
precisely determine the species distributions. Applying a lasso 
penalty to help in variable selection may therefore provide a natu-
ral way forward in this context. Finally, a key reality when dealing 
with presence-only data is the observer bias, for which sampling 
effort varies throughout the study region. Some models apply a 
correction for observer bias in the prediction (Hefley et al., 2013; 

F I G U R E  1 2   Observed locations for the Mixophyes data set. On the left, the points with unknown species labels have not been classified. 
The remaining maps show the final classification for the knn mixture (middle) and LoopT (right) methods. The orange dots, purple triangles, 
and blue squares represent labeled points, while the question marks represent the points with unknown labels. The color of the question 
marks indicates their classification, with black representing an unclassified point, and the intensity of colored question marks representing 
the final membership probabilities, with bolder colors representing higher probabilities
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Lahoz-Monfort et al., 2014; Warton et al., 2013), and our proposed 
methods could be extended to accommodate these approaches of 
accounting for observer bias.

6  | CONCLUSION

The new algorithms presented in this article aim to reclassify ob-
servations that have uncertain or unknown labels in order to bet-
ter predict point pattern distributions. We showed that machine 
learning-based models performed better in a general context than 
mixture ones no matter the initialization method and also better 
than the individual PPM method that does not include the points 
with unknown labels. Our simulations showed encouraging results 
in this context with good performances in some cases. They can be 
adapted to account for other considerations in modeling presence-
only data.
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APPENDIX A
Testing algorithm parameters
For the parameters involved in each initialization method, we choose 
different values to test our model:

•	 knn method:k ∈ {1, 3, 5, 10}

•	 kmeans method:nstart ∈ {10, 15, 30, 50}

•	 LoopT method: �max ∈ {0.5, 0.7, 0.9}, �min ∈ {0.1, 0.3, 0.5, 0.7}, 
�step ∈ {0.05, 0.1, 0.2} where only one of the three parameters is 
varying at a time.

•	 LoopE method:a ∈ {1, 5, 10, 15, 20, 30, 40}

The results presented in Table A1 correspond to simulations with 
80% of hidden observations because no major differences were 
found for 20% and 50% of hidden observations. The knn, kmeans, 
and random method did not show any differences when the parame-
ters k and nstart, respectively, vary. All the other methods present the 
best performances for the parameters values displayed in Table A1.

The choices of �max, �min, and �step control the rate and breadth of 
points added to the set of locations with known species labels. As 
such, they control the growth of the predicted distribution as we 
reduce �h for each iteration h. Setting a higher value of �max such as 
0.9 suggests that we first augment the distribution with only those 
points in which we are very confident in belonging to the species 
and therefore initially grow the predicted distribution slowly, while 
setting a lower value such as 0.5 suggests that we grow the distribu-
tion more rapidly to begin. These two values tended to be the best, 
with �max = 0.5 being optimal for test 4 with equal abundance and 
high correlation between distributions. The lower the value of �min, 
the more we will grow the predicted distribution. The optimal value 
tends to be around 0.1, suggesting that growing the distributions 
significantly and therefore making use of most of the locations with 
unknown points is worthwhile. The value of �step controls the rate of 

growth between iterations. There does not seem to be a consistent 
winner among the three choices tested.

For the LoopE method, we increase at each iteration the num-
ber of points to add starting from a defined number a1. While the 
ah points with highest membership probabilities are added, these 
membership probabilities may be small for large values of ah, and this 
could explain that this method is not always doing as well as other 
methods. With LoopT, each species distribution grows based on eq-
uitable confidence bounds, while with LoopE, each species distribu-
tion grows based on equitable numbers of points added. The risk of 
LoopT is in growing the most abundant species too quickly while the 
risk of LoopE is in growing the least abundant species too quickly. 
Additionally, because we add the same numbers of points for each 
species, having not highly correlated species distributions may result 
in adding points to the wrong species. On another note, it seems that 
the initial number of points a1 did not influence the performances.
Testing species distribution for mixture methods
We present analogous results of Figures 3-6 for different initializa-
tion methods.

Estimated standard error
Here, we present the boxplots for the standard error of the predic-
tions presented in the manuscript. The LoopT and LoopA methods 
tend to have lower standard error in particular at 80% of hidden 
observations. As expected, the individual PPM method exhibits the 
highest standard errors, particularly for 50% and 80% of hidden 
observations.

Framework in R
We show below the steps in R to use the function for the framework 
presented in the manuscript. This document as well as the function 
used are available on github at https://github.com/EmyGl​blt/LoopM​
ixArt​icle.

https://github.com/EmyGlblt/LoopMixArticle
https://github.com/EmyGlblt/LoopMixArticle
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F I G U R E  A 1   MeanRSS for the methods: knn, kmeans, random, coinF, and individual PPM (reference). Each color boxplot represents a 
different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green for 50%, and in blue 
for 80%
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F I G U R E  A 2   Accuracy for the methods: knn, kmeans, random, coinF, and individual PPM (reference). Each color boxplot represents a 
different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green for 50% and in blue 
for 80%

F I G U R E  A 3   SumIMSE (logarithmic scale) for the methods: knn, kmeans, random, coinF, and individual PPM (reference). Each color 
boxplot represents a different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green 
for 50%, and in blue for 80%
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F I G U R E  A 4   Sumcor for the methods: knn, kmeans, random, coinF, and individual PPM (reference). Each color boxplot represents a 
different percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in green for 50%, and in blue 
for 80%
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Test1 :  m1 = 80 m2 = 60 m3 = 40 and
 ρ1−2 = 0.09 ρ1−3 = − 0.42 ρ2−3 = 0.2
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Test4 :  m1 = 60 m2 = 60 m3 = 60 and
 ρ1−2 = 0.85 ρ1−3 = − 0.09 ρ2−3 = 0.2
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F I G U R E  A 5   Standard error for the best methods: knn, coinF, individual PPM (reference), LoopA, LoopT, and LoopE. Each color boxplot 
represents a different species: in orange species 1, in purple species 2, and in turquoise species 3. The tests use the following parameters: test 
1: m1 = 80, m2 = 60, m3 = 40; �1−2 = 0.09, �1−3 = −0.42, �2−3 = 0.20; test 2: m1 = 60, m2 = 60, m3 = 60; �1−2 = 0.09, �1−3 = −0.42, �2−3 = 0.20
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F I G U R E  A 6   Standard error for the best methods: knn, individual PPM (reference), LoopA, LoopT, and LoopE. Each color boxplot 
represents a different species: in orange species 1, in purple species 2, and in turquoise species 3. The tests use the following parameters: test 
3: m1 = 80, m2 = 60, m3 = 40; �1−2 = 0.85, �1−3 = −0.09, �2−3 = 0.20; test 4: m1 = 60, m2 = 60, m3 = 60; �1−2 = 0.85, �1−3 = −0.09, �2−3 = 0.20
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